第二章 整式的加减导学案[人教版初一七年级] 9
七年级数学上册 第2章《整式的加减》导学案(新版)新人教版

【课后作 业】 (一 )必做题 1.计算 (1)
1 1 1 2 ab a 2 a 2 ( ab ) 3 4 3 3
(2) (3a ab 7) (4a 2ab 7)
2 2
(3 ) ( 2 x
第 2 章《整式的加减》
学习目标: 1.进一步熟悉去括号、合并同类项法则. 2.熟练掌握整式的加减运算,并能进行化简求值. 学习重点:整式的加减. 学 习难点:化简求值. 【学前准备】 计算:①
2x 2 y 3xy 3x 2 y 2xy 1
②
a (2a b) 2(a 2b)
【评价】 准确程度评价 书写整洁程度评价 【课后反思】 优 优 良 良 中 中 差 差
【导入】 【自主学习,合作交流】 计算: (1) 2 x 3 y 5x 4 y (2) 8a 7b 4a 5b
3.求
2 1 1 3 1 x 2( x y 2 ) ( x y 2 ) 的值,其中 x=-2, y . 3 2 3 2 3
【当堂测试】
1.计算: (1) 3xy 4 xy (2 xy)
(2) ( x 2x 2 5) (4x 2 3 6x)
2.已知 A= 3x 2 4xy 2 y 2 , B x 2 2xy 5 y 2 ,求 A-B
3.先化简,再求值: 5(3x2 y xy 2 ) ( xy 2 3x2 y) ,其中 x
2
1 1 3 x ) 4( x x 2 ) 2 2
(4) 3x [7 x (4 x 3) 2 x ]
2 2
(二)选做题 1.已知多项式 a 2a 的值是 3,求 4 2a 4a 的值.
初中数学教案第二章整式的加减导学案[人教版初一七年级].
![初中数学教案第二章整式的加减导学案[人教版初一七年级].](https://img.taocdn.com/s3/m/7830df2ba31614791711cc7931b765ce05087a16.png)
初中数学教案第二章整式的加减导学案[人教版初一七年级].预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制第1课时:整式(1)学习内容:教科书第54—56页,2.1整式:1.单项式。
学习目标和要求:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
学习方法:探究,归纳、练习相结合。
学习过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是;(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
2、试说出所列代数式的意义。
3、观察所列代数式包含哪些运算,有何共同的运算特征。
二、探究新知:1.单项式:即由数与字母的乘积组成的代数式称为单项式。
补充:单独一个数或一个字母也是单项式,如a,5……2.练习:判断下列各代数式哪些是单项式?(1)21x;(2)a bc;(3)b2;(4)-5a b2;(5)y;(6)-xy2;(7)-5。
3.单项式系数和次数:进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
指出下面四个单项式31a 2h ,2πr ,a bc ,-m 它们的数字因数各是什么?以上几个单项式的字母因数各是什么?各字母指数分别是多少?系数:单项式中的字母因数次数:单项式中所有字母的指数和4.例题:例1:判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1;②x1;③πr 2;④-23a 2b 。
例2:下面各题的判断是否正确?①-7xy 2的系数是7;②-x 2y 3与x 3没有系数;③-a b 3c 2的次数是0+3+2;④-a 3的系数是-1;⑤-32x 2y 3的次数是7;⑥31πr 2h 的系数是31。
七年级初一数学上册第二章整式的加减整式的加减导学案新人教版

课题 2.2.1整式的加减 (1)德育目标:、通过师生合作,体验教学活动充满着探索性和创造性,从而体会到学习中的成就感。
学习目的:1、理解同类项和合并同类项的概念2、掌握合并同类项的法则,并会运用该法则;学习重点:合并同类项、同类项的概念学习难点:根据同类项概念在多项式中找同类项学习过程:一、课堂引入: 运用有理数的运算律计算100×2+252×2=____________100×(-2)+252×(-2)=____________二、自学课本 P62-P63探究,小组探讨乘法分配律在计算中的运用 由课本问题引出: 1、填空 (1)100t+252t=( )t(2)3x 2+2x 2= ( )x 2 (3)3ab 2—4ab 2=( )ab 2归纳: ___________________________________________,叫做同类项,几个常数项也是同类项。
__________________________,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的____,且___________ 不变。
理解同类项:两个相同①所含字母相同;②相同字母的指数分别相同;两者缺一不可;两个无关:(1)、同类项与系数大小无关;(2)、同类项与它们所含相同字母的顺序无关.三、例题讲解:例1:判断下列各组中的两项是否是同类项①-5ab 3与3a 3b , ②x 3与53, ③-xy 2z 与12zy 2x ,④3xy 与3x , ⑤53与35, ⑥3mn 与33mn例2:合并下列各式的同类项: (1)xy 2-51xy 2 (2)-3x 2y+2x 2y+3xy 2-2xy 2(3)4a 2+3b 2+2ab-4a 2-4b 2(4)4x 2+2x+7+3x-8x 2-2例3、当K 取何值时,y x y xk23-与是同类项?分析:要使y x y x k23-与是同类项,必须满足什么条件?四、当堂训练: (A 组) 1、下列两式是同类项的是( )A .32xyz 与32xy B. x1 与2x C.0.5x 3y 2和7x 2y 3 D.5m 2n 与-4 n m 22、下面计算正确的是( )A.3x 2-x 2=3B.3a 2+2a 3=5a 5C.3+x=3xD.-0.25ab+41ba=0 3、计算: (1)12x -20x ; (2)x+7x-5x ; (3)-5a+0.3a-2.7a ;(4)31y -32y +2y ; (5)-6ab+ba+8ab ; (6)10y 2-0.5y 2(B 组)4、请你在下面的横线上填上适当的内容,使两个单项式构成同类项。
