多元统计分析数据

合集下载

多元统计分析概述

多元统计分析概述

多元统计分析概述多元统计分析是一种统计学方法,用于研究多个变量之间的关系和模式。

它可以帮助我们理解和解释数据中的复杂关系,从而提供有关变量之间相互作用的深入洞察。

在本文中,我们将概述多元统计分析的基本概念、常用方法和应用领域。

一、基本概念1. 变量:在多元统计分析中,我们研究的对象是多个变量。

变量可以是数值型(如年龄、收入)或分类型(如性别、教育程度)。

2. 样本和总体:多元统计分析通常基于样本数据进行推断。

样本是从总体中抽取的一部分观察值。

通过对样本数据进行分析,我们可以推断总体的特征和关系。

3. 相关性和因果关系:多元统计分析可以帮助我们确定变量之间的相关性,即它们之间的关联程度。

然而,相关性并不意味着因果关系。

因果关系需要更深入的研究和实验证实。

二、常用方法1. 相关分析:相关分析用于衡量两个或多个变量之间的相关性。

常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。

2. 回归分析:回归分析用于建立变量之间的数学模型,并预测一个或多个因变量的值。

线性回归和逻辑回归是常用的回归分析方法。

3. 主成分分析:主成分分析用于降低数据维度,并找到解释数据变异最多的主要成分。

它可以帮助我们理解数据中的模式和结构。

4. 判别分析:判别分析用于确定一个或多个自变量对于区分不同组别的因变量的重要性。

它常用于分类和预测问题。

5. 聚类分析:聚类分析用于将样本分成不同的群组,使得同一群组内的样本相似度较高,而不同群组之间的相似度较低。

三、应用领域多元统计分析在各个领域都有广泛的应用,包括社会科学、医学、市场研究、金融等。

以下是一些常见的应用领域:1. 社会科学:多元统计分析可以帮助研究人类行为和社会现象。

例如,它可以用于分析教育水平与收入之间的关系,或者研究不同人群的消费行为。

2. 医学研究:多元统计分析可以用于研究疾病的风险因素和预测模型。

例如,它可以用于确定吸烟和肺癌之间的关系,或者预测患者的生存率。

3. 市场研究:多元统计分析可以帮助企业了解消费者行为和市场趋势。

多元统计数据分析报告(3篇)

多元统计数据分析报告(3篇)

第1篇一、引言随着大数据时代的到来,数据量急剧增加,传统的统计分析方法已无法满足复杂数据关系的挖掘需求。

多元统计分析作为一种处理多个变量之间关系的方法,在社会科学、自然科学、工程技术等领域得到了广泛应用。

本报告旨在通过对某研究项目的多元统计分析,揭示变量之间的关系,为决策提供科学依据。

二、研究背景与目的本研究以某企业员工绩效评估数据为研究对象,旨在通过多元统计分析方法,探究员工绩效与个人特质、工作环境等因素之间的关系,为企业人力资源管理部门提供决策支持。

