小学六年级数学知识点汇总
小学六年级数学知识点汇总

1.数的认识与构成-自然数的概念:从1开始的整数序列。
-整数的概念:包括自然数、0和负整数。
-分数的概念:表示一个数被另一个数等分的形式。
-有理数的概念:包括整数和分数的集合。
-实数的概念:包括有理数和无理数的集合。
2.计算方法-加法:加法的交换律和结合律,进位法和退位法。
-减法:减法的巧算法和退位法。
-乘法:乘法的交换律和结合律,进位法和退位法。
-除法:除法的整数除法和余数除法。
3.分数运算-分数的加法和减法:找到两个分数的公共分母,然后进行加法或减法运算。
-分数的乘法和除法:分子相乘,分母相乘;除法转化为乘法,取倒数计算。
-分数的化简:分子和分母同时除以最大公因数进行化简。
4.单位换算-长度单位换算:厘米、分米、米、千米。
-容量单位换算:毫升、升、立方米。
-质量单位换算:克、千克、吨。
5.图形与几何-平面图形的认识:三角形、正方形、长方形、梯形、圆等。
-图形的特点和性质:边数、顶点数、对边、对角线等。
-判断图形相似:对应角相等、对应边成比例。
-判断图形的对称性:线对称和中心对称。
6.数据统计-线图和柱图:通过线条或柱形来表示数据的数量。
-折线图和散点图:通过连接线和散点来表示数据的变化趋势。
-数据的分析和比较:寻找规律,进行数据的对比。
7.时间与运算-时间的概念:秒、分钟、小时、天等单位。
-时间的运算:时间的加减法运算。
8.逻辑与推理-推理和问题解决:通过观察和思考,解决问题和推理。
-条件的判断和运用:通过条件来判断和推导结论。
9.适当扩展的知识点-负数的概念和运算:负数的加减乘除运算。
-小数的概念和运算:小数的加减乘除运算。
-比例与比例关系:找出两个量的比例关系。
-倍数与约数:找出数的倍数和约数。
-分形图形:通过重复图形来构成新图形。
以上是小学六年级数学知识点的一个汇总,希望对你的学习有帮助!。
小学六年级数学重要知识点梳理

一、数与运算1.个位数、十位数和百位数的概念及其读法2.数的读法、写法和表达法(阿拉伯数字、罗马数字、简单英文表达)3.加法和减法的口算和竖式计算(进位、退位)4.乘法表的记忆与运用(乘法口诀)5.乘法的口算和竖式计算(乘法进位)6.除法的口算和竖式计算(除法退位)7.加减法、乘法和除法的综合运用(四则运算)二、分数1.分数的概念与表示2.分数的读法和写法3.通分与异分之间的转换4.分数的比较与排序5.分数的加法和减法6.分数的乘法和除法7.分数与整数的综合运用三、百分数1.百分数的概念和表示法2.百分数与分数、整数的相互转化3.百分数的加法、减法、乘法和除法4.百分法在解决实际问题中的应用四、倍数与约数1.倍数的概念与求法2.倍数的运算(加法、减法和乘法)3.有关倍数的问题的解决4.约数的概念与求法5.约数的运算(加法、减法和乘法)6.有关约数的问题的解决五、整数1.整数的概念和数轴的应用2.整数的加法和减法(同号相加、异号相减)3.整数运算的混合运用六、平方与平方根1.正整数的平方2.非负数的平方根3.平方与平方根的解决实际问题中的应用七、尺度与单位换算1.长度、质量和容量的换算(公制单位和市制单位的换算)2.时间的换算3.速度的换算与运用八、图形1.点、线段、射线、直线和角的概念与性质2.直角、钝角和锐角的区别3.平行线、垂线、相交线与角的关系4.四边形的概念和性质(矩形、正方形、长方形、平行四边形和任意四边形)5.三角形的概念和性质(直角三角形、等腰三角形、等边三角形)6.圆的概念和性质(半径、直径、弧)7.图形的放大和缩小九、数据统计1.数据的收集和整理2.数据的描述和分析3.数据的表示和解读(表格、柱状图和折线图)以上是小学六年级数学的重要知识点梳理,希望对你的学习有所帮助。
祝你学业进步!。
小学六年级数学知识点归纳