新人教版初中数学七年级上册《第二章整式的加减整式的加减运算》优课导学案_0

七年级上册《整式的加减》教学设计1.理解同类项、合并同类项的概念。
2.掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。
3.感受其中的“数式通性”和类比的数学思想。
【教学重点】理解同类项的概念;掌握合并同类项法则。
【教学难点】正确运用法则及运算律合并同类项。
【教学过程】一、知识链接1.运用运算律计算下列各题。
①6×20+3×20= ②6×(-20)+3×(-20)=2.口答。
8个人+5个人= 8只羊+5只羊=8个人+5只羊=[意图:①复习乘法分配律;②感受“同类”。
操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]二、探究新知探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?(1)请列式表示:,你能对上式进行化简计算吗?(2)说说化简计算的依据。
[意图:联系生活情境,探究新知。
操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]探究二:根据以上式子的运算,化简下列式子。
①100t-252t ②3x2+2x2②3ab2-4ab2 ④2m2n3-5m2n3(1)上述各多项式的项有什么共同特点?(2)上述多项式的运算有什么共同特点,有何规律?[意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。
操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]三、例题精炼例1.合并同类项。
4x2+2x+7+3x-8x2-2例2.求多项式-x2+4x+5x2-3x-4x2+3的值,其中x= 。
[意图:运用知识解决问题,突出重点。
操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]四、课堂小结这节课你学到了哪些知识?[意图:养成总结反思的好习惯。
新人教版七年级数学上册第二章整式的加减导学案

新人教版七年级数学上册第二章整式的加减导学案学习目标、重点、难点【学习目标】1.会用字母表示数,并会列式表示数量关系.2.理解并掌握单项式、多项式和整式的概念,明确它们之间的区别与联系.3.会确定一个单项式的系数和次数,一个多项式的项数和次数.4.不断提高分析问题的能力,体会数学知识间具体与抽象的内在联系和统一性.【重点难点】1. 单项式、多项式、整式的概念及它们的联系.2. 单项式的系数和次数.知识概览图新课导引我们已会用字母表示数和表示加法、乘法的运算律,用字母表示未知数、列方程,求解问题时比用算术法有较大的优越性.如图所示.本节中,通过学习“整式”,将进一步感受到用字母表示数的广泛应用,归纳出运算的一般规律.体会数学美的内涵,解决生产、生活中的问题.教材精华知识点1列式表示数量关系用字母或含有字母的式子表示数和数量关系,为我们今后的学习和研究带来了极大的方便. ★列式时要注意:(1)数与字母相乘或字母与字母相乘,可省略乘号.(2)数与字母相乘,数写在字母前面.(3)除法运算要用分数线,如1÷a 写成1a. 知识点2单项式、多项式、整式的概念及它们的联系(重点)★单项式:由数或字母的乘积组成的式子叫做单项式.如:12ab ,m 2,-x 2y .特别地,单独的一个数或一个字母也是单项式.★多项式:几个单项式的和叫做多项式,如:x 2+2xy +y 2,a 2-b 2.★整式:单项式与多项式统称整式,它们的关系可以用图表示.知识点3单项式的系数和次数(重点)单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数的和.如:13-πa 2b 的系数是13-π,次数是3. 拓展:(1)圆周率π是常数。
(2)当一个单项式的系数是1或-l 时,“1”通常省略不写,如:a 2,-m 2;次数为“1”时,通常也省略不写,如x .知识点4多项式的项和次数在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,多项式里次数最高项的次数,就是这个多项式的次数.拓展:(1)多项式的每一项包括它前面的符号.(2)像3n 4—2 n 2+ n +1,其中3 n 4叫四次项,类似地-2 n 2叫二次项,n 叫一次项, l 叫常数项.课堂检测基本概念题1、列式表示:(1)比a 的3倍小5的数;(2)数m 的一半与n 的平方的和;(3) a 与b 和的平方.基础知识应用题 2、指出下列各式中哪些是单项式;哪些是多项式.22227211210,61,,,25,,.37a b x y x xy m n x x a x x x++-+--+,,,综合应用题3、某市出租车的收费标准为:起步价为12.50元,3千米后每千米2.40元,某人乘坐出租车行驶x (x >3)千米.试用含x 的式子表示他应付的费用,并求当x =8时,这一式子的值.探索创新题4、有一个多项式为-a +2a 2-3a 3+4a 4-5a 5+…,按这样的规律加下去,第99项是 ,第2 010项是 ,第n 项是 .体验中考1、已知整式x 2-52x 的值为6,则2x 2-5x +6的值为( ) A .9 B .12 C .18 D .242、某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,请你推测第n 组应该取种子数是 粒.学后反思:附: 课堂检测及体验中考答案课堂检测1、分析:“和”用加法,“差”用减法,“倍”用乘法,“商”用除法.解:(1)3a -5;(2) 12m + n 2;(3)( a + b )2.2、分析:要分清哪些是单项式,哪些是多项式,关键要明确两者的概念,注意它们的联系与区别.