概率统计基本公式
概率统计公式

概率统计公式概率统计是一种数学方法,是通过研究和分析数据,推导出事件发生的概率,并使用统计模型和公式进行预测和推断。
概率统计公式是概率统计的基础,它们用于计算和描述概率的各种特性。
在这里,我们将介绍一些常见的概率统计公式。
1.概率公式概率公式用于计算事件发生的概率。
其中最基本和常见的公式是:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n(S)表示样本空间S中元素的个数。
2.条件概率公式条件概率公式用于计算在已知一些信息的情况下一些事件发生的概率。
其中最基本和常见的公式是:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
3.乘法定理乘法定理用于计算多个事件同时发生的概率。
其中最基本和常见的公式是:P(A∩B)=P(A)×P(B,A)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。
4.加法定理加法定理用于计算多个事件中至少有一个发生的概率。
其中最基本和常见的公式是:P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A∪B)表示事件A和事件B至少有一个发生的概率,P(A)和P(B)分别表示事件A和事件B分别发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
5.贝叶斯公式贝叶斯公式用于根据已知的信息,计算一些事件的概率。
其中最基本和常见的公式是:P(A,B)=P(B,A)×P(A)/P(B)其中,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
6.期望值公式期望值公式用于计算随机变量的平均值。
其中最基本和常见的公式是:E(X) = ∑(xi × P(xi))其中,E(X) 表示随机变量的期望值,xi 表示随机变量 X 的可能取值,P(xi) 表示随机变量取各个值的概率。
概率统计公式大全(复习重点)

概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。
本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。
一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。
例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。
解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。
2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。
例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。
解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。
二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
概率计算公式

概率计算公式概率计算是数理统计学中的重要内容,通过运用概率计算公式,我们可以对事件发生的可能性进行精确的预测和分析。
本文将介绍几种常用的概率计算公式,帮助读者更好地理解和应用概率计算。
一、频率法频率法是概率计算中最直观和常用的方法之一,它是通过实验数据的频率来估计事件发生的概率。
频率法概率计算公式如下:```P(A) = n(A) / n```其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n表示实验总次数。
通过观察事件发生的实际频率,可以得出事件发生的概率近似值。
二、古典概型古典概型指的是指定试验中所有可能结果等可能的情况。
在古典概型中,可以使用以下概率计算公式:```P(A) = n(A) / n(S)```其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的有利次数,n(S)表示样本空间的大小。
三、总概率定理总概率定理用于计算在多个条件下的概率。
当有多个互斥事件B1、B2、…、Bn,且它们的并集等于样本空间S时,可以使用总概率定理进行计算。
总概率定理公式如下:```P(A) = P(A|B1) * P(B1) + P(A|B2) * P(B2) + ... + P(A|Bn) * P(Bn)```其中,P(A)表示事件A发生的概率,P(A|Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率。
总概率定理在实际问题中具有广泛的应用,通过将复杂问题分解为简单事件的条件下的概率计算,可以更好地解决实际问题。
