2015年清华大学自主招生数学试题(领军计划)

合集下载

2016年清华大学自主招生暨领军计划数学试题及解答2

2016年清华大学自主招生暨领军计划数学试题及解答2

2016年清华大学领军计划数学测试题1.椭圆22221x y a b +=,两条直线1l :12y x =,2l :12y x =-,过椭圆上一点P 作两条直线的平行线,分别与两条直线交于M ,N 两点,若||MN =( ).A .B .C 2 .D2.已知,,x y z 为正整数,x y z ≤≤,那么方程11112x y z ++=的解有( )组 .A 8 .B 10 .C 11 .D 123.将16个数:4个1、4个2、4个3、4个4填入44⨯的矩阵中,要求每行、每列正好有2个偶数,则共有______种填法.接下来填数,故共有887844⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭种填法.4.对于复数(0)z z ≠,10z 和40z的实部和虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形面积为_______.5.下列计算正确的是( ).A tan1tan 61tan1213tan1tan 61tan121++=.B tan1tan 61tan1213tan1tan 61tan121++=-.C tan1tan 61tan1tan121tan 61tan1213++= .D tan1tan 61tan1tan121tan 61tan1213++=-6.从1~14的正整数中任选出若干数构成一个集合,该集合中任3个数不构成等差数列,求元素最多的集合的元素个数.7.已知3tan 4α=,求值sin 4sin 2sin sin cos8cos 4cos 4cos 2cos 2cos cos ααααααααααα+++.8.一堆数乘在一起有很多种乘的顺序,如三个数,,a b c 可以有()ab c ,()ba c ,()c ab ,()c ba 四种不同的乘法,记n 个数的乘法为n I ,则( ).A 22I = .B 312I = .C 496I = .D 5120I =9.,,a b c R ∈,22211a b c a b c ⎧++=⎨++=⎩,那么( ).A max 23a =.B max ()0abc = .C min 13a =- .D max 4()27abc =-10.AB 为圆O 的一条弦,P 为圆O 上一点,OC AB ⊥,PA OC M =,PB 交OC 延长线于N ,则以下结论正确的是( ).A OMBP 共圆 .B AMBN 共圆 .C AOPN 共圆 .D AOBN 共圆11.F 为BC 中点,1114A E AA =,正方体1111ABCD ABCD -棱长为1,中心为O ,则O BEF V -=( ).A 17144 .B 1738 .C 11144 .D 113812.问一个正2016边形,任选顶点顺序相连构成的凸多边形中,正多边形有( )个 .A 6552 .B 4536 .C 3528 .D 2016O PAMBN13.求不定方程26152yx +=*(,)x y N ∈解的个数( ).A 0 .B 1 .C 2 .D 314.O 在ABC ∆内,::4:3:2S AOB S BOC S AOC ∆∆∆=,AO AB AC λμ=+,则λ=____,μ=_____.15.22cos sin 33z i ππ=+,求2322z z z z +=++_______.16.在N 项有穷数列{}n a 中,满足①1i j N ≤<≤时,i j a a <;②1i j k N ≤<<≤时,i j a a +,i k a a +,j k a a +至少有一项在{}n a 中,则N 的最大值为______.17.22120()(1sin )n n x x dx ππ--+=⎰______.18.2|1|||z z +=,求||z 的范围和arg z 的范围.19.在正三棱锥P ABC -中,ABC ∆的边长为1,设P 到平面ABC 的距离为h ,当h 趋近于正无穷时,异面直线AB 与CP 之间的距离为_____.20.,,x y z 均为非负实数,满足2221327()(1)()224x y z +++++=,则x y z ++的最大值为______,最小值为______.21.实数22322()4x y x y +=,则22x y +的最大值为______.22.2()()xf x x a e =+有最小值,则220x x a ++=的解的个数为______.23.11a =,22a =,216n n n a a a ++=-,下列叙述正确的是( ).A 212n n n a a a ++-为定值 .B 2(mod 9)n a lor ≡.C 147n n a a +-为完全平方数 .D 187n n a a +-为完全平方数24.已知抛物线E :24y x =,(1,0)F ,过F 作弦交E 于A ,B 两点,M 为AB 的中点,则下列说法正确的是( ).A 以AB 为直径的圆与32x =-始终相离 .B ||AB 的最小值为4.C ||AM 的最小值为2 .D 以BM 为直径的圆与y 轴有且仅有一个交点25.对于函数21y x =-和ln y x =,下列说法正确的事 .A .二者在(1,0)处有公切线B .二者存在平行切线C .两者只有一个交点D .两者有两个交点26.p 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 为左右焦点,下列说法正确的是 .A .a =时,满足1290F PF ∠=的p 点有2个B .a >时,满足1290F PF ∠=的p 点有4个C .124PF F C a <D .1222PF F a S ≤27.