解:单项式有:271,10,,.7x m n a - 多项式有:222161,,253a b x y xy x x x+++--,,. 点拨 单项式要包括它前面的“-”,多项式是n 个单项式的和,分母中含有字母的式子,如11,1x x +等都不是单项式或多项式.3、解:由题意,得此人应付的费用为[12.50+2.40(x -3)](x >3)元.当x =8时,12.50+2.40(x -3)=12.50+2.40×(8-3)=24.5(元).答:此人应付的费用可表示为[12.50+2.40(x -3)]元.当x =8时,他应付的费用为24.5元.提示 此题若没有给出x >3这一条件,则需分两种情况:一种是当x ≤3时,此人应付的费用为起步价12.50元;另一种就是本题的x >3时,此人应付的费用为起步价与超出3千米后的费用的和.4、答案:-99a 99 2 0l0a 2 010 (-1)n ·na n技巧 此题项的符号在第奇数个项时为“-”,第偶数个项时为“+”,特别要注意第n 项,要用(-1)n ·n 来确定它的系数,而不能直接写成n .体验中考1、C 解析:由x 2-52x =6,得2x 2-5x =12,代入得2x 2-5x +6=12+6=18.2、(2n +1) 解析:第1组取3粒,3=2×1+1,第2组取5粒,5=2×2+1,第3组取7粒,7=2×3-1,…,依此类推,第n 组取(2n +1)粒.2.2整式的加减学习目标、重点、难点【学习目标】1.理解同类项的概念,会合并同类项.2.掌握去括号的法则,会去括号.3.会用整式的加减运算法则,能熟练进行整式的加减运算、求值.【重点难点】1.同类项的概念,合并同类项.2.用整式的加减运算法则,能熟练进行整式的加减运算、求值.知识概览图新课导引前面我们学习了单项式、多项式和整式的概念,也学会了用字母表示实际生活中的一些数量关系,那么我们如何解决图中小明提出的问题呢?就让我们一起来学习整式的加减这一节吧!相信你通过这一节的学习,一定会帮助小明找到答案的.教材精华知识点1同类项(重点)★所含字母相同,并且相同字母的指数也相同的项叫做同类项.另外,所有的常数项都是同类项.★同类项要满足两个“同”,第一个“同”是所含字母相同,第二个“同”是相同字母的指数相同.注意:是不是同类项只与所含字母和字母的指数有关,而与该项系数无关(在系数不为零的前提下).如:-m2n与3m2n是同类项,x2y3与2y3x2是同类项.知识点2合并同类项(难点)★把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.为了更好地掌握合并同类项的法则,可记住以下口诀:合并同类项,法则不能忘,只求系数和,字母指数不变样.知识点3去括号(难点)★去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.★在去括号时需要注意:(1)去括号时,要将括号连同它前面的符号一起去掉;(2)在去括号时,首先要明确括号前是“+”还是“-”;(3)该变号时,各项都变号;不该变号时,各项都不变号.知识点4整式的加减(重点)★整式的加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.★应用整式的加减的运算法则进行化简求值时,一般先去括号、合并同类项,再代人字母的值进行计算,简记为“一化、二代、三计算”.课堂检测基本概念题1、若-5a3b m+1与13b2 a n+1是同类项,求(m-n)100的值.2、求下列代数式的值.(1)3(x2-2x-1)-4(3x-2)+2(x-1),其中x=-3;(2)2x-y+(2y2-x2)-(x2+2y2),其中x=l,y=-2.基础知识应用题3、化简:(32)[5(2)3]--+---+-.x y z x x y z x综合应用题4、一列火车上原有乘客(6a-2b)人,中途有一半乘客下车,又有若干乘客上车,此时车上共有乘客(10a-6b)人,则中途上车的乘客有多少人?当a=200,b=100时,中途上车的乘客有多少人?探索创新题5、规定两种新运算:a*b=a+b,a#b=a-b,其中a,b为有理数.化简(a2b)*(3ab)+(5a2b)#(4ab),并求出当a=5,b=3时的值是多少?体验中考1、当a=1,b=2时,代数式a2-ab的值是.2、把3+[3a-2(a-1)]化简得.学后反思附: 课堂检测及体验中考答案课堂检测1、分析:解:因为-5a 3b m +1与13 b 2 a n +1是同类项,所以12,1 3.m n +=⎧⎨+=⎩解得1001001,()(12) 1.2.m m n n =⎧-=-=⎨=⎩则2、分析:此题属于化简求值题,应先去括号,再合并同类项,最后代入求值.解:(1)3(x 2-2x -1)-4(3x -2)+2(x -1)=3x 2-6x -3-12x +8+2x -2=3x 2-16x +3.当x =-3时,原式=3×(-3)2-16×(-3)+3=27+48+3=78.(2)2x -y +(2y 2-x 2)-(x 2+2y 2)=2x -y +2y 2-x 2-x 2 -2y 2=-2x 2+2x -y .当x =1,y =-2时,原式=-2×12+2×1-(-2)=-2+2+2=2.3、 分析:去括号时,可以由里向外去,也可以由外向里去.解:(32)[5(2)3x y z x x y z x --+---+- 32(523)32(2)3224.x y z x x y z x x y z x y z x y z x y z x=-+---+--=-+--+-=-+---+=- 规律对这类题目而言,化简就是先去括号,然后合并同类项.去括号时,一方面注意括号前是“-”时,去掉括号,括号里各项都要改变符号;另一方面是括号前的系数要与括号里的每一项相乘,防止漏乘.4、解:由题意可知,中途上车的乘客人数为(10a-6b)-12(6a-2b)=10a-6b-3a+b=7a-5b.当a=200,b=100时,中途上车的乘客有7×200-5×100=900(人);答:中途上车的乘客有(7a-5b)人.当a=200,b=100时,中途上车的乘客有900人.点拨此题要分清以下几个数量关系:(1)车上原有乘客人数;(2)中途下车的人数;(3)中途上车后车上现有人数;(4)中途上车的人数等于车上现有人数减去中途下车后车上剩余的人数.明确这几个数量关系是解决本题的关键.5、解:(a2b)*(3ab)+(5a2b)#(4ab)=a2b+3ab+5a2b-4ab=6a2b-ab.当a=5,b=3时,原式=6×25×3-5×3=450-15=435.说明读懂规则是解答此题的关键,根据不同的规则,正确列出常规算式.体验中考1、-1 解析:当a=1,b=2时,a2-ab=12-1×2=-1.2、a+5解析:3+[3a-2(a-1)]=3+(3a-2a+2)=3+3a-2a+2=a+5.。