三、数据与方法1. 数据来源本研究数据来源于某企业员工绩效评估系统,包括员工的基本信息、个人特质、工作环境、绩效评分等。

2. 研究方法本研究采用以下多元统计分析方法:(1)描述性统计分析:对员工绩效、个人特质、工作环境等变量进行描述性统计分析,了解数据的分布情况。

(2)相关分析:分析变量之间的线性关系,找出相关系数较大的变量对。

(3)因子分析:将多个变量归纳为少数几个因子,揭示变量之间的内在关系。

(4)聚类分析:将员工根据绩效、个人特质、工作环境等因素进行分类,分析不同类别员工的特点。

(5)回归分析:建立员工绩效与个人特质、工作环境等因素之间的回归模型,分析各因素对绩效的影响程度。

四、数据分析结果1. 描述性统计分析通过对员工绩效、个人特质、工作环境等变量的描述性统计分析,得出以下结论:(1)员工绩效评分呈正态分布,平均绩效评分为75分。

(2)个人特质得分集中在中等水平,其中创新能力得分最高,稳定性得分最低。

(3)工作环境得分普遍较高,其中工作压力得分最低。

2. 相关分析通过对员工绩效、个人特质、工作环境等变量进行相关分析,得出以下结论:(1)绩效与创新能力、稳定性、工作环境等因素呈正相关。

(2)创新能力与稳定性呈负相关。

3. 因子分析通过对员工绩效、个人特质、工作环境等变量进行因子分析,得出以下结论:(1)提取了3个因子,分别对应创新能力、稳定性、工作环境。

多元统计分析的基本概念

多元统计分析的基本概念

多元统计分析的基本概念多元统计分析是统计学中的一个重要分支,它主要研究多个变量之间的关系和规律。

在实际应用中,多元统计分析被广泛运用于数据挖掘、市场调研、财务分析等领域。

本文将介绍多元统计分析的基本概念,包括多元数据、多元变量、多元分析方法等内容。

一、多元数据多元数据是指包含多个变量的数据集合。

在多元统计分析中,数据通常以矩阵的形式呈现,每一行代表一个样本,每一列代表一个变量。

多元数据可以是定量数据,也可以是定性数据。

定量数据是指可以用数字表示的数据,如身高、体重等;定性数据是指描述性质的数据,如性别、颜色等。

多元数据的特点是维度高,包含大量的信息,需要通过统计分析方法来揭示其中的规律。

二、多元变量多元变量是指由多个单变量组成的变量集合。

在多元统计分析中,变量可以分为自变量和因变量。

自变量是独立变量,用来解释因变量的变化;因变量是依赖变量,受自变量影响而发生变化。

多元变量之间可以存在线性关系、非线性关系、相关性等不同类型的关系。

通过多元统计分析,可以揭示变量之间的内在联系,帮助我们更好地理解数据背后的规律。

三、多元分析方法多元统计分析包括多元方差分析、主成分分析、因子分析、聚类分析等多种方法。

这些方法可以帮助我们从不同角度解读多元数据,揭示数据之间的关系和规律。

1. 多元方差分析多元方差分析是一种用于比较多个组别之间差异的统计方法。

它可以同时考虑多个因素对因变量的影响,从而揭示不同因素对因变量的影响程度。

多元方差分析可以帮助我们确定哪些因素对因变量的影响最显著,为进一步分析提供依据。

2. 主成分分析主成分分析是一种降维技术,它可以将多个相关变量转化为少数几个无关变量,从而减少数据的复杂性。

主成分分析可以帮助我们发现数据中的主要信息,提取数据的主要特征,为后续分析提供简化的数据集。

3. 因子分析因子分析是一种用于探索变量之间潜在关系的方法。

它可以将多个观测变量归纳为少数几个潜在因子,从而揭示变量之间的内在联系。

如何使用Excel进行多元统计分析和回归模型

如何使用Excel进行多元统计分析和回归模型

如何使用Excel进行多元统计分析和回归模型随着数据分析和统计学在各个领域的应用越发广泛,Excel作为一种常用的办公软件,也能提供一些强大的数据分析功能。

在本文中,我们将介绍如何使用Excel进行多元统计分析和回归模型。

一、多元统计分析多元统计分析是研究多个自变量对因变量的影响以及它们之间的关系的一种方法。

Excel提供了一些内置函数和工具,可以帮助我们进行多元统计分析。

1. 描述性统计分析描述性统计分析是将数据呈现为有意义的统计数字,包括平均值、中位数、方差等。

在Excel中,可以使用SUM、AVERAGE、MEDIAN等函数来计算这些统计数字。

2. 相关性分析相关性分析用于衡量两个或多个变量之间的关系强度。

Excel提供了CORREL函数,可以计算两个变量之间的相关系数。

相关系数的取值范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关。

3. 回归分析回归分析用于建立自变量与因变量之间的数学关系模型。

在Excel 中,可以使用内置的回归工具进行回归分析。