随机变量ξ的分布列为()(1,2,,10)k P k a k ξ===,则下列说法正确的是 .A .若1210,,,a a a 成等差数列,则5615a a += B .若1210,,,a a a 满足1(1,2,,9)2n na n ==,则10912a =C .若2()k P k k a ξ≤=,则11(1,2,,10)10(1)n na n n ==+D .若1(1)n n na n a +=+,则1110(1)n na n =+28.甲,乙,丙,丁四人参加比赛并有两个获奖,以下是四人对获奖人的猜测: 甲:获奖者在乙,丙,丁中 乙:我未获奖,丙获奖 丙:甲丁有一人获奖丁:乙说的是正确的已知四人中有两个人的猜测是正确的那么获奖人是 . 解析,若乙对,则丁对,甲对,故乙错,29.下列能够成唯一ABC ∆的是 .A .1a =,2b =,c Z ∈B .150A =,sin sin 2sin sin a A cC a C b B ++= C .cos sin cos cos()cos sin 0A B C B C B C ++=D .3a = ,1b =,60A =30甲,乙,丙,丁四个人进行网球赛规定甲乙一组,丙丁一组先打,胜者再打决胜局,四人相互对战对战时胜率如图,求甲获胜的概率为 .31.已知实数a ,b ,c 满足1a b c ++=414141a b c ++++间( )..A (11,12) .B (12,13) .C (13,14) .D (14,15)32. sin sin sin cos cos cos A B C A B C ++>++为ABC 为锐角形的( )..A 充要非必要条件 .B 必要非充分条件 .C 充分必要条件 .D 既不充分也不必要条件33.已知集合12{,,,}n A a a a =,任取1i j k n ≤<<≤,i j a a A +∈,j k a a A +∈,k i a a A +∈这三个式中至少有一个成立,则n 的最大值( )..A 6 .B 7 .C 8 .D 92016年清华大学领军计划数学测试题解答1.椭圆22221x y a b +=,两条直线1l :12y x =,2l :12y x =-,过椭圆上一点P 作两条直线的平行线,分别与两条直线交于M ,N 两点,若||MN=( ) .A .B .C 2 .D 【解析】C法1:设(cos ,sin )P a b θθ,OP ON NP =+,MN ON NP =-,1l 方向向量11(1,)2e =,21(1,)2e =-,1ON ne =,2NP me =,12OP ne me ∴=+cos sin 22n m a n mb c θ-=⎧⎪⇒⎨+=⎪⎩ (,)(2sin ,cos )21222n m a aMN m n b b θθ-=+=⇒== 法2:设00(,)P x y ,可得0000111(,)242M x y x y ++,0000111(,)242N x y x y --+,||MN =为定值,所以2241614a b==2=. 注(1)若将这两条直线的方程改为y kx =±1k=; (2)两条相交直线上各取一点M ,N ,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或者椭圆. 2.已知,,x y z 为正整数,x y z ≤≤,那么方程11112x y z ++=的解有( )组 .A 8 .B 10 .C 11 .D 12【解析】法1、列举法.○111112666=++,○211131212++,○3 111488++,○41111055++,○51113918++ ○61113824++,○71113742++,○81114612++,○91114520++,○1011131015++ 法2、x 最小,1x∴最大,36x ∴≤≤,x 以3,4,5,6分类讨论当3x =时,可得11111236y z +=-=,通分可得66y z yz +=,因式分解可得(6)(6)36y z --=,此时需要对36进行分解,则361362183124966=====,故可得37423824(,,)39183101531212x y z ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,同理当4x =时,4520(,,)4612488x y z ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,当5x =时,[](,,)5510x y z = 当6x =时,[](,,)666x y z =3.将16个数:4个1、4个2、4个3、4个4填入44⨯的矩阵中,要求每行、每列正好有2个偶数,则共有______种填法.