四、条件条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率计算公式如下:```P(A|B) = P(A∩B) / P(B)```其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率的计算可以帮助我们更好地理解事件之间的相关性,当我们已经了解到某个条件下的概率时,可以通过条件概率公式计算其他事件的概率。
概率论数理统计公式整理

概率论数理统计公式整理一、概率论公式1.定义公式:-事件概率的定义:若E为随机试验的一个事件,S为样本空间,则事件E发生的概率可以表示为P(E)=n(E)/n(S),其中n(E)表示事件E中元素的个数,n(S)表示样本空间S中元素的总数。
2.概率计算公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),其中A,B为两个事件。
-条件概率公式:P(A,B)=P(A∩B)/P(B),其中A,B为两个事件,且P(B)≠0。
-乘法公式:P(A∩B)=P(A)P(B,A),其中A,B为两个事件。
3.全概率公式与贝叶斯公式:-全概率公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(A)=ΣP(A,Bi)P(Bi),其中i=1,2,...,n。
-贝叶斯公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中i=1,2,...,n。
二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布:P(X=x)=p(x),其中x为随机变量X的取值,p(x)为概率质量函数。
- 连续型随机变量的概率密度函数: f(x) ≥ 0,且∫f(x)dx = 12.随机变量的数学期望:- 离散型随机变量的数学期望: E(X) = Σxip(xi),其中xi为随机变量X的取值,p(xi)为X取值为xi的概率。
- 连续型随机变量的数学期望: E(X) = ∫xf(x)dx。
3.方差和标准差:- 离散型随机变量的方差: Var(X) = E[(X - E(X))^2] = Σ(xi - E(X))^2p(xi)。
概率统计公式大全汇总

概率统计公式大全汇总概率统计是一门研究随机现象的理论和方法的学科,它包含了许多重要的公式和定理。
在这篇文章中,我将给出一些概率统计的重要公式的概览,以便复习和总结。
1.概率的基本公式概率是指事件发生的可能性,可以通过以下公式计算:P(A)=n(A)/n(S)其中,P(A)是事件A发生的概率,n(A)是事件A的样本空间中有利结果的个数,n(S)是样本空间中所有可能结果的个数。
2.加法准则当事件A和事件B不相容时,其和事件的概率可以通过以下公式计算:P(A∪B)=P(A)+P(B)如果事件A和事件B是相容的,则有:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法准则当事件A和事件B是相互独立的时,其交事件的概率可以通过以下公式计算:P(A∩B)=P(A)*P(B)如果事件A和事件B不是相互独立的,则有:P(A∩B)=P(A)*P(B,A)4.条件概率条件概率是指在已知一些事件发生的条件下,另一个事件发生的概率。
条件概率可以通过以下公式计算:P(A,B)=P(A∩B)/P(B)5.全概率公式全概率公式用于计算在多个事件的情况下一些事件的概率。
根据全概率公式,可以将一些事件划分为几个互不相容的子事件,然后分别计算每个子事件的概率,并将其加权求和。
全概率公式如下:P(A)=P(A∩B1)+P(A∩B2)+...+P(A∩Bn)其中,B1、B2、..、Bn表示将样本空间划分的互不相容的子事件。
6.贝叶斯公式贝叶斯公式描述了在已知B发生的条件下,事件A发生的概率。
根据贝叶斯公式,可以通过条件概率、全概率和边际概率来计算后验概率。
贝叶斯公式如下:P(A,B)=P(B,A)*P(A)/P(B)7.期望值期望值是随机变量的平均值,表示随机变量在每个可能取值上的发生概率乘以对应的取值,并将其加权求和。
期望值可以通过以下公式计算:E(X)=Σ(x*P(X=x))其中,x表示随机变量的取值,P(X=x)表示随机变量取值x的概率。
概率统计 基本公式

1 1− x2
1 (arctanx)′ = 1+ x2
(arccot x)′ = − 1
1+ x2
2. 有限次四则运算的求导法则
(u ± v)′ = u′ ± v′ (uv)′ = u′v + uv′
3. 复合函数求导法则
(Cu)′ = Cu′ ( C为常数 ) u ′ u′v − uv′ (v ≠ 0) ( )= 2 v v
y = f (u) , u = ϕ(x)
dy dy d u ⋅ = = f ′(u) ⋅ϕ′(x) dx d u dx
二、 基本积分表
(1)
∫ kdx = kx + C
xµ dx = ∫
( k 为常数)
(2)
1 xµ +1 + C µ +1
(µ ≠ −1)
dx (3) ∫ = x
ln x + C
dx (4) ∫ = arctan x + C 1+ x2
需要满足一定的条件
分部积分法
∫ uv′ dx = uv − ∫ u′v dx
或
∫ ud v = uv − ∫ v du
1) v 容易求得 ;
分部积分公式
容易计算 .