首先,选择需要分析的自变量和因变量的数据,然后打开“数据”选项卡,选择“数据分析”并选择“回归”。

填写相应的参数,并点击“确定”即可生成回归结果报告。

二、回归模型回归模型用于预测因变量在给定自变量的情况下的数值。

Excel提供了多种回归模型,包括线性回归、多项式回归、指数回归等。

1. 线性回归模型线性回归是最常用的回归模型,适用于自变量与因变量呈线性关系的情况。

在Excel中,可以使用内置的线性回归工具进行线性回归分析。

选择自变量和因变量的数据,打开“数据”选项卡,选择“数据分析”并选择“回归”。

在参数设置中选择线性回归,并点击“确定”生成回归结果报告。

2. 多项式回归模型多项式回归适用于自变量与因变量呈多项式关系的情况。

在Excel 中,可以使用数据分析工具中的“回归”选项进行多项式回归分析。

选择自变量和因变量的数据,打开“数据”选项卡,选择“数据分析”并选择“回归”。

多元统计分析

多元统计分析

多元统计分析在实际研究和应用中,我们经常需要处理多个变量之间的关系。

为了更好地理解变量之间的相互关系,以及变量对总体的影响程度,多元统计分析成为了一种重要的方法。

多元统计分析可以帮助我们更全面、准确地理解数据,进而得到更深入的结论。

一、多元统计分析的基本概念多元统计分析是一种研究多个变量之间关系的统计学方法。

它广泛应用于社会科学、医学、经济学等领域,帮助研究人员深入探究变量之间的相互作用。

在多元统计分析中,我们通常关注的是多个自变量对一个因变量的影响。

为了实现这一目标,我们需要构建统计模型,通过假设检验、回归分析等方法,来揭示自变量对因变量的解释程度。

二、多元统计分析的方法多元统计分析可以使用多个方法来揭示变量之间的关系。

下面介绍几种常见多元统计分析方法:1. 多元方差分析(MANOVA):多元方差分析是一种广义的方差分析方法,用于比较两个或多个组别在多个因变量上的差异。

它可以同时分析多个因变量,并考虑它们的相互关系。

2. 因子分析:因子分析是一种用于研究变量之间潜在关系的分析方法。

它可以帮助我们简化数据结构、发现潜在变量,并解释这些潜在变量对原始变量的影响。

3. 聚类分析:聚类分析是一种将样本或变量分为不同组别的方法。

通过聚类分析,我们可以发现样本或变量之间的相似性和差异性,帮助我们更好地理解数据结构。

4. 判别分析:判别分析是一种有监督的多元统计分析方法,用于预测或分类。

它可以根据已知的类别信息,来预测新的样本所属类别。

以上只是多元统计分析的一部分方法,每种方法都有其特点和应用领域。

研究人员可以根据具体的问题和数据类型选择合适的方法。

三、多元统计分析的应用多元统计分析可以应用于各个领域的研究和实践中。

以下介绍几个常见的应用领域:1. 社会科学研究:在社会科学领域,多元统计分析可以帮助研究人员揭示不同自变量对社会现象的影响程度,进而深入理解社会现象的机制。

2. 医学研究:在医学研究中,多元统计分析可以帮助医生和研究人员探究不同变量对疾病的影响,寻找治疗方案或预测疾病风险。

应用统计学课件:实用多元统计分析

应用统计学课件:实用多元统计分析

在线性回归分析中,自变量可以是连续的或离散的,因变量通常是连续的。
线性回归分析的假设包括误差项的独立性、同方差性和无偏性等。
线性回归分析的优点是简单易懂,可以用于解释自变量和因变量之间的关系,并且可以通过回归系数来度量自变量对因变量的影响程度。
非线性回归分析
非线性回归分析是指自变量和因变量之间存在非线性关系的回归分析方法。
详细描述
数据的收集与整理
总结词
描述性统计量是用来概括和描述数据分布特性的统计指标。
详细描述
描述性统计量包括均值、中位数、众数、标准差、方差等统计指标,以及偏度和峰度等统计量。这些统计量可以帮助我们了解数据的分布情况,如数据的集中趋势、离散程度和形状等。通过对这些统计量的计算和分析,可以进一步了解数据的特征和规律。
DBSCAN聚类分析
06
多元数据判别分析
基于距离度量的分类方法,通过最大化类间差异、最小化类内差异进行分类。
Fisher判别分析是一种线性判别分析方法,通过投影将高维数据降到低维空间,使得同一类别的数据尽可能接近,不同类别的数据尽可能远离。它基于距离度量,通过最大化类间差异、最小化类内差异进行分类。
数据的可视化方法
03
多元数据探索性分析
数据的相关性分析
总结词:通过计算变量间的相子分析用于探索隐藏在变量之间的潜在结构,即公共因子。
04
多元数据回归分析
线性回归分析
A
B
D
C
线性回归分析是一种常用的回归分析方法,通过建立自变量和因变量之间的线性关系,来预测因变量的取值。
01
02
03
04
05
多元统计分析的定义与特点
社会学
心理学