人教版新课标数学七年级上册第二章整式的加减导学案

人教版新课标数学七年级上册第二章整式的加减导学案【学习目标】会用含有字母的式子表示数量关系,理解字母表示数的意义;【重点难点】用含有字母的式子表示数量关系;理解字母表示数的意义. 【创设情境】用含字母的式子填空⑴全校学生总数是x,其中女生占总数48%,则女生人数是,男生人数是 .⑵每包书有12册,n包书有册.⑶一辆汽车3小时行驶了S 千米,这辆汽车的平均速度是 .⑷产量由m千克增长10%,就达到千克.【自主、合作、展示】1.用字母表示数以后,字母和数一样可以,可以用式子把简明地表示出来.2.结合下列实际问题,总结用含有字母的式子表示数量关系的方法.⑴一条河的水流速度是2.5km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度 .⑵买一个篮球需要x元,买一个排球需要y元,买一个足球需要y 元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数 .⑶如图,用式子表示三角尺的面积(单位:cm) .⑷如图,用式子表示建筑平面图的面积(单位:m) .2.结合上述问题,思考用数字和字母表示式子的时候应该注意哪些问题?1.下列说法或书写是否正确,并在题上改正:①1x ②-1x ③a×3 ④a÷2 ⑤2411xy2.一台电视机的原价为a元,降价4%后的价格为元3.一三角形底为x厘米,高是底的一半,则此三角形面积是_平方厘米.4.李老师到文体商店为学校买篮球,篮球的单价为a元,商店规定:买10个或10个以上的篮球按8折优惠,请你表示:⑴购买30个篮球应付多少钱?⑵购买x个篮球要付多少钱?5.老师利用假期带学生外出浏览,已知每张车票50元,甲车车主说,如果乘我的车,师生全部可以享受八折优惠;乙车车主说,如果乘我的车,学生7折优惠,老师买全票,已知这个老师带了x名学生,分别写出乘甲、乙两车所需的车费.6.用字母表示图中阴影部分的面积.【学习目标】1.理解单项式及单项式系数、次数的概念;2.会准确确定一个单项式的系数和次数. 【重点难点】掌握单项式及单项式的系数、次数的概念;区别单项式的系数和次数. 【复习引入】1.列代数式⑴边长为a 的正方体的表面积为________,体积为;⑵铅笔单价是x 元,圆珠笔单价是铅笔的2.5倍,圆珠笔单价是元;⑶一辆汽车速度是v 千米/小时,行驶t 小时所走的路程是______千米;⑷设n 是一个数,则它的相反数是________;2.请学生观察所列代数式包含哪些运算,有何共同运算特征. (由小组讨论后,经小组推荐人员回答)【自主、合作、展示】1.通过上述特征的描述,概括单项式的概念.由________或______的乘积组成的代数式叫做单项式,单独的________或___________也是单项式.2.下列各代数式中,是单项式的有 .⑴21+x ;⑵abc ;⑶b 2;⑷-5ab 2;⑸y+x ;⑹-xy 2;⑺-5.3.单项式系数和次数.⑴在单项式31a 2h ,2πr ,abc ,-n 中,说出它们的数字因数和字母因数.⑵小结:一个单项式中,单项式中的称为这个单项式的系数,一个单项式中,叫做这个单项式的次数.⑶请指出下列单项式的系数和次数.①22a ②h 2.1- ③2xy ④2t - ⑤32vt- ⑥433r π1.在a 3,x +1, -2,3b-, 0.72xy 中,单项式的个数有() A. 2个 B.3个 C.4个 D.5个2.单项式-x 2yz 2的系数、次数分别是()A. 0,2B. 0, 4C. -1,5D.1,4 3.如果15--m xy 为四次单项式,则m=____;4.判断下列各代数式是否是单项式。
七年级数学上册 第二章 整式的加减复习导学案(无答案)(新版)新人教版

第二章整式的加减【学习目标】1、知识与技能: (1)巩固单项式、多项式的、整式的概念;准确迅速地确定一个单项式的系数和次数、确定一个多项式是次项式。
(2) 掌握同类项概念,会判断同类项;掌握合并同类项法则,能熟练合并同类项;熟练掌握去括号法则;整式的加减法运算顺序法则,能熟练运用运算法则进行整式加减运算。
⑶掌握典型数量关系的“模型”,能列式简明地表示数量关系,解决简单的实际问题。
2、过程与方法:通过小组合作交流,把本章整式及加减法的法则系统化;通过回归各节内容归纳知识点和整式加减法的运算方法。
3、情感态度:经历回归过程,发挥小组合作的优势,通过交流展示,享受探究成功的快乐。
【重点、难点】:(1) 巩固整式及整式的加减法运算法则,达到能熟练运用运算法则进行整式加减运算。
(2) 掌握典型数量关系的“模型”,能列式简明地表示数量关系,解决简单的实际问题。
