“将军饮马”模型详解与拓展

合集下载

将军饮马问题的11个模型及例题

将军饮马问题的11个模型及例题

将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。

本文将介绍将军饮马问题的11个模型及相应的例题。

1. 直线模型将军与目的地之间没有障碍物,可以直线前进。

此时,将军只需将马拉到目的地即可。

例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。

例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。

例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。

例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。

例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。

例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。

例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。

例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。

将军饮马问题16大模型

将军饮马问题16大模型

将军饮马问题16大模型将军饮马问题是一个经典的数学问题,被广泛应用于算法设计和逻辑推理。

在这个问题中,有一个有限数量的将军和马,将军们需要同时饮马,而且马的数量要足够多,以保证每个将军都能骑到马上。

然而,问题的难点在于,如果将军们不约定时间,他们同时骑上马的可能性很小。

为解决这个问题,已经提出了许多解决方案,下面我将介绍16种解决这个问题的模型。

1. 广播模型将军们可以通过广播的方式进行通信,每个将军都可以听到其他将军的广播信号。

在某个固定时间,将军们开始广播他们已准备好骑马的消息,并等待其他将军的回应。

只有当每个将军都收到了其他将军的回应信号,他们才会同时骑上马。

2. 协商模型将军们可以通过协商的方式进行通信,每个将军都可以与其他将军直接交流。

在某个固定时间,将军们开始与其他将军交流他们已准备好骑马的消息,并等待其他将军的回应。

只有当每个将军都收到了其他将军的回应信息,他们才会同时骑上马。

3. 仲裁者模型将军们委任一个仲裁者作为中介来传递消息。

每个将军将自己已准备好骑马的消息告诉仲裁者,仲裁者负责将该消息传递给所有其他将军。

只有当每个将军都收到其他将军的消息,他们才会同时骑上马。

4. 时钟模型在固定的时间间隔内,每个将军都可以检查时钟的状态。

他们会设定一个目标时间,当时钟的时间达到目标时间时,将军们会同时骑上马。

这样,他们可以通过同步的方式来保证同时骑马。

5. 群体模型将军们通过形成一个群体来解决这个问题。

在一个固定时间,将军们同时进入群体,并在一起饮马。

这种方式需要所有将军都同意进入群体,并时刻保持一致,才能保证同时骑马。

将军们依次传递一个令牌表示自己已准备好骑马。

当每个将军都收到了令牌并且已经骑上马时,他们才会将令牌传递给下一个将军。

这种方式需要将军们按照一定的规则来传递令牌,以保证同时骑马。

7. 树模型将军们通过构建一棵树来解决这个问题。

树的根节点是一个仲裁者,每个将军是树的叶子节点。

当仲裁者收到所有将军的准备好骑马的消息时,他会通知所有将军同步骑马。

初中数学解题模型专题讲解10---“将军饮马”模型详解与拓展

初中数学解题模型专题讲解10---“将军饮马”模型详解与拓展

初中数学解题模型专题讲解专题10 “将军饮马”模型详解与拓展平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系; ② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用 ①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马”问题。

问题提出:唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题.如图所示,诗中将军在观望烽火之后从山脚下的A 点出发,走到河边饮马后再到B 点宿营.请问怎样走才能使总的路程最短?模型提炼:模型模型【【1】一定直线、异侧两定点直线l 和l 的异侧两点A、B,在直线l 上求作一点P,使PA+PB 最小解答:根据“两点之间,线段距离最短”,所以联结AB 交直线l 于点P,点P 即为所求点模型模型【【2】一定直线、同侧两定点直线l 和l 的同侧两点A、B,在直线l 上求作一点P,使PA+PB 最小解答:第一步:画点A 关于直线l 的对称点A'(根据“翻折运动”的相关性质,点A、A'到对称轴上任意点距离相等,如图所示,AP=A'P,即把一定直线同侧两定点问题转化为一定直线异侧两定点问题)第二步:联结A'B 交直线l 于点Q,根据“两点之间,线段距离最短”,此时“A'Q+QB”最短即“AQ+QB”最短模型模型【【3】一定直线、一定点一动点已知直线l 和定点A,在直线k 上找一点B (点A、B 在直线l 同侧),在直线l 上找点P,使得AP+PB 最小解答:第一步:画点A 关于直线l 的对称点A'第二步:过点A'做A'B⊥k 于点B 且交直线l 于点P,根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”,可知A'P+PB 最小即AP+PB 最小模型模型【【4】一定点、两定直线点P 是∠MON 内的一点,分别在OM,ON 上作点A,B,使△PAB的周长最小解答:策略:两次翻折第一步:分别画点P 关于直线OM、ON 的对称点P1、P2第二步:联结P1P2,交OM、ON 于点A、点B(根据“翻折运动”的相关性质,AP=AP1,BP=BP2;根据“两点之间,线段距离最短”可知此时AP1+BP2+AB 最短即△ABP 周长最短)拓展如果两定点、两定直线呢?“如图,点P,Q为∠MON 内的两点,分别在OM,ON 上作点A,B。

将军饮马五大模型七类题型(解析版)-初中数学

将军饮马五大模型七类题型(解析版)-初中数学

将军饮马五大模型七类题型(模型梳理与题型分类讲解)第一部分【知识点归纳】【理论依据】路径最短、线段和最小、线段差最大、周长最小等一系列最值问题。

【方法原理】1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.【基本模型】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使P A+PB最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使P A+PB最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△P AB 的周长最小。