《多元统计分析》课件

《多元统计分析》课件

采用L1正则化,通过惩罚项来选择最重要 的自变量,实现特征选择和模型简化。
比较
应用场景
岭回归适用于所有自变量都对因变量有影 响的情况,而套索回归更适用于特征选择 和模型压缩。
适用于数据集较大、自变量之间存在多重 共线性的情况,如生物信息学数据分析、 市场细分等。
主成分回归与偏最小二乘回归
主成分回归
适用于自变量之间存在多重 共线性的情况,同时要求高 预测精度,如金融市场预测 、化学计量学等。
06 多元数据的典型相关分析
典型相关分析的基本思想
01
典型相关分析是一种研究多个 随机变量之间相关性的多元统 计分析方法。
02
它通过寻找一对或多个线性组 合,使得这些线性组合之间的 相关性达到最大或最小,从而 揭示多个变量之间的关系。
原理
基于最小二乘法原理,通过最小化预 测值与实际值之间的平方误差来估计 回归系数。
应用场景
适用于因变量与自变量之间存在线性 关系的情况,如预测房价、股票价格 等。
注意事项
需对自变量进行筛选和多重共线性诊 断,以避免模型的不稳定性和误差。
岭回归与套索回归
岭回归
套索回归
是一种用于解决多重共线性的回归方法, 通过引入一个小的正则化项来稳定系数估 计。
层次聚类
01
步骤
02
1. 将每个数据点视为一个独立的集群。
2. 计算任意两个集群之间的距离或相似度。
03
层次聚类
01 3. 将最相近的两个集群合并为一个新的集群。 02 4. 重复步骤2和3,直到满足终止条件(如达到预
设的集群数量或最大距离阈值)。
03 应用:适用于探索性数据分析,帮助研究者了解 数据的分布和结构。