小学六年级数学知识点归纳第一部分数与代数一、数的认识知识点一:数的意义及分类1.整数是无限的,没有最小或最大的整数。
2.自然数是无限的,最小的自然数是1,没有最大的自然数。
3.既不是正数也不是负数的数称为零。
4.分数有真分数、假分数、带分数和最简分数。
5.百分数是百分数和分数的对比。
6.小数是有限小数和无限小数(无限不循环小数和无限循环小数)。
知识点二:计数单位和数位1.个、十、百……以及十分之一、百分之一……都是计数单位。
2.各个计数单位所占的位置称为数位。
3.十进制计数法。
4.数的分级。
知识点三:数的读、写法1.整数、小数、分数、百分数、正数和负数的读写法。
知识点四:数的改写1.把多位数改写成以“万”或“亿”为单位的数,可直接改写或省略尾数。
2.求小数的近似数。
3.假分数和带分数、整数之间的互化。
4.分数、小数与百分数之间的互化。
知识点五:数的大小比较1.整数、小数、分数、正数和负数的大小比较。
2.比较小数、分数和百分数的大小时,可把分数和百分数化成小数,把各小数的相同数位上下对齐进行比较,最后排序结果一定要排列原数。
知识点六:数的性质1.分数的基本性质。
2.小数的基本性质。
3.移动小数点的位置可引起小数大小变化,需要补位。
知识点七:因数倍数质数合数1.因数和倍数的意义。
2.因数和倍数的特征,一个数的因数个数有限,最小因数为1,最大因数为本身;一个数的倍数个数无限,最小倍数为本身,没有最大倍数;一个数既是它本身的因数,也是它本身的倍数。
3.2、3、5的倍数的特征。
4.奇数和偶数的意义,自然数不是奇数就是偶数,最小奇数为1,最小偶数为2.5.质数和合数的意义,最小质数为2,2是唯一的偶质数,没有最大质数;最小合数为4,没有最大合数。
6.判断一个数是质数还是合数的方法。
7、质因数、分解质因数、分解质因数的方法质因数是指能整除一个数的质数,分解质因数是将一个数分解成若干个质因数的乘积。
分解质因数的方法有多种,常用的有试除法和分解质因数法。
小学六年级数学总复习知识点归纳

小学六年级数学总复习知识点归纳一、常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数14、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间15、利润与折扣问题利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%)三、常用单位换算1、长度单位换算1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米2、体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分3、时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒4、基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
小学六年级必掌握的数学知识点总结

1.数的认识和比较
-十进制和整数概念
-数的读法和写法
-数的大小比较
-数轴的使用
2.四则运算
-加法和减法运算
-乘法和除法运算
-运算法则和顺序
3.分数
-分数的概念和表示方法-分数的比较和排序
-分数的加减乘除运算
4.百分数
-百分数的概念和表示方法-百分数的换算
-百分数的应用
5.小数
-小数的概念和表示方法
-小数的大小比较
-小数的加减乘除运算
6.几何图形
-平面图形的认识和分类
-三角形、正方形、长方形、圆的性质-单位面积的认识和换算
7.算术代数
-变量的引入和运算
-代数表达式的简化和计算
8.数据统计
-统计图表的读和解释
-平均数、中位数和众数的计算
-数据分析和应用
9.基础应用题
-模型推理和解决问题
-实际问题的分析和解决
-数学应用题的设计和答题技巧
以上是小学六年级必掌握的数学知识点总结。
在学习过程中,学生需要注重掌握概念的理解、运算规则的应用和问题解决的能力。
同时,学生还应通过不断的练习和复习来巩固和强化所学的知识点。
小学六年级数学全册知识点归纳