【解析】我们将题目稍作变形,将本题变为①在44矩阵中染色,黑白二色,要求每行每列正好有两个黑色;②将数字填入这些色块第一步,我们在第一列涂上两个黑色,为方便起见,我们用#代表黑色,用O 代表白色第一列涂两个黑色如图所示##O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,这样有42⎛⎫ ⎪⎝⎭种涂法,接下来我们研究第二层,分三种情况涂色:第一种####O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,这样的涂法有1种,并且下面两行只有########O O O O O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦这1种涂法、 第二种####O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,这样的涂法有4种,下面的话有########O O O O O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦、########O O O O O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦这2种,所以第二种共有42种涂法第三种####O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,这样的涂法有1种,下面的涂法有224=种,所以第三种有14种涂法, 故共有78种涂法接下来填数,故共有887844⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭种填法.方法二、首先确定偶数的位置有多少种选择.第一行两个偶数有24C 种选择,下面考虑这两个偶数所在的列,每列还需要再填一个偶数,设为a ,b 情形一:若a ,b 位于同一行,它们的位置有3种选择,此时剩下的四个偶数所填的位置唯一确定.情形二:若a ,b 位于不同的两行,它们的位置有6种选择,此时剩下的四个偶数所填的位置有2种选择.所以偶数的不同位置数为24(362)90C ⋅+⋅=种,因此总的填法数位为448890441000C C ⋅⋅=.4.对于复数(0)z z ≠,10z 和40z 的实部和虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形面积为_______. 【解析】(田)z 与1z的角相等,设为θ,设||z r =,则cos sin 101010z r ri θθ=+⋅,404040cos sin i z r r θθ=+⋅,(cos ,sin )P r r θθ,令cos a r θ=,sin b r θ=,则有10a ≥,0b ≥○1,22140a a b ≥+,22140b a b ≥+222(20)20a b ⇒-+≤○2,222(20)20a b +-≤○3 即为阴影面积S ,1002(503150)3S π=+-(第一可以用积分的方法,第二可以用面积的方法)方法二:设z x yi =+,其中,x y R ∈.由于24040||zz z =,于是 22221,1101040401,1x y y x y x y ⎧≥≥⎪⎪⎨⎪≥≥++⎪⎩如图 弓形面积为2110020(sin )1002663πππ⋅⋅-=-,四边形ABCD 的面积为 12(10310)1010031002⋅⋅-⋅=-,于是所求面积为 1002002(100)(1003100)100330033ππ-+-=+-5.下列计算正确的是( ).A tan1tan 61tan1213tan1tan 61tan121++=.B tan1tan 61tan1213tan1tan 61tan121++=-.C tan1tan 61tan1tan121tan 61tan1213++= .D tan1tan 61tan1tan121tan 61tan1213++=-【解析】BD3tan1tan13tan 61,tan12113tan113tan1+-==-+,故28tan1tan 61tan12113tan 1+=-,22tan 13tan 61tan12113tan 1-=-,由此可证 6.从1~14的正整数中任选出若干数构成一个集合,该集合中任3个数不构成等差数列,求元素最多的集合的元素个数.【解析】(田)列举1,2,4,5,10,11,13,14(从1~14中删去公差为1时的等比数列,然后相继删去公差为2公差为3,为47.已知tan 43α=,求值sin 4sin 2sin sin cos8cos 4cos 4cos 2cos 2cos cos ααααααααααα+++. 【解析】裂项求和,sin(84)sin(42)tan8cos8cos 4cos 4cos 2ααααααααα--++=8.一堆数乘在一起有很多种乘的顺序,如三个数,,a b c 可以有()ab c ,()ba c ,()c ab ,()c ba 四种不同的乘法,记n 个数的乘法为n I ,则( ).A 22I = .B 312I = .C 496I = .D 5120I =【解析】AB根据卡特兰数的定义,可得11121221!(1)!nn n n n n n n I C A C n n C n-----=⋅=⋅⋅=-⋅ 9.,,a b c R ∈,22211a b c a b c ⎧++=⎨++=⎩,那么( ).A max 23a =.B max ()0abc = .C min 13a =- .D max 4()27abc =- 【解析】数形结合2221a b c ++=,表示半径为1的球,1a b c ++=表示一个平面2222222211()(1)122a b c a b ca b c a b c ⎧⎪+=-⎪+=-⎨⎪+-⎪+≥⇒-≥⎩,所以c 范围出来. 222222()()(1)(1)ab a b a b c c =+-+=---,所以ab 范围出来.(法3)由1x y z ++=,2221x y z ++=,可知0xy yz zx ++=.设xyz c =,则x ,y ,z 是关于t 的方程320t t c --=的三个实根.令32()f t t t c =--,利用导数可得(0)024()0327f c f c =-≥⎧⎪⎨=--≤⎪⎩,所以4027c xyz -≤=≤,等号显然可以取到.