y y = y2 (x)
(1) 二重积分化为累次积分的方法 直角坐标系情形 : • 若积分区域为
D
y = y1(x) a bx
则
∫∫D f (x, y) dσ = ∫a d x∫y (x)
Inan = nIna
(2) In( a / b) = Ina − Inb
Ine = x
x
In(1/ b) = −Inb
1
概率统计公式大全
概率统计公式大全概率统计是研究随机现象及其规律性的一门学科,其核心就是用数学方法来描述和分析随机现象。
在概率统计的理论体系中,有很多重要的公式和定理,下面对一些常用的公式进行介绍。
1.概率公式:(1)加法规则:P(A∪B)=P(A)+P(B)-P(A∩B),其中A和B为事件,P(A)和P(B)分别是事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
(2)乘法规则:P(A∩B)=P(A)×P(B,A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。
2.条件概率公式:(1)贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B),其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别是事件A和事件B发生的概率。
(2)全概率公式:P(B)=ΣP(Ai)×P(B,Ai),其中B是一个事件,Ai是样本空间的一个划分,即Ai是互不相容且并集为样本空间的一组事件。
3.期望公式:(1) 离散型随机变量的期望:E(X) = ΣxiP(X=xi),其中X是一个离散型随机变量,xi是X的取值,P(X=xi)是X取值为xi的概率。
(2) 连续型随机变量的期望:E(X) = ∫xf(x)dx,其中X是一个连续型随机变量,f(x)是X的概率密度函数。
4.方差公式:(1) 离散型随机变量的方差:Var(X) = Σ(xi-E(X))^2P(X=xi),其中Var(X)表示随机变量X的方差,xi是X的取值,E(X)是X的期望,P(X=xi)是X取值为xi的概率。
(2) 连续型随机变量的方差:Var(X) = ∫(x-E(X))^2f(x)dx,其中Var(X)表示随机变量X的方差,E(X)是X的期望,f(x)是X的概率密度函数。
概率统计公式大全
概率统计公式大全概率统计是一门研究事件发生的可能性及其规律性的学科。
它以概率论为基础,通过概率模型和统计方法对随机现象进行建模、分析和预测。
在概率统计中,有很多重要的公式和定理,下面将简单介绍几个常用的公式。
1.加法原理加法原理是计算多个事件并集概率的基本方法,它表述为:如果A和B是两个事件,那么它们的并集事件的概率可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。
2.乘法原理乘法原理是计算多个事件交集概率的基本方法,它表述为:如果A和B是两个事件,那么它们的交集事件的概率可以表示为P(A∩B)=P(A)*P(B,A),其中P(B,A)表示在事件A发生的条件下事件B发生的概率。
3.条件概率条件概率是指在其中一事件已经发生的条件下,另一事件发生的概率。
条件概率可以表示为P(A,B)=P(A∩B)/P(B),其中P(B)不为0。
4.全概率公式全概率公式是计算事件的概率的重要方法,它表述为:如果B1、B2、..、Bn是一组互不相容的事件,且它们的并集构成了样本空间S,那么对于任意事件A,可以表示为P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)。
5.贝叶斯定理贝叶斯定理是利用条件概率和全概率公式来计算事件的概率的重要方法,它表述为:如果B1、B2、..、Bn是一组互不相容的事件,且它们的并集构成了样本空间S,那么对于任意事件A,可以表示为P(Bi,A)=P(A,Bi)*P(Bi)/(P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn))。
6.期望值期望值是度量随机变量平均取值的重要统计量,它可以表示为E(X)=∑x*P(X=x),其中x为随机变量X的取值,P(X=x)为X取值为x的概率。
7.方差方差是衡量随机变量取值的波动性的统计量,它可以表示为Var(X)= E((X - E(X))^2),其中E(X)为随机变量X的期望值。
概率与统计学的主要公式及解题技巧
一、基本概率公式及分布1、概率常用公式:P(A+B)=P(A)+P(B)-P(AB);P(A-B)=P(A)-P(AB);如A 、B 独立,则P(AB)=P(A)P(B);P(A )=1-P(A);B 发生的前提下A 发生的概率==条件概率:P(A|B)=P(AB)P(B);或记:P(AB)=P(A|B)*P(B);2、随机变量分布律、分布函数、概率密度分布律:离散型X 的取值是x k (k=1,2,3...),事件X=x k 的概率为:P{X=x k }=P k ,k=1,2,3...;---既X 的分布律;X X1X2....xn PkP1P2...pnX 的分布律也可以是上面的表格形式,二者都可以。