图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形P AQB的周长最小。

图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使P A 与点P到射线OM的距离之和最小。

图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小。

图6【题型目录】【题型1】两定一动型.......................................................3;【题型2】一定两动(两点之间线段最短)型...................................6;【题型3】一定两动(垂线段最短)型.........................................9;【题型4】两定两动型.......................................................12;【题型5】一定两动(等线段)转化型.........................................14;【题型6】直通中考.........................................................18;【题型7】拓展延伸.........................................................21;第二部分【题型展示与方法点拨】【题型1】两定一动型;1.(23-24八年级上·河北廊坊·期中)如图,在△ABC中,∠BAC=90°,AB=12,AC=16,BC=20,将△ABC沿射线BM折叠,使点A与BC边上的点D重合.(1)线段CD的长是;(2)若点E是射线BM上一动点,则△CDE周长的最小值是.【答案】824【分析】本题主要考查了的折叠的性质、两点之间线段最短,熟练掌握折叠的性质是解此题的关键.(1)由折叠的性质可得BD=AB=12,再由CD=BC-BD进行计算即可得到答案;(2)设BM与AC的交点为点F,连接AE,由折叠的性质可得:DF=AF,DE=AE,∠BDF=∠BAF,再根据两点之间线段最短可得当点E与点F重合时,AE+CE取最小值,最小值为AC,由此即可得到答案.解:(1)由折叠的性质可得:BD=AB=12,∴CD=BC-BD=20-12=8,故答案为:8;(2)如图,设BM与AC的交点为点F,连接AE,由折叠的性质可得:DF=AF,DE=AE,∠BDF=∠BAF,由(1)得:CD=8,∴△CDE的周长=CD+DE+CE=8+AE+CE,要是△CDE的周长最小,只需AE+CE最小,由两点之间线段最短可知,当点E与点F重合时,AE+CE取最小值,最小值为AC,∴△CDE的周长=8+AC=8+16=24,故答案为:24.2.(22-23八年级上·广西南宁·期末)如图,点E在等边△ABC的边BC上,BE=4,射线CD⊥BC,垂足为点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+FP的值最小时,BF=5,则AB 的长为.【答案】7【分析】本题考查最短路径问题、等边三角形的性质、含30度角的直角三角形的性质,熟练掌握利用轴对称性质求最短距离的方法是解答的关键.作点E 关于射线CD 的对称点E ,过E 作E F ⊥AB 于F ,交射线CD 于P ,连接PE ,此时EP +FP 的值最小,利用等边三角形的性质和三角形的内角和定理求得∠E =90°-∠B =30°,然后利用含30度角的直角三角形的性质求得BE =2BF =10,进而求得CE =3即可求解.解:作点E 关于射线CD 的对称点E ,过E 作E F ⊥AB 于F ,交射线CD 于P ,连接PE ,如图,则E P =EP ,∴EP +FP =E P +FP =E F ,此时EP +FP 的值最小,则BF =5,∵△ABC 是等边三角形,∴∠B =60°,AB =BC ,在Rt △BFE 中,∠E =90°-∠B =30°,∴BE =2BF =10,∵BE =4,CE =CE ,∴2CE +4=10,∴CE =3,∴AB =BC =3+4=7,故答案为:7.3.(23-24八年级下·河南郑州·阶段练习)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP 、AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .已知BC =5,AD =6.若点M 、N 分别是线段AD 和线段AB 上的动点,则BM +MN 的最小值为.【答案】6013【分析】本题考查作图-复杂作图,角平分线的定义,等腰三角形的性质等知识,解题关键是读懂图形信息,灵活运用所学知识解决问题,属于中考常考题型.过点B 作BH ⊥AC 于点H ,交AD 于点M ,根据等腰三角形的性质和勾股定理求出AC ,然后根据S ΔABC =12⋅BC ⋅AD =12⋅AC ⋅BH ,可得BH =6013.作点H 关于解:如图,过点B 作BH ⊥AC 于点H ,交AD 于点M ,由作图可知,AD 平分∠BAC ,∵AB =AC ,∴AD ⊥BC ,∴BD =CD =12BC =52,∵AD =6.∴AC =AD 2+DC 2=62+52 2=132,∵S ΔABC =12⋅BC ⋅AD =12⋅AC ⋅BH ,∴5×6=132BH ,∴BH =6013.∵AB =AC ,AD ⊥BC ,作点H 关于AD 的对称点交AB 于点N ,连接M N ,当M 与M 重合时,此时BM +MN 最小,∴M H =M N ,∴BH =BM +M H =BM +M N ,则BM +MN 的最小值为6013.故答案为:6013【题型2】一定两动(两点之间线段最短)型;4.(23-24七年级下·陕西西安·期末)如图,在锐角△ABC 中,∠ABC =30°,AC =4,△ABC 的面积为5,P 为△ABC 内部一点,分别作点P 关于AB ,BC ,AC 的对称点P 1,P 2,P 3,连接P 1P 2,PP 3,则2P 1P 2+PP 3的最小值为.【答案】5【分析】首先由△ABC 的面积为5,12AC ⋅BM =5,求出BM =52,然后由∠ABC =30°和对称构造正三角形,将P 1P 2转化成BP ,将2P 1P 2+PP 3提取系数2,最终转化成垂线段最短.解:设PP3与AC 交于点Q ,则PQ =12PP 3,连接BP 、BQ 、BP 1、BP 2,作BM ⊥AC ,垂足为M ,AC =4,△ABC 的面积为5,∴12AC ⋅BM =5,即12×4BM =5∴BM =5,根据对称性得BP=BP1=BP2,∠ABP=∠ABP1,∠CBP=∠CBP2,∴∠P1BP2=2∠ABC=60°,∴△P1BP2是正三角形,∴P1P2=BP1=BP,∴2P1P2+PP3=2P1P2+12PP3=2(BP+PQ)≥2BQ≥2BM=5,故答案为:5.