多元统计分析

多元统计分析
详细描述
聚类分析根据对象的特征和距离度量将相似的对象归为一类 。常见的聚类方法包括层次聚类、K均值聚类和密度聚类等。 聚类分析有助于发现数据的内在结构,用于分类、模式识别 和决策支持。
判别分析
总结词
判别分析是一种有监督学习方法,通过已知分类的数据建立判别函数,用于预 测新数据的分类。
详细描述
判别分析利用已知分类的数据建立判别函数,用于预测新数据的分类。常见的 判别分析方法包括线性判别分析和二次判别分析等。判别分析广泛应用于分类、 模式识别和决策支持等领域。
市场研究的定义和过程
市场研究定义
市场研究是一种系统的方法,用于收 集和分析关于消费者、市场和竞争对 手的数据,以帮助企业了解市场趋势、 消费者需求和竞争态势,从而做出更 好的商业决策。
市场研究过程
市场研究过程包括确定研究目标、设 计研究方案、收集数据、分析数据和 报告结果等步骤。
多元统计分析在市场研究中的应用实例
多元统计分析
目录
• 引言 • 多元统计分析的基本方法 • 多元统计分析在数据挖掘中的应用 • 多元统计分析在市场研究中的应用 • 多元统计分析的未来发展 • 结论
01 引言
多元统计分析的定义
多元统计分析是研究多个随机变量之 间关系的统计方法。它通过使用各种 技术和模型来分析多个变量之间的关 系,以揭示数据中的模式和结构。
对应分析
总结词
对应分析是一种多元统计方法,用于研 究变量间的关系和分类。
VS
详细描述
对应分析通过降维技术将多个变量的分类 数据转换为低维空间的点,并利用点间的 距离度量变量间的关系。对应分析能够揭 示变量间的潜在联系和分类结构,广泛应 用于市场研究、社会科学和医学等领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章数据第三章数据例3-1X1 职工标准工资收入 X5 单位得到的其他收入X2 职工奖金收入 X6 其他收入X3 职工津贴收入 X7 性别X4 其他工资性收入 X8 就业身份X1 X2 X3 X4 X5 X6 X7 X8 540.00 0.0 0.0 0.0 0.0 6.00 男国有1137.00 125.00 96.00 0.0 109.00 812.00 女集体1236.00 300.00 270.00 0.0 102.00 318.00 女国有1008.00 0.0 96.00 0.0 86.0 246.00 男集体1723.00 419.00 400.00 0.0 122.00 312.00 男国有1080.00 569.00 147.00 156.00 210.00 318.00 男集体1326.00 0.0 300.00 0.0 148.00 312.00 女国有1110.00 110.00 96.00 0.0 80.00 193.00 女集体1012.00 88.00 298.00 0.0 79.00 278.00 女国有1209.00 102.00 179.00 67.00 198.00 514.00 男集体1101.00 215.00 201.00 39.00 146.00 477.00 男集体例3-3English Norwegian Danish Dutch German French One En en een ein unTwo To to twee zwei deux Three Tre tre drie drei troisFour Fire fire vier vier quatre Five Fem fem vijf funf einqSix Seks seks zes sechs sixseven Sju syv zeven siebcn septEight Ate otte acht acht huitNine Ni ni negen neun neufTen Ti ti tien zehn dixSpanish Italian Polish Hungarian FinnishUno uno jeden egy yksiDos due dwa ketto kaksiTres tre trzy harom kolmecuatro quattro cztery negy neuaCinco cinque piec ot viisiSeix sei szesc hat kuusiSiete sette siedem het seitsemanOcho otto osiem nyolc kahdeksaunueve nove dziewiec kilenc yhdeksanDiez dieci dziesiec tiz kymmenen例3-4X1 食品支出(元/人)X5 交通和通讯支出(元/人)X2 衣着支出(元/人)X6 娱乐、教育和文化服务支出(元/人)X3 家庭设备、用品及服务支出(元/人)X7 居住支出(元/人)X4 医疗保健支出(元/人)X8 杂项商品和服务支出(元/人)X1 X2 X3 X4 X5 X6 X7 X8 辽宁1772.14 568.25 298.66 352.20 307.21 490.83 364.28 202.50 浙江2752.25 569.95 662.31 541.06 623.05 917.23 599.98 354.39 河南1386.76 460.99 312.97 280.78 246.24 407.26 547.19 188.52 甘肃1552.77 517.16 402.03 272.44 265.29 563.10 302.27 251.41 青海1711.03 458.57 334.91 307.24 297.72 495.34 274.48 306.45例3-5x1 人均粮食支出(元/人) x5 人均衣着支出(元/人)x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人)x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)4 人均其他副食支出(元/人)8 人均其他非商品支出(元/人)第四章数据例4-3x1人均食品支出(元/人)x5 人均交通和通信支出(元/人)x2 人均衣着支出(元/人)x6 人均文教娱乐用品及服务支出(元/人)x3 人均住房支出(元/人)x7 人均医疗保健支出(元/人)例4-4x1工业增加值率(%) x5 工业成本费用利润率(%)x2 总资产贡献率(%)x6 全员劳动生产率(万元/人·年)x3 资产负债率(%)x7 产品销售率(%)x4 流动资产周转次数(次)例4-5x1人均粮食支出(元/人) x5 人均衣着支出(元/人)x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人)x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)4 人均其他副食支出(元/人)人均其他非商品支出(元/人)习题4.6X1:0岁组死亡概率 X2:1岁组死亡概率 X4:55岁组死亡概率 X5:80岁组死亡概率第五章数据例5-3100固定资产原值实现值(%)100元固定资产原值实现利税(%)100元资金实现利税(%)100元工业总产值实现利税(%)100元销售收入实现利税(%)每吨标准煤实现工业产值(元)每千瓦时电力实现工业产值(元)全员劳动生产率(元/人.