【学法指导】:小组合作、典型引路、及时点拨【知识链接】: 第二章整式的加减 2.1——2.2【知识梳理】:单项式:整式多项式:去括号法则合并同类项法则整式的加减运算加减法运算顺序化简求值【能力提升】:一、选择题1.下列各式中不是单项式的是( )A .3aB .-51C .0D .a 3 2.甲数比乙数的2倍大3,若乙数为x ,则甲数为( ) A .2x -3 B . 2x+3 C .21x -3 D .21x+3 3.下列说法正确的是( )A.231x π的系数为31 B.221xy 的系数为x 21 C.25x -的系数为5 D.23x 的系数为3 4.如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( )A .m=-2,n=3B .m=2,n=3C .m=-3,n=2D .m=3,n=25. 下列各式中,去括号正确的是( )A.3-(a-b )=3-a-bB.3+2(a-b )=3+2a-bC.2+(a-b )=2+a+bD.2-(a-b )=2-a+b6.已知3221A a ab =-+,3223B a ab a b =+-,则A B +=( )A .3222331a ab a b --+B .322231a ab a b +-+C .322231a ab a b +-+D .322231a ab a b --+7.从25a b +减去44a b-的一半,应当得到( ). A. 4a b - B. b a - C. a b-9 D. 7b 8.减去-3m 等于5m 2-3m-5的式子是( )A .5(m 2-1)B .5m 2-6m-5C .5(m 2+1)D .-(5m 2+6m-5)9.在排成每行七天的日历表中取下一个33⨯方块.若所有日期数之和为189,则n 的值为( )A .21B .11C .15D .910.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +_____________+2y 空格的地方被钢笔水弄污了,那么空格中的一项是( )A .7xy -B .7xyC .xy -D .xy二、填空题:11.单项式2r π-的系数是 ,次数是 .10.多项式154122--+ab ab b 次数为 . 11.写出235y x -的一个同类项 .12.买一个足球需要m 元,买一个篮球要n 元,则买4个足球、7个篮球共需要 元。
【人教版】七年级数学第二章《整式的加减》导学案

备课时间:2012—10—03 主备人:贾洪军审核人:贾洪军第二章整式的加减2.1 整式(一)【学习目标】1.能运用代数式表示实际问题中的数量关系.2.理解单项式、单项式的次数、系数等概念,会指出单项式的次数和系数.【学习重点、难点】1.重点:单项式的有关概念.2.难点:负系数的确定以及准确确定一个单项式的次数.【知识链接】(约1分)我们来看本章引言中的问题(1).青藏铁路线上,如果列车在冻土地段的行驶速度是100千米/时,那么列车2小时能行驶_____千米,3小时能行驶_____ 千米, t小时能行驶______千米.在小学,我们学过用字母表示数,这里的100t表示路程.本节中,通过学习“整式”,将进一步感受到用字母表示数的广泛应用.【学习过程】一、自主学习(约10分)认真自学课本p54 ,内容,要求静思独做完成下题.1.想一想:p56思考栏目中的内容.2. 观察引言与例1中列出的式子100t,0.8p,mn,a2h,-n这些式子有什么共同特点?__________________________________________________________________________________像这样________________________的式子叫做单项式(注意:单独的一个数或一个字母也是单项式). ___________________________叫做单项式的系数. __________________________叫做单项式的次数.二、问题探究(约5分)1.判断:(1)x是单项式.()(2)6是单项式.()(3)m的系数是0,次数也是0.()(4)单项式πxy的系数是1 ,次数是3.()2.模仿例1:用单项式填空,并指出它们的系数与次数.(1)每千克苹果a元,12千克苹果共________元; (2)底面半径为r,高为h的圆锥的体积是________.. (3)一件上衣原价a元,降价20%后的售价是_____元;(4)长方形的长方形的长是0.8,宽是a,这个长方形的面积是____.三、合作交流(约5分)上述问题中困惑的地方可结对子交流.判断下列各式是否是单项式,如果是指出它们的系数与次数.-13a , 12 πxy 2 ,- ab c ,23a 2b ,12 a+b , x, - 2x 2y 33四、精讲点拨(约5分)1.判断一个式子是否为单项式,关键是看式子中数字、字母之间是不是只有积的关系.即单项式只含有乘法(包括乘方)和数字作为分母的除法运算.例如 xy 2 是单项式,而x+y 2 ,y 2x就不是单项式. 2.注意圆周率π是常数,当单项式中含有π时,是单项式的系数,且在计算单项式的系数时,应注意不要 加上π的指数.如2πr 2的系数是2π,次数是2.3.单项式的系数包括前面的符号,且只与数字因数有关.而次数只与字母有关.如-π2x 3yz 4的系数-π2,指数是8. 4.确定一个单项式的次数时,不要漏掉指数为1的字母, 如-xy 3中x 的指数是1,故这个单项式的次数是1+3=4.5.当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;五、能力提升(约5分)1.x 2yz 的系数是____,次数是____,–n 的系数是______,次数是_______.2.如果单项式–2x 2y m 与单项式a 4b 的次数相同,则m=_____3.写出系数为5,含有xyz 三个字母且次数为4的所有单项式,它们分别是______六、课堂小结(约2分) 我的收获: 我的困惑:【达标测评】(约7分)1.在2a 2 ,-4x ,– abc ,a,0,a–b,0.95 , 中单项式有( )个 A 4个 B 5个 C 6个 D 7个2.若甲数为x ,乙数是甲数的3倍,则乙数为( ) A 3x B x+3 C x D x-33. –xy 2z 2系数是_______,次数是________. 4..如果单项式3a 2b 3m-4的次数与单项式 x 2y 3z 2 相同,那么m=________5.一个含有x 、 y 的5次单项式,x 的指数为3,且当 x=2 、 y=-1 时,这个单项式的值是40,求这个单项式?【课后作业】 〔必做题〕: 1.课本p 56 练习第1、2题, 2.课本p59-60 复习巩固第1、3题.〔选做题〕: 1.课本p61第8题2.探索创新题:按照规律填上所缺的单项式并回答.(1)- a, 2a 2, - 3a 3, 4a 4, ____, _____;(2)试写出第2010个和第2011个单项式;(3)试写出第n 个单项式.备课时间:2012—10—03 主备人:贾洪军 审核人:贾洪军2.1 整 式(二)【学习目标】1. 