【点拨】本题考查了轴对称、正三角形、三角形面积、垂线段最短等知识,解题的关键是将P1P2转化成BP,将2P1P2+PP3提取系数2,最终转化成垂线段最短.形式上易与胡不归混淆.5.(23-24八年级上·北京海淀·期中)如图,已知∠MON=30°,在∠MON的内部有一点P,A为OM上一动点,B为ON上一动点,OP=a,当△P AB的周长最小时,∠APB=度,△P AB的周长的最小值是.【答案】120a【分析】分别作出点P关于OM,ON两条射线的对称点,连接两个对称点的线段与OM,ON的交点即为所确定的点;连接OP,OP ,OP ,由轴对称的性质得:OP=OP =OP =a,∠P OA=∠POA,∠P OB=∠POB,证得△P OP 是等边三角形,即可得到结论.解:①分别作点P关于OM,ON的对称点P ,P ;连接P ,P ,分别交OM,ON于点A、点B,则此时△P AB的周长最小.连接OP,OP ,OP ,由轴对称的性质得:OP=OP =OP =a,∠P OA=∠POA,∠P OB=∠POB,∵∠MON=30°,∴∠P OP =2∠MON=60°,∴△P OP 是等边三角形,∴P P =OP=a,∠AP O=∠APO,∠BP O=∠BPO,∴∠APB=∠AP O+∠BP O=120°,∴△P AB的周长=P P =a,故答案为:120,a.【点拨】此题主要考查了轴对称-最短路径问题,解决本题的关键是理解要求周长最小问题可归结为求线段最短问题,通常是作已知点关于所求点所在直线的对称点.6.(22-23八年级上·新疆乌鲁木齐·期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=5,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于5,则α=()A.30°B.45°C.60°D.90°【答案】A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+ EF+FP=CD,此时周长最小,根据CD=5可求出α的度数.解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF 的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=5,∴∠COD=2α.又∵△PEF的周长为:PE+EF+FP=CE+EF+FD=CD=5,∴OC=OD=CD=5,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选:A.【点拨】此题主要考查了最短路径问题,本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.【题型3】一定两动型(垂线段最短);7.(2024八年级上·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.3C.4D.5【答案】A【分析】本题考查了轴对称最短路径问题,角平分线定义,勾股定理,作点Q关于AD的对称点Q ,连接PQ ,股定理求出AB 的长,再利用三角形面积求出CH 的长即可得到结果.解:如图,作点Q 关于AD 的对称点Q ,连接PQ ,CQ ,过点C 作CH ⊥AB 于点H ,∵AD 是△ABC 的角平分线,Q 与Q 关于AD 对称,∴点Q 在AB 上,PC +PQ =PC +PQ ≥CH ,∵AC =3,BC =4,∴AB =AC 2+BC 2=5,12⋅AC ⋅BC =12⋅AB ⋅CH 即12×3×4=12×5×CH ,∴CH =2.4,∴CP +PQ ≥2.4,∴PC +PQ 的最小值为2.4,故选:A .8.(23-24七年级下·广东深圳·期末)如图,在等腰三角形ABC 中,AB =AC ,AD ⊥BC ,点D 为垂足,E 、F 分别是AD 、AB 上的动点.若AB =6,△ABC 的面积为12,则BE +EF 的最小值是()A.2B.4C.6D.8【答案】B 【分析】本题考查等腰三角形的性质,轴对称-最短路线问题,垂线段最短.解此题的关键是正确作出辅助线.作点F 关于AD 的对称点M ,连接BM 、EM ,过点B 作BN ⊥AC 于点N ,从而可确定BE +EF ≥BM ,即BM 最小时,BE +EF 最小.再根据垂线段最短可知BN 的长即为BM 最小时,最后根据三角形面积公式求出BN 的长即可.解:如图,作点F 关于AD 的对称点M ,连接BM 、EM ,过点B 作BN ⊥AC 于点N ,∴EF =EM ,∴BE +EF =BE +EM ≥BM ,∴BM 最小时,BE +EF 最小.当BM ⊥AC 时BM 最小,即为BN 的长,∵S △ABC =12AC ⋅BN =12,AB =AC =6,∴BN =2×12÷6=4,∴BE +EF 的最小值是4.故选B .9.(23-24八年级·江苏·假期作业)如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是.【答案】9.6【分析】本题考查了轴对称--最短路线问题、等腰三角形的性质以及三角形的面积,线段垂直平分线的性质.连接PB ,PQ ,根据线段垂直平分线的性质可得BP =CP ,从而得到当点B ,P ,Q 三点共线时,PC +PQ 取得最小值,最小值为BQ 的长,且当BQ ⊥AC 时,BQ 最小,再由S △ABC =12BC ⋅AD =12AC ⋅BQ ,求出BQ 的长,即可.解:如图,连接PB ,PQ ,∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP ,∴PC +PQ =PB +PQ ≥PQ ,∴当点B ,P ,Q 三点共线时,PC +PQ 取得最小值,最小值为BQ 的长,且当BQ ⊥AC 时,BQ 最小,∵S △ABC =12BC ⋅AD =12AC ⋅BQ ,∴12×12×8=12×10BQ ,∴BQ =9.6.故答案为:9.6【题型4】两定两动型;10.(22-23八年级上·湖北武汉·期末)如图,∠AOB =20°,M ,N 分别是边OA ,OB 上的定点,P ,Q 分别是边OB ,OA 上的动点,记∠OPM =α,∠OQN =β,当MP +PQ +QN 最小时,则关于α,β的数量关系正确的是()A.β-α=30°B.β+α=210°C.β-2α=30°D.