年)100元流动资金实现产值(元)北京(1)119.29 30.98 29.92 25.97 15.48 2178 3.41 21006 296.7天津(2)143.98 31.59 30.21 21.94 12.29 2852 4.29 20254 363.1 河北(3)94.8 17.2 17.95 18.14 9.37 1167 2.03 12607 322.2 山西(4)65.8 11.08 11.06 12.15 16.84 8.82 1.65 10166 284.7 内蒙(5)54.79 9.24 9.54 16.86 6.27 894 1.8 7564 225.4 辽宁(6)94.51 21.12 22.83 22.35 11.28 1416 2.36 13.386 311.7 吉林(7)80.49 13.36 13.76 16.6 7.14 1306 2.07 9400 274.1 黑龙江(8)75.86 15.82 16.67 20.86 10.37 1267 2.26 9830 267 上海(9)187.79 45.9 39.77 24.44 15.09 4346 4.11 31246 418.6 江苏(10)205.96 27.65 22.58 13.42 7.81 3202 4.69 23377 407.2 浙江(11)207.46 33.06 25.78 15.94 9.28 3811 4.19 22054 385.5 安徽(12)110.78 20.7 20.12 18.69 6.6 1468 2.23 12578 341.1 福建(13)122.76 22.52 19.93 18.34 8.35 2200 2.63 12164 301.2 江西(14)94.94 14.7 14.18 15.49 6.69 1669 2.24 10463 274.4 山东(15)117.58 21.93 20.89 18.65 9.1 1820 2.8 17829 331.1 河南(16)85.98 17.3 17.18 20.12 7.67 1306 1.89 11247 276.5 湖北(17)103.96 19.5 18.48 18.77 9.16 1829 2.75 15745 308.9 湖南(18)104.03 21.47 21.28 20.63 8.72 1272 1.98 13161 309 广东(19)136.44 23.64 20.83 17.33 7.85 2959 3.71 16259 334 广西(20)100.72 22.04 20.9 21.88 9.67 1732 2.13 12441 296.4 四川(21)84.73 14.35 14.17 16.93 7.96 1310 2.34 11703 242.5 贵州(22)59.05 14.48 14.35 24.53 8.09 1068 1.32 9710 206.7 云南(23)73.72 21.91 22.7 29.72 9.38 1447 1.94 12517 295.8 陕西(24)78.02 13.13 12.57 16.83 9.19 1731 2.08 11369 220.3 甘肃(25)59.62 14.07 16.24 23.59 11.34 926 1.13 13084 246.8 青海(26)51.66 8.32 8.26 16.11 7.05 1055 1.31 9246 176.49 宁夏(27)52.95 8.25 8.82 15.57 6.58 834 1.12 10406 245.4 新疆(28)60.29 11.26 13.14 18.68 8.39 1041 2.9 10983 266例5-4厂家编号及指标固定资产利税率资金利税率销售收入利税率资金利润率固定资产产值率流动资金周转天数万元产值能耗全员劳动生产率1 琉璃河16.68 26.75 31.84 18.4 53.25 55 28.83 1.752 邯郸19.7 27.56 32.94 19.2 59.82 55 32.92 2.873 大同15.2 23.4 32.98 16.24 46.78 65 41.69 1.534 哈尔滨7.29 8.97 21.3 4.76 34.39 62 39.28 1.635 华新29.45 56.49 40.74 43.68 75.32 69 26.68 2.146 湘乡32.93 42.78 47.98 33.87 66.46 50 32.87 2.67 柳州25.39 37.82 36.76 27.56 68.18 63 35.79 2.438 峨嵋15.05 19.49 27.21 14.21 6.13 76 35.76 1.759 耀县19.82 28.78 33.41 20.17 59.25 71 39.13 1.8310 永登21.13 35.2 39.16 26.52 52.47 62 35.08 1.7311 工源16.75 28.72 29.62 19.23 55.76 58 30.08 1.5212 抚顺15.83 28.03 26.4 17.43 61.19 61 32.75 1.613 大连16.53 29.73 32.49 20.63 50.41 69 37.57 1.3114 江南22.24 54.59 31.05 37 67.95 63 32.33 1.5715 江油12.92 20.82 25.12 12.54 51.07 66 39.18 1.83第六章数据例6-3x1 x2 x3 x4 x5 x6北京830.8 38103630 30671.14 127.4 5925388 64413910天津549.74 40496103 34679 15.38 2045295 18253200石家庄331.33 11981505 10008.48 8.07 493429 10444919太原222.63 5183200 15248.11 2.43 333473 6601300呼和浩特97.81 2407794 4155.1 2 205779 2554496沈阳440.6 10643612 14635.74 7.3 810889 14229575长春313.05 15115270 10891.98 6.94 459709 8313564哈尔滨454.52 7215089 9517.8 24.99 763600 11536951上海1041.39 1.03E+08 63861 35.22 8992850 60546000南京391.67 25093816 14804.68 7.62 1364788 11336202杭州263.67 32025226 16815.2 8.36 1503888 14664200合肥160.18 5348605 4640.84 3.39 358694 3592488福州205.43 12889573 