理解多项式,整式的概念,会准确确定一个多项式的项和次数.2. 通过列整式,培养分析问题,解决问题的能力【学习重点,难点】1. 重点:多项式以及有关概念2. 难点:准确确定多项式的次数和项【知识链接】(约1分)1. _____________________ 叫做单项式,例如_______2.-3ab 2c 7的系数是 ____________,次数是_________【学习过程】一、自主学习(约10分) 1.认真自学课本p 55 内容,2.观察课本p 55例2中所表示的式子V+2.5,V-2.5, 3x+5y+2z, 12ab -πr 2, x 2+2x+18 回答下列问题:(1)它们_______单项式(填“是”或“不是”)(2)这些式子的共同特点是:__________________二、问题探究(约5分)自学课本 p 57-58有关内容,回答下列问题1._________________________叫做多项式.2.在多项式中每个单项式叫做_______ ,不含字母的项叫做____3.在多项式中___________叫做多项式的次数.4.多项式的次数与单项式的次数的区别:_________ ___________________________________________________.5.________ 和_________统称为整式.三、合作交流(约5分)先静思独做,各小组再以组长带领解决学习中遇到的困惑问题1.指出下列多项式的项和次数: 3x+5y+2z, 12ab-πr2 4x-3,a4-2a2b2+b4易错警示:多项式的每一项都包括它前面的符号,最高项的次数是该多项式的次数2.模仿例2,完成下题用多项式填空,并指出它们的项和次数(1).X的2倍与10的和可表示为 ____________ (2)比X的23小7的数可表示为______________(3)如课本p58图2.1--3 圆环的面积为________(4)如课本p59图第2(4 )钢管的体积为_________思路导航:(1)圆环的面积=大圆的面积-小圆的面积(2)钢管的体积=大圆柱的体积-小圆柱的体积四、精讲点拨(约5分)1.多项式中的每一项必须都是单项式,且每一项都包括前面的符号.2.再确定多项式的次数时,应先计算出多项式每一项的次数,然后将各项的次数进行比较,取次数最高项的次数作为该多项式的次数.3.不论是单项式还是多项式,都是整式,但分母中含有字母的式子不是整式,如1x+2, a2+1a+2都不是整式.4.列整式表示数量关系时,一定要弄清题意,找出正确的数量关系.五、能力提升(约5分)认真自学课本p55例2(1),模仿完成下题. 一条河流的水流速度为3千米/时,(1)如果已知船在静水中的速度为 v 千米/时,那么船在这条河流中顺水行驶的速度是_______千米/时,逆水行驶的速度是 ________千米/时(2)如果甲、乙两船在静水中的速度分别为25千米/时和30千米/时,那么甲船顺水行驶的速度是_____千米/时,逆水行驶的速度是______千米/时.乙船顺水行驶的速度是________千米/时,逆水行驶的速度是________千米/时.六、课堂小结(约2分)1. ________________________ 叫做多项式.2._______________________ 叫做多项式的项,___________叫做常数项.3.______________________叫做多项式的次数.4.多项式_____整式吗?整式______多项式吗?(填“是”或“不是”)我的收获:我的困惑:【达标测评】(约7分) 1.课本 p59练习第1、2题.2.在式子- 35ab,2x2y5,2yx, -a2bc, 1, x2-2x+3,a3,x1+1中,单项式是______________________________________,多项式是 _____________________.3.在多项式- x3y2+3x2-7中最高次项是___,常数项是___,该多项式是__次__项式.4.2x2-3xy+x-1的各项分别是 __________________________.5.有一个多项式为a10-a9b+a8b2-a7b3+…按这个规律写下去,写出它的第六项和最后一项,这个多项式是几次几项式?【课后作业】必做题:1.课本 p59练习 . 2.课本p60第4—6题. 选做题:课本p60第7—9题.备课时间:2012—10—03 主备人:贾洪军审核人:贾洪军2.2整式的加减(一)【学习目标】1.了解同类项,合并同类项的概念,掌握合并同类项法则,能正确合并同类项.2.能先合并同类项化简后求值.3.培养观察,探究,分类,归纳等能力,养成良好的学习习惯.【学习重点,难点】重点:掌握合并同类项法则,熟练地合并同类项.难点:多字母同类项的合并【知识链接】(约1分)有理数可以进行加减计算,那么整式能否进行加减计算呢?怎样化简呢?请看本章引言中的问题(2),青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时.如果列车通过冻土地段的时间t小时,通过非冻土地段的时间为2.1t小时,则这段铁路全长是__________ 千米. 类比数的运算,我们如何化简式子100t+252t呢?这节课我们来学习整式的加减.【学习过程】一、自主学习(约5分)认真自学课本p62-65内容,独立完成p62的探究.思路导航:课本p62探究(2),100t+252t=________, 100t表示100×t,252表示252×t请用乘法的分配律完成填空.二、问题探究(约5分)1.填空:(1)100t-252t=( )t (2)3x2+2x2=( )x2(3)3ab2-4ab2=( )ab22.观察上述的三个多项式,他们都可以合并为一个单项式,那么具备什么特点的多项式可以合并呢?可结对子交流.3.像这样,所含字母相同,并且相同字母的指数也相同的项叫做________ ,几个常数项也是________.三、合作交流(约5分)1.对上述问题中的困惑地方小组交流解决,必要时教师指导.2..