一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。
完整版)六年级数学总复习知识点归纳

完整版)六年级数学总复习知识点归纳一、常用的数量关系式常用的数量关系式包括每份数×份数=总数、总数÷每份数=份数、总数÷份数=每份数等;1倍数×倍数=几倍数、几倍数÷1倍数=倍数、几倍数÷倍数=1倍数等;速度×时间=路程、路程÷速度=时间、路程÷时间=速度等;单价×数量=总价、总价÷单价=数量、总价÷数量=单价等;工作效率×工作时间=工作总量、工作总量÷工作效率=工作时间、工作总量÷工作时间=工作效率等;加数+加数=和、和-一个加数=另一个加数;被减数-减数=差、被减数-差=减数、差+减数=被减数;因数×因数=积、积÷一个因数=另一个因数、被除数÷除数=商、被除数÷商=除数、商×除数=被除数等。
二、小学数学图形计算公式小学数学图形计算公式包括正方形、正方体、长方形、长方体、三角形、平行四边形、梯形、圆形、圆柱体、圆锥体等。
其中,正方形的周长为边长×4,面积为边长×边长;正方体的表面积为棱长×棱长×6,体积为棱长×棱长×棱长;长方形的周长为(长+宽)×2,面积为长×宽;长方体的表面积为(长×宽+长×高+宽×高)×2,体积为长×宽×高;三角形的面积为底×高÷2;平行四边形的面积为底×高;梯形的面积为(上底+下底)×高÷2;圆形的周长为直径×π,面积为半径×半径×π;圆柱体的侧面积为底面周长×高,表面积为侧面积+底面积×2,体积为底面积×高;圆锥体的体积为底面积×高÷3.三、常用单位换算长度单位换算包括米、千米、分米、厘米、毫米等;重量单位换算包括千克、克、毫克等;时间单位换算包括年、月、日、小时、分钟、秒等;容量单位换算包括升、毫升、立方米等。
六年级知识点归纳总结数学

六年级知识点归纳总结数学一、算术方法1. 算术运算(1)加法:求几个数和的最简单方法,小学阶段运算的主要方法。
(2)减法:加法的逆运算。
(3)乘法:特殊的加法。
(4)除法:乘法的逆运算。
2. 运算律(1)加法交换律:两数相加,交换加数的位置,和不变。
a+b=b+a(2)加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
(a+b)+c=a+(b+c)(3)乘法交换律:两数相乘,交换因数的位置,积不变。
a×b=b×a(4)乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再同第三个数相乘,积不变。
(a×b)×c=a×(b×c)(5)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把所得的积相加。
字母公式:(a+b)×c=a×c+b×c二、代数方法1. 代数式:用字母表示数的方法叫做代数式。
如:3x表示3乘以x。
2. 方程:含有未知数的等式叫做方程。
如:5x-3=12。
3. 方程的解:使方程左右两边相等的未知数的值叫做方程的解。
如:x=6的解是x=6。
4. 等式的性质:等式两边同时加上或减去同一个数或同一个整式,所得结果仍是等式。
等式两边同时乘以或除以同一个不为0的数,所得结果仍是等式。
5. 解方程的方法:根据等式的性质解方程。
6. 鸡兔同笼问题:已知鸡、兔总数和总头数及总脚数,求鸡、兔各多少只的一种类型的问题叫做鸡兔同笼问题。
其计算方法叫做鸡兔同笼问题的解法。
其特点是:头数少、脚数多、未知数多、方程少。
解法是:先设鸡的只数为x,则兔的只数为(总头数-x),再根据兔脚数比鸡脚数多的特点列出一个二元一次方程来解之。
三、几何方法1. 直线、射线、线段:直线射线与线段是几何中基本的概念。
2. 角:角的顶点处只有一个角时,才能叫做顶点。
3. 三角形:三角形是由不在同一直线上三条线段首尾顺次相接所组成的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★数学考试应注意:(六年级数学知识点汇总)1、用手指着认真读题至少两遍;2、遇到不会的题不要停留太长时间,可在题目的前面做记号。
(如:“?”)3、画图、连线时必须用尺子;4、检查时,要注意是否有漏写、少写的情况;1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。
例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
4、圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh5、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
4、圆柱与圆锥等底等高,体积相差2/3Sh题型总结①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/31、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示x/y=k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13、图上距离:图上距离/实际距离=比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离14、应用比例尺画图的步骤:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺15、图形的放大与缩小:形状相同,大小不同。
16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。