分布函数:F(x)=P{X ≤x},-∞ t ∞;是概率的累积!P(x1<X<x2)=F(x2)-F(x1);P{X>a}=1-P{X<a}离散型rv X;F(x)=P{X ≤x}=x k tp k ;(把X<x 的概率累加)连续型rvX ;F(x)=−∞xf x dx ,f(x)称密度函数;既分布函数F(X)是密度函数f(x)和X 轴上的(-∞,x)围成的面积!性质:F(∞)=1;F(−∞)=0;二、常用概率分布:①离散:二项分布:事件发生的概率为p,重复实验n次,发生k 次的概率(如打靶、投篮等),记为B(n,p)P{X=k}=n k p k(1−p)n−k,k=0,1,2,...n;E(X)=np,D(X)=np(1-p);②离散:泊松分布:X~Π(λ)P{X=k}=λk e−λk!,k=0,1,2,...;E(X)=λ,D(X)=λ;③连续型:均匀分布:X在(a,b)上均匀分布,X~U(a,b),则:密度函数:f(x)=1b−a,a t0,其它=0,x x−a b−a1,x≥b,a t分布函数F(x)=−∞x f x dx④连续型:指数分布,参数为θ,f(x)=1θe−xθ,0 t0,其它F(x)=1−e−xθ0,x 0;⑤连续型:正态分布:X~N(μ,σ2),most importment!密度函数f(x),表达式不用记!一定要记住对称轴x=µ,E(X)=µ,方差D(X)=σ2;当µ=0,σ2=1时,N(0,1)称标准正态,图形为:分布函数F(x)为密度函数f(x)从(-∞,x)围成的面积。
概率统计公式大全
概率统计公式大全第1章随机事件及其概率行,而每次试验的可能结果不止一个, 但在进行一次试验之前却不能断言它出 现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总 可以从其中找出这样一组事件,它具有 如下性质:① 每进行一次试验,必须发生且只能发 生这一组中的一个事件;② 任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本 事件,用”来表示。
基本事件的全体,称为试验的样本空间, 用°表示。
一个事件就是由"中的部分点(基本事 件小 组成的集合。
通常用大写字母儿 B,C,…表示事件,它们是©的子集。
为必然事件,0为不可能事件。
不可能事件(0)的概率为零,而概率为 零的事件不一定是不可能事件;同理, 必然事件(Q )的概率为1,而概率为1随机试 验和随 机事件 (5)基本事件、样本空间和事件第二章随机变量及其分布设离散型随机变量X 的可能取值为 X(k=1,2,…)且取各个值的概率,即事件 (X=X<)的概率为P(X=x<)=p k , k=1,2,…,则称上式为离散型随机变量X 的概率 分布或分布律。
有时也用分布列的形式给出: x | X —X 2, ,x k ,P(X x k ) p 1, p 2, , p k,。
显然分布律应满足下列条件:p k 1(1) p k 0,k 1,2,, (2)k1。
1) 离型 机 量 分 律散 随 变 的 布对于离散型随机变量,F(x) pxk Xx对于连续型随机变量 ,F (x) f (x) dx4)分布 函数设X 为随机变量,x 是任意实数,则函 数F(x) P(X x)称为随机变量X 的分布函数,本质上是一 个累积函数。
P(a X b) F(b) F(a)可以得到X 落入区 间(a,b ]的概率。
分布函数F(x)表示随机变量 落入区间(-R, x ]的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
(2)e
i 0
'
k
k!
' (3) f n
需要满足一定的条件
分部积分法
u v dx uv u v dx
或
分部积分公式
ud v u v v d u
1) v 容易求得 ;
容易计算 .
y
y y2 ( x)
(1) 二重积分化为累次积分的方法
D
y y1 ( x) a bx
直角坐标系情形 : • 若积分区域为
则
D f ( x, y) d a d x y ( x)
1
b
y2 ( x )
f ( x, y ) d y
y
x x2 ( y )
• 若积分区域为
1 1 x
2
(arccos x) (arc cot x)
1 1 x
2
1 1 x
2
2. 有限次四则运算的求导法则
(u v) u v (u v) uv u v (C u ) C u
( C为常数 )
2
u
u v u v v
(v 0)
v
3. 复合函数求导法则
y f (u ) , u ( x)
dy dx
dy du
du dx
f (u ) ( x)
二、 基本积分表
(1) ( 2)
(3)
kdx k x C x dx
dx x
dx
1 1 x 1
( k 为常数)
(7 )
cos x C
(8) (9)
(10)
e dx
x
e C
x
e
x
dx
1
x
e
x
C
a
x
dx
a
C
ln a
机动 目录 上页 下页 返回 结束
常用展开式
(1) (a b) Cn a b
n i i i 0 n n i
2 Cn
n i i 0
则
d
D
c
D f ( x, y) d c
d
d y
x2 ( y )
f ( x, y ) d x
x1 ( y )
x x1 ( y ) x
对数计算法则
(1) In a1 an Inai
i 1 n
Ina nIna
n
Ine x
x
(2)
In a / b Ina Inb
基本导数表
(C ) 0 (sin x) cos x
( a ) a ln a
x
( x ) x
1
(cos x) sin x
( e )
x
x
e
x
(log a x)
1 x ln a
(ln x)
1 x
1 1 x
2
(arcsin x) (arctan x)
C
( 1)
ln x C
( 4)
1 x2
dx 1 x
arctan x C
或
arc cot x C
(5)
2
arcsin x C 或
arc cos x C
机动 目录 上页 下页 返回 结束
(6)
cos xdx sin xdx
sin x C
In 1/ b Inb