故选项A ,B 都对,因为 22222()(1)2()2(1)x y z x y z +=-≤+=-,所以113z -≤≤,等号显然取到.故选项C 错,选项D 对.10.AB 为圆O 的一条弦,P 为圆O 上一点,OC AB ⊥,PA OC M =,PB 交OC 延长线于N ,则以下结论正确的是( ).A OMBP 共圆 .B AMBN 共圆 .C AOPN 共圆 .D AOBN 共圆【解析】P选项A :首先连接OP 、MB ,即让证明POM PBM ∠=∠,则延长BM 交O 于P ',延长NO 交O于点E ,则易知PBM POE ∠=∠,故四点共圆选项B ,由选项A 可看出,当P 在BPE 上从B 向E 运动时,MBA PAB ∠=∠在逐渐增大,而MBN ∠也在逐渐增大,故MBN ∠并不恒等于2π,故四点并不共圆. 选项C ,连接OA 、AN ,则我们要证AOPN 四点共圆,即要证OPB OAN ∠=∠,而,OAN OBN OPN OBP ∠=∠∠=∠,故四点共圆选项D : OAB 三点不动,显然不共圆 11.F 为BC 中点,1114A E AA =,正方体1111ABCD ABCD -棱长为1,中心为O ,则O BEF V -=( )O PAMBNO PAMBNEP '.A 17144 .B 1738 .C 11144 .D 1138【解析】196. 如图111111221696O EBF G EBF E BCC B V V V ---=⋅=⋅=12.问一个正2016边形,任选顶点顺序相连构成的凸多边形中,正多边形有( )个 .A 6552 .B 4536 .C 3528 .D 2016【解析】选C .找2016的约数,若/2016n ,则有n 多边形2016n个,则分解522016237=⨯⨯,2016201620162016481632∴++++,即1111111132016(1)(1)(1)201624816323972=++++++++-⨯3528=13.求不定方程26152yx +=*(,)x y N ∈解的个数( ).A 0 .B 1 .C 2 .D 326152y x +=⇒2y 层数为6,4,故y 为偶数,设2y n =, 22615(2)(2)(2)6153541n n n x x x +=⇒-+=⇒⨯⨯,252123n n x x ⎧-=⎪∴⎨+=⎪⎩或215241n n x x ⎧-=⎪⎨+=⎪⎩或232205n n x x ⎧-=⎪⎨+=⎪⎩, 解得59x =,12y =14.O 在ABC ∆内,::4:3:2S AOB S BOC S AOC ∆∆∆=,AO AB AC λμ=+,则λ=____,μ=_____. 【解析】奔驰定理得29,4915.22cos sin 33z i ππ=+,求2322z z z z +=++_______. 【解析】原式21z z +=-=132i -,132z i =-+ 16.在N 项有穷数列{}n a 中,满足①1i j N ≤<≤时,i j a a <;②1i j k N ≤<<≤时,i j a a +,i k a a +,j k a a +至少有一项在{}n a 中,则N 的最大值为______.【解析】假设该数列包含正数并且正数项大于3,则取12,,n n n a a a --三项,由②可知12n n n a a a --+=,而假设有第四个正数3n a -出现时,取13,,n n n a a a --,则同理可得31n n n a a a --+=矛盾,故正项至多有三项,同理负项至多有三项,而零当然可以加进来,故至多有七项 17.22120()(1sin )n n x x dx ππ--+=⎰______.【解析】22122120()(1sin )(1sin )0n n n n x x dx x x dx ππππ----+=+=⎰⎰18.2|1|||z z +=,求||z 的范围和arg z 的范围.OZ z =,22,1OA z OB z ==+,则在OAB ∆中,2A πθ∠=-,2,OZ OB r OA r ===可得221,1r r r r ->+>r <<,再根据余弦定理求出θ的范围 19.在正三棱锥P ABC -中,ABC ∆的边长为1,设P 到平面ABC 的距离为h ,当h 趋近于正无穷时,异面直线AB 与CP 之间的距离为_____. 【解析】2. 当h →+∞时,CP 趋于与平面ABC 垂直,所求极限为ABC 中AB 边上的高,为220.,,x y z 均为非负实数,满足2221327()(1)()224x y z +++++=,则x y z ++的最大值为______,最小值为______. 【解析】32,32-.222274x y z ⇒++=,求3x y z ++-的最值. 方法二、由柯西不等式可知,当且仅当1(,,)(1,,0)2x y z =时,x y z ++取到最大值32.根据题意,有22213234x y z x y z +++++=,于是213()3()4x y z x y z ≤+++++,解得32x y z -++≥,于是x y z ++的最小值当3(,,))2x y z -=时取到,为32- 21.实数22322()4x y x y +=,则22x y +的最大值为______.【解析】.不等式22223222()44()2x y x y x y ++=≤⋅,221x y ∴+≤ 22.2()()xf x x a e =+有最小值,则220x x a ++=的解的个数为______.