β+α=200°【答案】D 【分析】如图,作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N 交OA 于Q ,交OB 于P ,则MP +PQ +QN 最小,易知∠OPM =∠OPM ′=∠NPQ ,∠OQP =∠AQN ′=∠AQN ,∠OQN =180°-20°-∠ONQ ,∠OPM =∠NPQ =20°+∠OQP ,∠OQP =∠AQN =20°+∠ONQ ,由此即可解决问题.PQ +QN 最小,解:由轴对称的性质得∠OPM =∠OPM ′=∠NPQ ,∠OQP =∠AQN ′=∠AQN ,∠OQN =180°-20°-∠ONQ ,∠OPM =∠NPQ =20°+∠OQP ,∠OQP =∠AQN =20°+∠ONQ ,∴α+β=180°-20°-∠ONQ +20°+20°+∠ONQ =200°.故选:D .【点拨】本题考查轴对称-最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式】(20-21八年级上·天津·期末)如图,∠AOB =25°,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记∠MPQ =α,∠PQN =β,当MP +PQ +QN 的值最小时,β-α的大小=_______(度).【答案】50【分析】本题主要考查最短路径问题、轴对称的性质,三角形外角的性质,作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N ,交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP +PQ +QN 最小,此时∠OPM =∠OPM =QPN ,∠OQP =∠AQN =∠AQN ,再根据三角形外角的性质和平角的定义即可得出结论.解:作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N ,交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP +PQ +QN 最小,即MP +PQ +QN =M N ,∴∠OPM =∠OPM =QPN ,∠OQP =∠AQN =∠AQN ,∵∠MPQ =α,∠PQN =β,∴∠QPN =12180°-α ,∠OQP =12180°-β ,∵∠QPN =∠AOB +∠OQP ,∠AOB =25°,∴12180°-α =25°+12180°-β ,∴β-α=50°,故答案为:50.【题型5】一定两动(等线段)转化型;11.(23-24九年级下·广西南宁·开学考试)如图,△ABC 是等边三角形,AB =4.过点A 作AD ⊥BC 于点D ,点P 是直线AD 上一点,以CP 为边,在CP 的下方作等边△CPQ ,连接DQ ,则DQ 的最小值为.【答案】1【分析】连接BQ ,先证△ACP ≌△BCQ (SAS ),则可得∠CBQ =∠CAP =30°,由此可知Q 点在过B 点且与BC 成30°角的直线上运动.根据垂线段最短可知,当DQ ⊥BQ 时,DQ 最小,求出DQ 的值即可.本题主要考查了等边三角形的性质,全等三角形的判定和性质,以及垂线段最短.熟练掌握以上知识,找出Q 点的运动轨迹是解题的关键.解:连接BQ ,∵△ABC 和△CPQ 都是等边三角形,∴AC =BC ,PC =QC ,∠ACB =∠PCQ =60°,∴∠ACB -∠PCB =∠PCQ -∠PCB ,即∠ACP =∠BCQ ,∴△ACP ≌△BCQ (SAS ),∴∠CBQ =∠CAP ,∵△ABC 是等边三角形,AB =4,∴BC =AB =4,∠BAC =60°,∵AD ⊥BC ,∴BD =DC =12BC =2,∠CAP =12∠BAC =30°,∴∠CBQ =30°,∴Q 点在过B 点且与BC 成30°角的直线上运动.当DQ ⊥BQ 时,DQ 最小,此时DQ =12BD =1,∴DQ 的最小值为1.故答案为:1.12.(23-24八年级下·湖北武汉·阶段练习)如图,在Rt △ABC 中,∠BAC =90°,AC =6,BC =10,D 、E 分别是AB 、BC 上的动点,且CE =BD ,连接AE 、CD ,则AE +CD 的最小值为.【答案】234【分析】本题主要考查了全等三角形的判定及性质,勾股定理,两点之间,线段最短,过点C 作CN ∥AB 且使CN =BC ,连接EN ,AN ,证明△CEN ≌△BDC SAS ,得EN =DC 进而可得AE +CD =AE +EN ,再由两点之间线段最短可得:AE +EN ≥AN ,所以当点E 在AN 上时,AE +EN 有最小值,即AE +CD 有最小值为AN ,利用勾股定理计算即可,熟练掌握相关知识点是解题的关键.解:过点C 作CN ∥AB 且使CN =BC ,连接EN ,AN ,∵CN ∥AB ,∴∠ECN =∠ABC ,∠ACN =180°-∠BAC =90°,在△CEN 和△BDC 中,EC =BD∠ECN =∠DBC CN =BC,∴△CEN ≌△BDC SAS ,∴EN =DC ,∴AE +CD =AE +EN ,由两点之间线段最短可得:AE +EN ≥AN ,所以当点E 在AN 上时,AE +EN 有最小值,即AE +CD 有最小值为AN ,∵AC =6,BC =CN =10,∴Rt △ACN 中,AN =AC 2+CN 2=62+102=234,∴AE +CD 最小值为:234,故答案为:234.13.(2024·安徽合肥·二模)如图,△ABC 和△ADE 都是等腰三角形,且∠BAC =∠DAE =120°,AB =8,O 是AC 的中点,若点D 在直线BC 上运动,连接OE ,则在点D 运动过程中,OE 的最小值为()A.42B.433C.32D.2【答案】D 【分析】设AB 的中点为Q ,连接DQ ,过点Q 作QH ⊥BC 于H ,证△AQD 和△AOE 全等得QD =OE ,因此当QD 为最小时,OE 为最小,根据“垂线段最短”得QD ≥QH ,故点D 与点H 重合时,QD 为最小,最小值为QH 的长,然后在Rt △BQH 中求出QH 的长即可.解:设AB 的中点为Q ,连接DQ ,过点Q 作QH⊥BC 于H ,如下图所示:∵△ABC 和△ADE 都是等腰三角形,且∠BAC =∠DAE =120°,∴AB =AC ,AD =AE ,∠QAD +∠DAC =∠DAC +∠OAE =120°,∴∠QAD =∠OAE ,∵点Q 是AB 的中点,点O 是AC 的中点,AB =AC ,∴AQ =AO ,在△AQD 和△AOE 中,AQ =AO∠QAD =∠OAE AD =AE,∴△AQD ≌△AOE (SAS ),∴QD =OE ,∴当QD 为最小时,OE 为最小,∵点Q 为AB 的中点,AB =8,点D 在直线BC 上运动,∴根据“垂线段最短”得:QD ≥QH ,∴当点D 与点H 重合时,QD 为最小,最小值为QH 的长,在△ABC 中,AB =AC =8,∠BAC =120°,∴∠B =∠C =12(180°-∠BAC )=30°,在Rt △BQH 中,∠B =30°,BQ =12AB =4,∴QH =12BQ =2,∴QD 的最小值为2,即OE 的最小值为2.