下列各组是不是同类项:(1)a与b (2)x与x2 (3) 0.5x2y 与 0.2xy2 (4)4abc与4ab1(5)-5m2n3与2n3m2 (6)7x n y n+1与-3x n y n+1 (7)100与2思路点拨:根据同类项定义进行判断,同类项应所含字母相同,并且相同字母的指数也相同.二者缺一不可,与其系数无关,与其字母顺序无关.2.因为多项式中的字母表示的是数,所以我们可以运用交换律,结合律,分配律把多项式中的同类项合并.例如:4x2+3x+9+5x-6x2+7 ( 找出同类项)=(4x2-6x2)+(3x+5x)+(9+7) (交换律与结合律)=(4-6)x2+(3+5)x+16(分配律)=-2x2+8x+16像这样,把多项式中的__________合并成一项,叫做合并同类项.3.议一议:合并同类项前后的项的系数,字母以及字母的指数,有何变化?与同伴交流后,归纳出合并同类项法则:________________________________四、精讲点拨(约4分)1.合并同类项的实质是乘法分配律的逆用. 如 (2+3)a=2a+3a ,反过来就是2a+3a=(2+3)a2.若两个同类项互为相反数,则合并同类项的结果为0.3.注意各项系数应包括它前面的符号,尤其是系数为负数时,不要遗漏负号,同时注意不要丢项.4.通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或从小到大(升幂)的顺序排列.五、能力提升(约10分) 1.认真自学课本p 64例题,对遇到的困惑问题可上台展示解疑..1.合并下列各式的同类项.(模仿课本p 64例1)(1)-7m 2n+5m 2n (2) 3a 2b-4ab 2-4+5a 2b+2ab 2+72. 求多项式3x 2-8x+2x 3-13x 2+2x-2x 3+3的值,其中x=-21 (模仿课本p 64例2的解题步骤) 思路点拨:在求多项式的值时,可以先合并同类项,再求值,这样可以简化计算.合并时,特别注意系数是负数的情况,规范书写格式.代入字母给定的值时,必要时要正确使用括号,否则易发生错误.3.认真阅读课本p 65 例3,根据思路导航完成此题.思路导航:例3中(1)水位上升量与水位下降量是具有相反意义的两个量,我们可以把下降的水位量记为负,上升的水位量记为正,那么第一天水位的变化量为________cm ,第二天水位的变化量为__________cm,两天水位的总变化量为________ =________________.(2)把进货的数量记为正,售出的数量记为负. 故进货后这个商店共有大米________________=___________六、课堂小结(约2分)1.__________________________________________叫做同类项.2.字母相同,次数也相同的项_________ 是同类项.(填“一定”或“不一定” )3. ______________________________________叫合并同类项.4.合并同类项的法则:________________________________________________________________________我的收获: 我的困惑:【达标测评】(约8分)1.课本p 65练习,可酌情处理.2.如果5x 2y 与21x m y n 是同类项,那么m= ____,n=______ 3.当k=______时,多项式x 2-3kxy+9xy-8中不含xy 项.4.求多项式2(x-2y)2-4(2x-y)+(x-2y)2-3(2x-y)的值,其中x=-1, y=12[提示:分别把(x-2y) (2x-y)看作一个整体.]【课后作业】必做题:课本 p69,第1 题备课时间:2012—10—03 主备人:贾洪军审核人:贾洪军2.2整式的加减【二(1)】【学习目标】1.能应用运算律探究去括号法则,并且利用去括号法则将整式化简.2.培养观察分析,归纳能力及主动探究合作交流的意识.【学习重点,难点】重点:去括号法则,准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.【知识链接】(约2分)我们来看引言中的问题(3)在格尔木到拉萨路段,如果列车通过冻土地段要 t 小时,那么通过非冻土地段的时间多用0.5小时,即_____小时,于是冻土地段的路程为______千米,非冻土地段的路程为___________千米,因此这段跌路全长为___________千米①,冻土地段与非冻土地段相差___________千米②.式子① 100t+120(t-0.5) 式子②100t-120(t-0.5)都带有括号,如何化简呢?这节课我们继续学习整式的加减【学习过程】一、自主学习(要求静思独做.)(约5分)1.忆一亿:乘法的分配律:a(b+c)=____________2.算一算:(要求应用乘法的分配律)(1)120×(10-0.5)(2)-120×(10-0.5)(3)120×(t-0.5)(4)-120×(t-0.5)二、问题探究(约5分)认真自学课本p65-67内容,完成下题计算:(1)2(50-a)(2)-3(a2-2b)比较上面两式,你能发现去括号的规律吗?如果括号外的因数是正数,去括号后_____________________ ;如果括号外的因数是负数,去括号后______________________ 特别地 +(a-8), -(a-8) 可以分别看1×(a-8), -1×(a-8) 利用分配律,可以将式子中的括号去掉得 +(a-8)=a-8, -(a-8)=-a+8,这也符合以上发现的去括号规律三、合作交流(约5分) 1.对上述问题中不懂的地方,小组交流解决.2.化简下列各式(模仿课本 p66 例4,可上台展示)(1)10m+8n+(7m-3n) (2)(7x-5y)-2(x2-3y)思路点拨:(1)先判断是哪种类型的去括号,其次去括号后,括号内各项的符号要不要变号.(2)易错警示:括号外的系数不要漏乘括号里的每一项.括号前是“-”号,去括号时,注意括号里的各项符号都要变号.四、精讲点拨(约5分)1.去括号规律要准确理解,去括号应对括号内的每一项的符号都予考虑,做到要变都变,要不变,则各项符号都不要变.2.括号内原有几项去掉括号后仍有几项.3.有多层括号时,要从里向外逐步去括号.五、能力提升(约5分)细读课本p 67 例5,模仿例5,完成下题.