【解析】2'(2)xf x a x e ++有最小值,0∴∆>,个数为223.11a =,22a =,216n n n a a a ++=-,下列叙述正确的是( ).A 212n n n a a a ++-为定值 .B 2(mod 9)n a lor ≡.C 147n n a a +-为完全平方数 .D 187n n a a +-为完全平方数【解析】验证,11a =,22a =,311a =,464a =,5a =因为22222231221122112211(6)6(6)n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a +++++++++++++++-=--=-+=-+ 21.2n n n a a a ++=-,所以A 正确,由于311a =,故2222121111(6)67n n n n n n n n n n n a a a a a a a a a a a ++++++-=--=-+=-,对任意正整数恒成立,所以21147()n n n n a a a a ++-=-,21187()n n n n a a a a ++-=+,故C ,D 正确.24.已知抛物线E :24y x =,(1,0)F ,过F 作弦交E 于A ,B 两点,M 为AB 的中点,则下列说法正确的是( ).A 以AB 为直径的圆与32x =-始终相离 .B ||AB 的最小值为4.C ||AM 的最小值为2 .D 以BM 为直径的圆与y 轴有且仅有一个交点【解析】ABCD25.对于函数21y x =-和ln y x =,下列说法正确的事 .A .二者在(1,0)处有公切线B .二者存在平行切线C .两者只有一个交点D .两者有两个交点 解析:BD26.p 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 为左右焦点,下列说法正确的是 .A .a =时,满足1290F PF ∠=的p 点有2个B .a >时,满足1290F PF ∠=的p 点有4个C .124PF F C a <D .1222PF F a S ≤ 【解析】焦点三角形,2tan p S C y S bc θ=⋅=≤,p 为椭圆上下顶点时,12PF F C 最大,22222b c a S bc +≤≤=,12224PF F C a c a =+<.27.随机变量ξ的分布列为()(1,2,,10)k P k a k ξ===,则下列说法正确的是 .A .若1210,,,a a a 成等差数列,则5615a a += B .若1210,,,a a a 满足1(1,2,,9)2n n a n ==,则10912a =C .若2()k P k k a ξ≤=,则11(1,2,,10)10(1)n na n n ==+D .若1(1)n n na n a +=+,则1110(1)n na n =+28.甲,乙,丙,丁四人参加比赛并有两个获奖,以下是四人对获奖人的猜测: 甲:获奖者在乙,丙,丁中 乙:我未获奖,丙获奖 丙:甲丁有一人获奖 丁:乙说的是正确的已知四人中有两个人的猜测是正确的那么获奖人是 . 解析,若乙对,则丁对,甲对,故乙错, 29.下列能够成唯一ABC ∆的是 .A .1a =,2b =,c Z ∈B .150A =,sin sin sin sin a A cC C b B +=C .cos sin cos cos()cos sin 0A B C B C B C ++=D .a =,1b =,60A =【解析】A .2c =,正确;B .正弦定理,余弦定理,135B =,错误;C .cos sin()0A B C -=,60C =,所以为直角或等边三角形,错误;D .显然成立,30B ∠=,正确.30.甲,乙,丙,丁四个人进行网球赛规定甲乙一组,丙丁一组先打,胜者再打决胜局,四人相互对战对战时胜率如图,求甲获胜的概率为 .【解析】0.165根据概率的乘法公式,所求概率为0.3(0.50.30.50.8)0.165⋅⋅+⋅=.31.已知实数a ,b ,c 满足1a b c ++=414141a b c ++++间( )..A (11,12) .B (12,13) .C (13,14) .D (14,15)32. sin sin sin cos cos cos A B C A B C ++>++为ABC 为锐角形的( )..A 充要非必要条件 .B 必要非充分条件 .C 充分必要条件 .D 既不充分也不必要条件 【解析】B .必要性:由于sin sin sin sin()sin cos 12B C B B B B π+>+-=+>,类似的有sin sin 1A C +>,sin sin 1A B +>,于是sin sin sin sin()sin()sin()A B C B C C A A B ++=+++++(sin sin )cos cos cos cos cycB C A A B C =+>++∑.不充分性:当2A π=,4B C π==时,不等式成立,而ABC 并非锐角三角形.33.已知集合12{,,,}n A a a a =,任取1i j k n ≤<<≤,i j a a A +∈,j k a a A +∈,k i a a A +∈这三个式中至少有一个成立,则n 的最大值( )..A 6 .B 7 .C 8 .D 9 【解析】B . 不妨设12n a a a >>>.若集合A 中的正数的个数大于等于4,由于23a a +和24a a +均大于2a ,于是有23241a a a a a +=+=,所以34a a =,矛盾.所以集合A 中至多有3个正数,同理可知集合A 至多有3个负数.取{3,2,1,0,1,2,3}A =---,满足题意,所以n 的最大值为7.。