故选:D .【点拨】此题主要考查了等腰三角形的性质,直角三角形的性质,全等三角形的判定和性质,垂线段的性质,熟练掌握等腰三角形的性质,直角三角形的性质,全等三角形的判定和性质,理解垂线段最短是解决问题的关键,难点是正确地作出辅助线构造全等三角形和直角三角形.第三部分【中考链接与拓展延伸】【题型6】直通中考14.(2023·辽宁锦州·中考真题)如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =4,按下列步骤作图:①在AC 和AB 上分别截取AD 、AE ,使AD =AE .②分别以点D 和点E 为圆心,以大于12DE 的长为半径作弧,两弧在∠BAC 内交于点M .③作射线AM 交BC 于点F .若点P 是线段AF 上的一个动点,连接CP ,则CP +12AP 的最小值是.【答案】23【分析】过点P 作PQ ⊥AB 于点Q ,过点C 作CH ⊥AB 于点H ,先利用角平分线和三角形的内角和定理求出∠BAF =30°,然后利用含30°的直角三角的性质得出PQ =12AP ,则CP +12AP =CP +PQ ≥CH ,当C 、P 、Q 三点共线,且与AB 垂直时,CP +12AP 最小,CP +12AP 最小值为CH ,利用含30°的直角三角的性质和勾股定理求出AB ,BC ,最后利用等面积法求解即可.解:过点P 作PQ ⊥AB 于点Q ,过点C 作CH ⊥AB 于点H ,由题意知:AF 平分∠BAC ,∵∠ACB =90°,∠ABC =30°,∴∠BAC =60°,∴∠BAF =12∠BAC =30°,∴PQ =12AP ,∴CP +12AP =CP +PQ ≥CH ,∴当C 、P 、Q 三点共线,且与AB 垂直时,CP +12AP 最小,CP +12AP 最小值为CH ,∵∠ACB =90°,∠ABC =30°,AC =4,∴AB =2AC =8,∴BC =AB 2-AC 2=43,∵S △ABC =12AC ⋅BC =12AB ⋅CH ,∴CH =AC ⋅BC AB =4×438=23,1故答案为:23.【点拨】本题考查了尺规作图-作角平分线,含30°的直角三角形的性质,勾股定理等知识,注意掌握利用等积法求三角形的高或点的线的距离的方法.15.(2020·新疆·中考真题)如图,在△ABC 中,∠A =90°,∠B =60°,AB =4,若D 是BC 边上的动点,则2AD+DC 的最小值为.【答案】12【分析】过点C 作射线CE ,使∠BCE =30°,再过动点D 作DF ⊥CE ,垂足为点F ,连接AD ,在Rt △DFC 中,∠DCF =30°,DF =12DC ,2AD +DC =2AD +12DC =2(AD +DF )当A ,D ,F 在同一直线上,即AF ⊥CE 时,AD +DF 的值最小,最小值等于垂线段AF 的长.解:过点C 作射线CE ,使∠BCE =30°,再过动点D 作DF ⊥CE ,垂足为点F ,连接AD ,如图所示:在Rt △DFC 中,∠DCF =30°,∴DF =12DC ,∵2AD +DC =2AD +12DC =2(AD +DF ),∴当A ,D ,F 在同一直线上,即AF ⊥CE 时,AD +DF 的值最小,最小值等于垂线段AF 的长,此时,∠B =∠ADB =60°,∴△ABD 是等边三角形,∴AD =BD =AB =4,在Rt △ABC 中,∠A =90°,∠B =60°,AB =4,∴BC =8,∴DC =4,∴DF =12DC =2,∴AF =AD +DF =4+2=6,∴2(AD +DF )=2AF =12,∴2AD +DC 的最小值为12,故答案为:12.【点拨】本题考查垂线段最短、等边三角形的判定和性质,含30度的直角三角形等知识,解题的关键是学会添加辅助线,构造数学模型,学会用转化的思想思考问题,属于中考填空题中的压轴题.【题型7】拓展延伸16.(2024·辽宁葫芦岛·二模)在△ABC 中,∠ABC =60°,BC =4,AC =5,点D ,E 在AB ,AC 边上,且AD=CE ,则CD +BE 的最小值是.【答案】61【分析】本题考查两点之间线段最短、勾股定理,全等三角形的性质和判定等知识,学会构造全等三角形解决问题是解题的关键.如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.首先证明EK=CD,可得CD+BE =EK+EB≥BK,推出CD+BE的最小值为BK的长.解:如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.∵CK∥AB,∴∠KCE=∠A,∵CK=CA,CE=AD,∴△CKE≌△CAD SAS,∴CD=KE,∵CD+BE=EK+EB≥BK,∴CD+BE的最小值为BK的长,∵KG∥AB,∴∠GCB=∠ABC=60°,∴∠CBG=90°-∠GCB=30°,在Rt△BCG中,∵∠G=90°,BC=4,∴CG=12BC=2,BG=BC2-CG2=23,∴GK=KC+CG=AC+CG=5+2=7,在Rt△KBG中,BK=GK2+BG2=72+(23)2=61.故答案为:61.17.(23-24八年级上·湖北武汉·阶段练习)如图,等腰△ABC中,∠BAC=100°,BD平分∠ABC,点N为BD上一点,点M为BC上一点,且BN=MC,若当AM+AN的最小值为4时,AB的长度是.【答案】4【分析】由等腰△ABC中,∠BAC=100°,可得∠ABC=∠ACB=180°-∠BAC2=40°,由BD平分∠ABC,可得∠ABD=12∠ABC=20°,如图,作∠BCE=∠ABD=20°,使CE=AB,连接EM,则∠ACE=∠ACB+E三点共线时,AM+AN最小,即AE=4,证明△ACE是等边三角形,则AC=AE=4,进而可求AB.解:∵等腰△ABC中,∠BAC=100°,=40°,∴∠ABC=∠ACB=180°-∠BAC2∵BD平分∠ABC,∠ABC=20°,∴∠ABD=12如图,作∠BCE=∠ABD=20°,使CE=AB,连接EM,∴∠ACE=∠ACB+∠BCE=60°,∵CE=AB,∠BCE=∠ABD,MC=BN,∴△CEM≌△BAN SAS,∴ME=AN,CE=AB,∴AM+AN=AM+ME,∴当A、M、E三点共线时,AM+AN最小,即AE=4,∵CE=AC,∠ACE=60°,∴△ACE是等边三角形,∴AC=AE=4,∴AB=4,故答案为:4.【点拨】本题考查了等腰三角形的性质,角平分线,全等三角形的判定与性质,等边三角形的判定与性质等知识.熟练掌握等腰三角形的性质,角平分线,全等三角形的判定与性质,等边三角形的判定与性质是解题的关键.。