飞机的无风航速为a 千米/时 ,风速为 20千米/时,飞机顺风飞行4小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?思路导航:(1)飞机的航速有如下关系:顺风航速=无风航速+风速,逆风航速=无风航速-风速.因此飞机顺风航速为__________千米/时,顺风飞行4小时的行程是_______千米.飞机逆风航速为_________,逆风飞行3小时的行程是___________千米.两个行程相差________千米.解答过程仿照课本p 67 例5:【课堂小结】:(约3分)1. 去括号是代数式变形的一种常用方法,去括号的法则是:____________________________________________________________________________________________________2. 去括号规律可以简单记为“-”变“+”不变,要变全部变,当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.我的收获: 我的困惑:【达标测评】(约10分)1. 化简:(1)31(9y-3)+2(y+1) (2)-5a+(3a-2)-(3a-7)2.2x 3y m 与-3x n y 2是同类项,则m+n=_____3.化简m+n-(m-n)的结果为( ) A.2m B.-2m C.2n D.-2n4.已知3x 2-4x+6的值为9,则x 2-34x+6 的值为( ). A.7 B.18 C.12 D.9 5.如果关于x 的多项式ax 4+4x 2-21与 3x b +5是同次多项式,求21b 3-2b 2+3b-4 的值.随着括号的添加,括号内各项的符号有什么变化规律?【课后作业】:1.必做题:课本p 70第2、3、4、8题.2.选做题:〔创新思维〕 规定一种新运算:a*b=a+b,a#b=a-b 其中a 、b 为有理数, 则化简a 2b*3ab+5a 2b#4ab 并求出当a=5,b=3时的值是多少?备课时间:2012—10—03 主备人:贾洪军 审核人:贾洪军整式的加减【二(2)】学习内容:补充内容(课本没有“添括号”内容,整式的加减过程中要用到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9课时:小结与复习
学习内容:
教科书第75页,整式的加减单元复习。
学习目的和要求:
1.对本章内容的认识更全面、更系统化。
2.进一步加深对本章基础知识的理解以及基本技能(主要是计算)的掌握。
学习重点和难点:
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
学习方法:
归纳,总结、练习相结合。
学习过程:
一、复习引入:
1.主要概念:
(1)关于单项式,你都知道什么? (2)关于多项式,你又知道什么?
复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
整式⎩
⎨⎧升降幂排列)多项式(项同类项次数)单项式(定义系数次数 2.主要法则:
①在本章中,我们学习了哪几个重要的法则?分别如何叙述? ②归纳总结:
整式的加减⎩
⎨⎧合并同类项。
去(添)括号。
二、探究新知: 1.例题:
例1:找出下列代数式中的单项式、多项式和整式。
3
z
y x ++,4xy ,a
1,
2
2n m ,x 2+x+
x
1,0,
x
x 212
-,m ,―2.01×105
例2:指出下列单项式的系数、次数:a b ,―x 2,5
3xy 5,3
5
3z
y x
-。
注意事项:系数应包括前面的“+”号或“―”号,次数是“指数之和”。
例3:指出多项式a 3―a 2b ―a b 2+b 3―1是几次几项式,最高次项、常数项各是什么?
例4:化简,并将结果按x 的降幂排列:
(1)(2x 4―5x 2―4x+1)―(3x 3―5x 2―3x); (2)―[―(―x+2
1)]―(x ―1); (3)―3(2
1x 2―2xy+y 2)+ 2
1(2x 2―xy ―2y 2)。
注意事项:
(1)去括号(包括去多重括号)的问题;(2)数字与多项式相乘时分配律的使用问题。
例5:化简、求值:5a b ―2[3a b ―(4a b 2+2
1a b)]―5a b 2,其中a =2
1,b=―3
2。
例6:一个多项式加上―2x 3+4x 2y+5y 3后,得x 3―x 2y+3y 3,求这个多项式,并求当x=―
2
1,y=2
1时,这个多项式的值。
三、归纳小结:
1我的收获是
2、还有没解决的问题是
四、巩固练习:课本p76:1,2.,3⑴⑶⑸,4⑴⑶⑸⑺ 五、自主检测:
1、下列各式中,单项式有 个。
-3ab+2c, -m 2, -x 2y, π, -3(a 2-b 2), -3.5, (3x -2y)2
2、下列各组是同类项的是( )
A .x 3与3x B.xy 与yz C.-4xy 2z 2与-4xyz 2
D.2与-2 3、-6x 2
的系数是 ,次数是 。
4、6a 4b+a 3b 2-a 2b 3-5ab 4+10b 4
是 次 项式。
5、多项式x 2
y -2
1x 2y 2
+5x 3-y 3的最高次项系数是 。
6、化简求值:⎪⎭
⎫
⎝⎛--+22
43479x x x x ,其中3=x ;
7、已知2
2
2
2
53,54y xy x B y xy x A -+=+-=,求:(1)A-5B 的值;(2)-5A+2B 的值。
8、 已知xy y x 2=+,求
y
xy x y
xy x +++-454的值。
9、 某移动通讯公司设了2种通讯业务:“全球通”使用者缴27.5元月租费,然后每通话1
分钟再付话费0.1元;“本地通”不缴月租费,每通话一分钟付话费0.2元(本题的通
话皆是市内通话),若一个月内通话x 分钟。
a) 用代数式表示两种方式的话费;
b) 某人估计一个月通话350分钟,应选哪种合算?
10、已知A=2a 2+3ma -2a -1,B=-a 2
+ma -1,且3A+6B 的值不含有含a 的项,求m 的值。
六、成果展示(作业):
课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,。