2015北大自主招生数学试题.doc

2015北大自主招生数学试题.doc

2021 北大自主招生题一1.整数 x,y,z 满足xy+yz+zx=1 ,那么(1+ 2 x )(1+2 y )(1+ 2 z)可A . 16900B .17900C .18900D .前三个答案都不对 2.在99 的正整出 50 个不同的正整50 个数中任两个的和都不等于 99,也不等于 1050 个数的和可能等于〔 〕A . 3524B .3624C .3724D .前三个答案都不对 3.x ∈[0, 2 数 a ,函数 y= g( a )的最大值为〔 〕 A . 1 B .2 C .3 D .前三个答案都不对 4. 20 10 - 20 n的整2 是 2 A . 21 B .22 C .23 D .前三个答案都不对 5.在形那A . 6.9 B .7.1 C .7.3 D .前三个答案都不对二 .填空题11x 12021足等式〔1+ ) (1 ) 的整数 x 的个数是 _______ . x 2021( a b cd) 7. a,b,c,d ∈ [2,4] ,那么2 2 22(a d )(b c )的与___________8.对于任意实数 x ∈[1,5],|2x +px+q| ≤ 2,不超过22pq 的最大整数是 __________9.设x = 222bc a2bc,y= 222acb2ac,z= 2 22b ac2ba202120212021xyz的值为___,且 x+y+z=1 ,那么10.设A 1 ,A 2,..., A n 都是 9 元集合 {1,2,3, ⋯ ,9} 的子集, | A i |为奇数, 1≤ i ≤ n,| A i A j |为偶数, 1≤ i ≠j≤ n n 三.解答题11.数列 { a }为正项等比数列,且 a 3 a 4 a 1 a 2 =5,求naa 的最小值5612.f(x)为二次函数,且a,f(a),f (f(a)), f(f (f(a)))成正项等比数列,求证:f( a)= a13.称点都在三上的正此三角形的内接正方形。

清华大学高考自主招生领军计划历年面试真题(2015年—2018年)

清华大学高考自主招生领军计划历年面试真题(2015年—2018年)

清华大学高考自主招生领军计划历年面试真题(2015年—2018年)同样,小北也为大家准备了清华近4年的综合评价招生面试真题。

清华也是从2015年才开始在全国范围开展综合评价招生!清华大学2018年领军计划面试题学科面试:1.建筑系:7位考官面试一个学生,不仅考查学生的综合素质,还考查他们对于各省市建筑的理解和表达。

2.数学系:给出4道题目让考生现场在黑板上作答,考官根据考生的解答思路或提问或追问。

清华大学2017年领军计划面试题1.材料阅读:影响你选择大学以及专业志愿的有哪些因素?请列举出来并说明理由。

可以借鉴但不局限于所给三则材料:第一则选择大学更重要还是选择专业更重要,第二则选择专业有哪些影响因素,第三则大学排名,包括US NEWS、泰晤士、QS、软科世界大学排名、毕业生就业力排名等等。

2.对人才培养的看法3.对清华理念的理解清华大学2016年领军计划面试题1.时政题是南京一个母亲盗窃超市为给自己的女儿过儿童节,警察赶到后宽大处理并帮助筹集善款,你怎么看?反映了什么社会问题?2.如果你在清华创立社团,你会创建什么社团?怎样让它发展得更好?3.大学应该无微不至地照顾学生,宽容对待他们的小错误还是应该训练学生适应社会?4.关于考生个人,被问到为什么选择这个专业清华大学2015年领军计划面试题1.你对“中国式过马路”怎么看?2.你对“中国梦”怎么理解?3.2012年度的五大新闻是什么,如果你是新闻评论员,请对这些新闻事件作出评论。

4.你对“钓鱼岛事件”怎么看?清华大学与北大相似,题目涉及范围较广,与经济、社会的各个方面相关。

童鞋们在做好充分准备的同时也要大方主动的展示自己的想法,不要太过于谨慎,甚至羞于表达。

2016年清华大学自主招生暨领军计划试题(解析版)

2016年清华大学自主招生暨领军计划试题(解析版)