初中数学58种模型之12、“将军饮马”三种模型详解

初中数学58种模型之12、“将军饮马”三种模型详解

当两淀点A 、R 在克罐/何侧时,在亞线』上携一点几便|阳一户创最大°将军饮马”三种模型"将军饮马"问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。

晋两定点A.U 在点线F 异創时-在肖践f 上找一点Pt 使PA+PB 锻小*述接也交h 纱/于点P.点卩閒为所求作的点.肖两远点上B 在直雜I 同测时,在直刻上拥一点P,使PA+PB 最小'作庖U 芸于宜线F 的对称点V ■连楼AB'交直线于点P.点P 即为用求作的点"―二I \PA-P^\荊卩址大值洵丽。

连接班并延长交直戦』十点几点卩即为所求作的点。

当两定点仏k 在直找门司侧时,在直线』上找一点人使PA-PB\^扎作点B 关于直统』的对称点B'h 谨接恋’井延快交宜鏡于点巴点F 即为所求作的点。

皓论PAPI1的颯小°PA-PB 的盘小值为AB'□冋-卿的最大值为上的动点,则户创的圮大值是多少?A ■B ■\A\PA-PB\的 1当两定点限廿在宜线/同删时,在直线丿上找--点片使f4-砂|最小“ 叫连接馭作■-朋的垂直平分钱交直线f 于点P ,点卩即沟所求作的点-最小值为叽模型实例例1一如图"止厅形的面积是1氛是等边三博形,点E 在止方刑ABCI )内“在对角纯蚯上有一点卩*则PD+FE 的艮小值为°^12.如圜已S11AABC 为辱展宜角匸角形…怔-氏=4”ZBCD 15".P 拘匚D热搜掃练I.如虱^AABC 中「ZACB-fJO 3,乃是就边的中点,II 是屈边b -动直+则LCIED 的最小悄是°])2・如图.点C的坐标为(3,y),当△ABC的周长最短时,求丿的值。

3.如图.正方形ABCD中,AB-7,M是DCI:的一点,且DM-3,N是AC上的一动点.求|DN-MN|的嚴小值与战大值.△PCD 周氏最小为点P 在ZAOB 的内部,在0B 上找点D,在0A 上找点C,使得△PCD 周长最小。

将军饮马(最完整讲义)

将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛一、“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题, 会与直线、角、三角形、四边形、圆、抛物线等图形结合, 在近年的中考和竞赛中经常出现, 而且大多以压轴题的形式出现。