8250.39 4.69 674522 8762245南昌195.46 4149169 4454.45 3.62 314094 4828029济南297.21 13185425 14354.4 6.6 761054 7583525郑州249.72 9270494 7846.91 8.77 658737 10484859 武汉474.98 13344938 16610.34 13.58 804368 12855341 长沙205.83 5339304 10630.5 6.31 598930 7048500 广州493.32 40178324 28859.45 21.47 2747707 37273276 南宁167.99 2083763 5893.09 4.95 362435 4514961 海口76.05 2025643 3304.4 2.72 122541 2843664 成都386.23 9700976 28798.2 8.06 895752 14944197 贵阳165.27 3569419 5317.55 5.75 403855 3449487 昆明205.34 5809573 12337.86 7.07 601101 7085278 西安312.88 6386627 9392 12.21 648037 12105607 兰州175.54 5215490 5580.8 3.7 205660 4683830 西宁105.13 1148959 2037.15 1.24 84397 1749293 银川79.2 1464867 2127.17 1.65 122605 1930771 乌鲁木齐142.94 3110943 12754.02 3.94 409119 4203000 大连297.48 15468641 21081.47 6.6 1105405 13101986 宁波168.81 26302862 13797.38 4.8 1394162 10596339 厦门83.74 13201500 3054.82 2.83 701456 3971559 青岛329.96 25588695 30552.6 6.72 1201398 9084693 深圳122.39 52451037 6792.66 10.84 2908370 21994500 重庆753.92 15889928 32450.2 12.83 1615618 18965569 x7 x8 x9 x10 x11 x12北京434.15 10989365 15 17.3 8.56 44.94 天津174.5 3254148 18 7.99 7.23 17.45 石家庄86.74 1067432 18 7.23 8.28 21.56 太原74.55 945212 16 5.06 7.88 20.58 呼和浩特28.9 407963 18 3.81 8.92 26.58 沈阳101.7 1521548 15 9.32 6.7 28.36 长春89.7 1244167 15 11.87 7.03 18.75 哈尔滨168.83 2102165 14 12.75 6.34 18.51 上海281.51 7686511 19 14.57 12.92 19.11 南京87.91 1950742 16 9.06 12.13 136.72 杭州75.72 1867776 17 8.93 6.5 23.19 合肥37.88 526577 17 14.11 15.72 28.74 福州71.3 1073262 18 9.65 7.9 31.6 南昌49.79 692717 17 7.37 7.67 23.98 济南78.38 1256160 19 7.77 10.62 19.54 郑州83.99 1137056 19 10.11 7.63 17.77 武汉136.08 1868350 17 6.87 4.16 8.34 长沙60.04 1019924 18 10.09 9.1 29.1 广州182.16 5247087 17 11.16 12.76 178.76南宁50.79 668976 18 9.91 9.32 35.12 海口22.97 340392 20 5.09 7.07 15.79 成都124.03 1894496 17 8.95 10.17 25.59 贵阳54.53 664234 16 9.37 3.11 105.35 昆明73.34 1045469 15 15.33 4.49 23.33 西安113.73 1535896 15 7.32 4.48 8.82 兰州54.91 740661 15 10.33 6.3 11.22 西宁20.6 301364 17 11.47 4.92 14.2 银川29.12 393035 15 9.26 10.43 40.21 乌鲁木齐47.42 782873 19 22.89 6.49 20.53 大连82.13 1442215 14 13.79 6.24 40.21 宁波59.88 1418635 17 9.88 6.81 17.65 厦门54.78 1042111 20 15.5 8.15 26.44 青岛104.55 1603305 15 14.78 11.41 35.78 深圳104.98 3259900 21 114.91 47.29 177.62 重庆203.79 2535070 21 4.94 4.24 10.8第七章数据第九章数据例9-3第十章数据例10-2分行号不良贷款贷款余额应收贷款项目数固定资产投资额10.90 67.30 6.80 551.902 1.10 111.30 19.80 1690.903 4.80 173.00 7.70 1773.704 3.20 80.80 7.20 1014.5057.80 199.70 16.50 1963.206 2.70 16.20 2.20 1 2.207 1.60 107.40 10.70 1720.20812.50 185.40 27.10 1843.809 1.00 96.10 1.70 1055.9010 2.60 72.80 9.10 1464.30110.30 64.20 2.10 1142.7012 4.00 132.20 11.20 2376.70130.80 58.60 6.00 1422.8014 3.50 174.60 12.70 26117.101510.20 263.50 15.60 34146.7016 3.00 79.30 8.90 1522.90170.20 14.80 0.60 242.10180.40 73.50 5.90 1125.3019 1.00 24.70 5.00 413.4020 6.80 139.40 7.20 2864.302111.60 368.20 16.80 32163.9022 1.60 95.70 3.80 1044.5023 1.20 109.60 10.30 1467.90247.20 196.20 15.80 1639.7025 3.20 102.20 12.00 1097.10第十二章数据例12-1第十三章数据例13-4第十四章数据。

相关文档
最新文档