2016年清华大学自主招生暨领军计划试题(解析版)1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( ) A.0 B.1 C.2 D.取决于a 的值 答案:注意)()(/x g e x f x =,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( ) A.Z c b a ∈==,2,1B.B b C a C c A a A sin sin 2sin sin ,1500=+=C.060,0sin cos )cos(cos sin cos ==++C C B C B C B AD.060,1,3===A b a答案:对于选项A ,由于b a c b a +<<-||,于是c 有唯一取值2,符合题意; 对于选项B ,由正弦定理,有2222b ac c a =++,可得0135,22cos =-=B B ,无解;对于选项C ,条件即0)sin(cos =-C B A ,于是)60,60,60(),60,30,90(),,(000000=C B A ,不符合题意;对于选项D ,由正弦定理,有21sin =B ,又060=A ,于是0090,30==C B ,符合题意. 答案:AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A.)(),(x g x f 在点)0,1(处有公切线B.存在)(x f 的某条切线与)(x g 的某条切线平行C. )(),(x g x f 有且只有一个交点D. )(),(x g x f 有且只有两个交点答案:注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4. 过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A.以线段AB 为直径的圆与直线23-=x 一定相离 B. ||AB 的最小值为4 C. ||AB 的最小值为2D.以线段BM 为直径的圆与y 轴一定相切 答案:对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B,C ,设)4,4(2a a A ,则)1,41(2a a B -,于是2414||22++=a a AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值; 对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误. 答案:AB .5. 已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( )A.b a 2=时,满足02190=∠PF F 的点P 有两个B. b a 2>时,满足02190=∠PF F 的点P 有四个C.21F PF ∆的周长小于a 4D. 21F PF ∆的面积小于等于22a 答案:对于选项A,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点; 对于选项C ,21PF F ∆的周长为a c a 422<+;对于选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅. 答案:ABCD .6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测:甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A.甲 B.乙 C.丙 D.丁答案:乙和丁同时正确或者同时错误,分类即可,答案:BD .7. 已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( )A.P B M O ,,,四点共圆 B. N B M A ,,,四点共圆 C. N P O A ,,,四点共圆 D.以上三个说法均不对 答案:7.对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意;对于选项C ,MAN MOP MBN ∠=∠=∠即得. 答案:AC.8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( )A.充分非必要条件B.必要非充分条件C.充分必要条件D. 既不充分也不必要条件 答案:必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π,类似地,有1sin sin ,1sin sin >+>+A B A C , 于是C B A C B A cos cos cos sin sin sin ++>++. 不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.答案:B.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( ) A.8 B.10 C.11 D.12 答案:由于xz y x 311121≤++=,故63≤≤x . 若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ; 若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ; 若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ; 若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B .10.集合},,,{21n a a a A =,任取A a a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( ) A.6 B.7 C.8 D.9答案:不妨假设n a a a >>> 21,若集合A 中的正数的个数大于等于4,由于32a a +和42a a +均大于2a ,于是有14232a a a a a =+=+,从而43a a =,矛盾!所以集合A 中至多有3个正数.同理可知集合A 中最多有3个负数.取}3,2,1,0,1,2,3{---=A ,满足题意,所以n 的最大值为7.答案B .11.已知000121,61,1===γβα,则下列各式中成立的有( )A.3tan tan tan tan tan tan =++αγγββαB.3tan tan tan tan tan tan -=++αγγββαC.3tan tan tan tan tan tan =++γβαγβαD.3tan tan tan tan tan tan -=++γβαγβα答案:令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zxzx yz y z xy x y , 所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-, 以上三式相加,即有3-=++zx yz xy . 类似地,有)11(311),11(311),11(311+=-+=-+=-zxx z yz z y xy y x , 以上三式相加,即有3111-=++=++xyzzy x zx yz xy . 答案BD.12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A.)12,11(B.)13,12(C.)14,13(D.)15,14( 答案:设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图, 于是可得321)31(7212147174+-≤+≤+x x x , 左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( )A.xyz 的最大值为0B. xyz 的最大值为274- C. z 的最大值为32 D. z 的最小值为31- 答案:由1,1222=++=++z y x z y x 可得0=++zx yz xy .设c xyz =,则z y x ,,是关于t 的方程023=--c t t 的三个根.令c t t t f --=23)(,则利用导数可得⎪⎩⎪⎨⎧≤--=>-=0274)32(0)0(c f c f ,所以0274≤=≤-xyz c ,等号显然可以取到.故选项A,B 都对. 因为)1(2)(2)1()(22222z y x z y x -=+≤-=+,所以131≤≤-z ,等号显然可以取到,故选项C 错误. 答案ABD .14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( )A.n n n a a a 221++-为定值 B.)9(mod 1≡n a 或)9(mod 2≡n aC.741-+n n a a 为完全平方数D.781-+n n a a 为完全平方数答案:因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a an n n n n n n a a a a a a a 22121122)6(++++++-=+-=.所以A 选项正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a ,又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++, 故选项C,D 正确.计算前几个数可判断选项B 错误. 答案:ACD .说明:若数列}{n a 满足n n n a pa a -=++12,则n n n a a a 221++-为定值.15. 若复数z 满足11=+zz ,则z 可以取到的值有( )A.21 B.21- C.215- D. 215+ 答案:因为11||1||=+≤-zz z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD . 16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( )A.6552B.4536C.3528D.2016答案:从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008. 考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a by a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=ba( ) A.2 B.3 C.2 D.5 答案:设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++, 故意2020441||y x MN +=为定值,所以2,1641422===b a b a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则kb a 1=; (2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程y x 21652=+的正整数解的组数为( ) A.0 B.1 C.2 D.3答案:方程两边同时模3,可得)3(mod 22y x ≡,因y 2不能被3整除,故2x 不能被3整除,所以)3(mod 12≡x ,故)3(mod 12≡y ,所以y 为偶数,可设)(2*N m m y ∈=,则有4153615)2)(2(⨯⨯==+-x x mm ,解得⎪⎩⎪⎨⎧=+=-,1232,52x x mm 即⎩⎨⎧==.12,59y x 答案:B . 19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有 ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有n I 种,则( ) A.22=I B.123=I C.964=I D.1205=I答案:根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n nnn n C n n C nA C I .答案:AB . 关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 . 答案:根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯.21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .答案:当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23. 22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A O 1141,21,==,则四面体OEBF 的体积为 .答案:如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V . 23.=+-⎰-dx x x n n )sin 1()(22012ππ .答案:根据题意,有0)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n n n ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 .答案:根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1. 25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 .答案:由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23. 根据题意,有41332222=+++++z y x z y x , 于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x . 于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-.26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设μλ+=,则=+μλ .答案:根据奔驰定理,有329492=+=+μλ. 27.已知复数32sin 32cos ππi z +=,则=+++2223z z z z . 答案:根据题意,有i i z z z z z z 232135sin 35cos 122223-=+=-=+=+++ππ.28.已知z 为非零复数,zz 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 .答案:设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y y x x y x 如图,弓形面积为1003100)6sin 6(20212-=-⋅⋅πππ, 四边形ABCD 的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ. 29.若334tan =x ,则=+++x x x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin . 答案:根据题意,有xxx x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.答案:首先确定偶数的位置有多少种选择.第一行两个偶数有24C 种选择.下面考虑这两个偶数所在的列,每列还需要再填空一个偶数,设为b a ,.11 情形一:若b a ,位于同一行,它们的位置有3种选择,此时剩下的四个偶数所填的位置唯一确定;情形二:若b a ,位于不同的行,它们的位置有6种选择,此时剩下的四个偶数所填的位置有2种选择.所以偶数的不是位置数为90)263(24=⋅+C .因此,总的填法数为4410009048488=C C . 31.设A 是集合}14,,3,2,1{ 的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .答案:一方面,设},,,{21k a a a A =,其中141,*≤≤∈k N k .不妨假设k a a a <<< 21.若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{=A ,满足题意.综上所述,A 中元素个数的最大值为8.。