二、定直线与两定点模型作法结论当两定点在直线异侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最大.当两定点在直线异侧时, 在直线上找上点, 使最大.当两定点在直线同侧时, 在直线上找上点, 使最小.二、角到定点模型作法结论点在的内部, 在上找一点, 在上找一点,使得周长最小.点在的内部, 在上找一点, 在上找一点,使得最小.点在的内部, 在上找一点, 在上找一点,使得四边形周长最小.点在的外部, 在射线上找一点, 使与点到射线的距离和最小.点在的内部, 在射线上找一点, 使与点到射线的距离和最小.点分别在的边是, 在上找一点, 在上找一点,使得最小.三、两定点一定长模型作法结论如图在直线上找上两点(在左), 使最小,且.如图, , 之间的距离为, 在上分别找两点, 使, 且最小.如图, , ,之间的距离为, 之间的距离为, 在上分别找两点, 使, 在上分别找两点, 使且最小.如图, 在⊙上找一点, 在直线找一点,使得最小.➢精讲精练例1: 如图, 点P是∠AOB内任意一点, ∠AOB=30°, OP=8, 点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值.例2: 如图, 正方形ABCD 的边长是4, M 在DC 上, 且DM=1, N 是AC 边上的一动点, 则△DMN 周长的最小值.A .例3: 如图, 在Rt △ABO 中, ∠OBA=90°, A (4,4), 点C 在边AB 上, 且AC:CB=1:3, 点D 为OB 的中点, 点P 为边OA 上的动点, 当点P 在OA 上移动时, 使四边形PDBC 周长最小的点P 的坐标为 B. ,C .,D .第3题图 第4题图 第5题图例4: 如图, 在△ABC 中, AC=BC, ∠ACB=90°, 点D 在BC 上, BD=3, DC=1, 点P 是AB 上的动点, 则PC+PD 的最小值为 A. 4 B. 5 C. 6 D. 7例5:如图, 在等边△ABC 中, AB=6, N 为AB 上一点且BN=2AN, BC 的高线AD 交BC 于点D, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值是___________.A BCDMN例6: 如图, 在Rt △ABD 中, AB=6, ∠BAD=30°, ∠D=90°, N 为AB 上一点且BN=2AN, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值.例7: 如图, 在Rt △ABC 中, ∠ACB=90°, AC=6. AB=12, AD 平分∠CAB, 点F 是AC 的中点, 点E 是AD 上的动点, 则CE+EF 的最小值为 A. 3 B. 4 C.D.第7题图 第8题图 第9题图A .例8: 如图, 在锐角三角形ABC 中, BC=4, ∠ABC=60°, BD 平分∠ABC, 交AC 于点D, M 、N 分别是BD, BC 上的动点, 则CM+MN 的最小值是B. 2C.D. 4例9: 如图, 在菱形ABCD 中, AC=, BD=6, E 是BC 的中点, P 、M 分别是AC.AB 上的动点, 连接PE 、PM, 则PE+PM 的最小值是A. 6B.C.D. 4.5E AFCDBNM DCBAEPDCBAMA .例10: 如图, 矩形ABOC 的顶点A 的坐标为(-4,5), D 是OB 的中点, E 是OC 上的一点, 当△ADE 的周长最小时, 点E 的坐标是B. C. D.第10题图 第11题图 第12题图例11: 如图, 在矩形ABCD 中, AB=6, AD=3, 动点P 满足, 则点P 到A.B 两点距离之和PA+PB 的最小值为A. B. C. D.例12: 如图, 矩形ABCD 中, AB=10, BC=5, 点E 、F 、G 、H 分别在矩形ABCD 各边上, 且AE=CG, BF=DH, 则四边形EFGH 周长的最小值为A. B. C. D.例13: 如图, ∠AOB=60°, 点P 是∠AOB 内的定点且OP=, 若点M 、N 分别是射线OA.OB 上异于点O 的动点, 则△PMN 周长的最小值是A. B. C. 6 D. 3第13题图 第14题图CBH FGEDCB AABMOPN例14: 如图, ∠AOB 的边OB 与x 轴正半轴重合, 点P 是OA 上的一动点, 点N (3,0)是OB 上的一定点, 点M 是ON 的中点, ∠AOB=30°, 要使PM+PN 最小, 则点P 的坐标为 .例15:如图, 已知正比例函数y=kx (k>0)的图像与x 轴相交所成的锐角为70°, 定点A 的坐标为(0, 4), P 为y 轴上的一个动点, M 、N 为函数y=kx (k>0)的图像上的两个动点, 则AM+MP+PN 的最小值为___________.第15题图例16: 如图, 在平面直角坐标系中, 矩形ABCD 的顶点B 在原点, 点A.C 在坐标轴上, 点D 的坐标为(6, 4), E 为CD 的中点, 点P 、Q 为BC 边上两个动点, 且PQ=2, 要使四边形APQE 的周长最小, 则点P 的坐示应为______________.例17:如图, 矩形ABCD 中, AD=2, AB=4, AC 为对角线, E 、F 分别为边AB 、CD 上的动点, 且EF ⊥AC 于点M,连接AF 、CE, 求AF+CE 的最小值.x例18: 如图, 正方形ABCD的面积是12, △ABE是等边三角形, 点E在正方形ABCD内, 在对角线AC上有一点P, 求PD+PE的最小值。

专题14 将军饮马问题(解析版)

专题14 将军饮马问题(解析版)

专题14将军饮马问题模型的概述:唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营。

问如何行走才能使总的路程最短。

模型一(两点在河的异侧):将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。

方法:如右图,连接AB,与线段L交于点M,在M处渡河距离最短,最短距离为线段AB的长。

模型二(两点在河的同侧):将军在观望烽火之后从山脚下的A点出发,需先走到河边让战马饮水后再到B 点宿营,将在何处渡河使行走距离最短并求最短距离。

方法:如右图,作点B关于直线L的对称点B’,连接AB’,与直线L的交点即为所求的渡河点,最短距离为线段AB’的长。

模型三:如图,将军同部队行驶至P处,准备在此驻扎,但有哨兵发现前方为两河AB、BC的交汇处,为防止敌军在对岸埋伏需派侦察兵到河边观察,再返回P处向将军汇报情况,问侦察兵在AB、BC何处侦查才能最快完成任务并求最短距离。

数学描述:如图在直线AB、BC上分别找点M、N,使得∆PMN周长最小。

方法:如右图,分别作点P关于直线AB、BC的对称点P’、P’’,连接P’P’’,与两直线的交点即为所求点M、N,最短距离为线段P’P’’的长。

模型四如图,深夜为防止敌军在对岸埋伏,将军又派一队侦察兵到河边观察,并叮嘱观察之后先去存粮位置点Q处查看再返回P处向将军汇报情况,问侦察在AB、BC何处侦查才能最快完成任务并求最短距离。

数学描述:如图在直线AB、BC上分别找点M、N,使得四边形PQNM周长最小。

方法:如右图,分别作点P、点Q关于直线AB、BC的对称点P’、Q’,连接P’Q’,与两直线的交点即为所求点M、N,最短距离为线段(PQ+P’Q’)的长。

模型一-模型四的理论依据:两点之间线段最短。

模型五:已知点P在直线AB、BC的外侧,在直线AB和BC上分别取一点M、N,求PM+PN的最小值方法:如右图,过点P作PN⊥BC,垂足为点N,PN与AB相交于点M,与两直线的交点即为所求点M、N,最短距离为线段PN的长。

华东师大版八年级数学下册“将军饮马模型”专题讲义及解析

华东师大版八年级数学下册“将军饮马模型”专题讲义及解析

华东师大版八年级数学下册“将军饮马模型”专题讲义及解析华东师大版八年级数学下册“将军饮马模型”专题讲义及解析一、背景知识:据传说,古罗马时代有一位名叫XXX的学者,他精通数学和物理。

有一天,一位罗马将军前来请教他一个难题:每天他从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题被称为“将军饮马”问题,据说XXX很快解决了它,从此这个问题流传至今。

二、将军饮马问题常见模型1.两定一动型:两个定点到一个动点的距离和最小例1:在一条定直线l上找一个动点P,使动点P到两个定点A和B的距离之和最小,即PA+PB最小。

作法:连接AB,与直线l的交点Q即为所求点,当动点P跑到点Q处时,PA+PB最小,且最小值等于AB。

原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在三角形PAB中,由三边关系可知:AP+PB≧AB(当且仅当PQ重合时取等)。

例2:在一条定直线l上找一个动点P,使动点P到两个定点A和B的距离之和最小,即PA+PB的和最小。

关键:找对称点。

作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所求点,当动点P跑到点Q处时,PA+PB和最小,且最小值等于AC。

原理:两点之间,线段最短。

证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在三角形PAC中,由三边关系可知:AP+PC≧AC(当且仅当PQ重合时取等)。

2.两动一定型例3:在∠XXX的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短。

作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△XXX即为所求。

原理:两点之间,线段最短。

例4:在∠XXX的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短。

作法:首先,我们作点A关于OM的对称点A',作点B关于ON的对称点B',然后连接A'B',交OM于点C,交ON于点D,最后连接AC和BD,四边形ABCD即为所求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“将军饮马”模型详解与拓展
平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系;② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马”问题。

问题提出:
唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题.
如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问怎样走才能使总的路程最短?
模型提炼:
模型【1】一定直线、异侧两定点
直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小
解答:根据“两点之间,线段距离最短”,所以联结AB交直
线l于点P,点P即为所求点
模型【2】一定直线、同侧两定点
直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小
解答:
第一步:画点A关于直线l的对称点A'(根据“翻折运动”的
相关性质,点A、A'到对称轴上任意点距离相等,如图所示,
AP=A'P,即把一定直线同侧两定点问题转化为一定直线异侧两
定点问题)
第二步:联结A'B交直线l于点Q,根据“两点之间,线段距离
最短”,此时“A'Q+QB”最短即“AQ+QB”最短
模型【3】一定直线、一定点一动点
已知直线l和定点A,在直线k上找一点B(点A、B在直线l同侧),在直线l上找点P,使得AP+PB最小
解答:
第一步:画点A关于直线l的对称点A'
第二步:过点A'做A'B⊥k于点B且交直线l于点P,根据“从直线
外一点到这条直线上各点所连的线段中,垂线段最短”,可知A'P+PB
最小即AP+PB最小
模型【4】一定点、两定直线
点P是∠MON内的一点,分别在OM,ON上作点A,B,使△PAB的周长最小
解答:
策略:两次翻折
第一步:分别画点P关于直线OM、ON的对称点P1、P2
第二步:联结P1P2,交OM、ON于点A、点B
(根据“翻折运动”的相关性质,AP=AP1,BP=BP2;根据“两点之间,
线段距离最短”可知此时AP1+BP2+AB最短即△ABP周长最短)
拓展
如果两定点、两定直线呢?
“如图,点P,Q为∠MON内的两点,分别在OM,ON上作点
A,B。

使四边形PAQB的周长最小”
问题升级:
问题:如图,△ABC中,点D、E、F分别在边AB、AC、BC上,试求作△DEF的最小值
解答:
将点D视为定点,先作出△DEF的最小值对应的线段D’D’’,而后研究D’D’’随着点D的位置变化过程中的最小值即可
无论点D位置在何处,点C对线段D’D’’的张角不变,即
∠ D’CD’’的大小不变,为2∠ACB. 因而,为使得D’D’’最小,只需要CD’ = CD’’ = CD最小即可,显然当CD⊥AB 时,有垂线段最小,从而内接三角形△DEF的周长最小
现在已经有CD⊥AB,接下来说明点E、点F也正好是△ABC的高线的垂足!如下图:D’、D、D’’三点在以C为圆心的圆上,弧D’D所对圆心角为∠D’CD,
所对圆周角为∠D’D’’D,
故有:(1/2)∠D’CD=∠D’D”D.
由翻折又有:(1/2)∠D’CD=∠ECD,
得∠D’D”D=∠ECD,
故C、E、D、D’’四点共圆;
另一方面:∠CDB+∠CD”B=180°,
故C、D、B、D’’四点共圆,综上有:C、E、D、B、D’’ 五点共圆,从而∠CDB=∠CDB=90°
从而得到一个重要结论:
锐角三角形的所有内接三角形中,垂足三角形周长最小。

相关文档
最新文档