清华大学2015年自主招生数学试题及答案解析

清华大学2015年自主招生数学试题及答案解析

绝密★启用前清华大学2015年自主招生考试数学试题一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)32 2.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于1 4.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x y f xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( )(A)b=2a (B)△ABC 的周长为 (C)△ABC (D)△ABC 的外接圆半径为7.设函数2()(3)x f x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值(C)若方程()f x =b 恰有一个实根,则b>36e (D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-=(C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( )(A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n,总存在正整数m,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n,总存在正整数m,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )(A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )。

2015年清华领军计划

2015年清华领军计划

2015年清华领军计划工作目标1.培养未来领袖:该计划旨在从全国范围内选拔具有领导潜力的优秀高中生,通过提供清华大学的优质教育资源,培养他们的学术素养、创新能力和领导力。

计划通过个性化培养方案,使这些学生能够在各个领域脱颖而出,成为未来社会的领军人物。

2.深化学术探索:针对入选学生,计划提供丰富的学术资源,包括顶级教授的课程指导、前沿科研项目的参与机会以及国内外学术交流的平台。

学生将在导师的指导下,深入探索感兴趣的学术领域,培养独立思考和解决问题的能力。

3.强化综合素质:除了学术培养,计划还注重学生综合素质的提升。

通过参与各类社会实践活动、艺术体育活动以及志愿服务,学生将在团队协作、人际沟通、社会责任感等方面得到锻炼,全面提升个人素质。

工作任务1.选拔优秀学生:组成专家评审团队,依据严格的选拔标准,从全国范围内筛选出具有领导潜力和发展潜力的优秀高中生。

评审过程需确保公平、公正、公开,确保选拔结果的权威性。

2.制定个性化培养方案:根据学生的学术兴趣和能力,为每位学生量身定制个性化培养方案。

方案应包括清华大学优质课程资源、一对一导师指导、科研项目参与机会等,确保学生在学术探索和能力培养上得到充分支持。

3.提供全方位支持:为入选学生提供包括生活、学习、科研等在内的全方位支持。

建立学生成长档案,定期跟踪评估学生的学术进展和综合素质发展,确保每位学生都能在清华领军计划中得到充分的发展机会。

任务措施1.建立选拔机制:设立专门的选拔委员会,由清华大学和相关领域的专家组成。

制定详细的选拔标准和流程,确保选拔过程的科学性和公正性。

通过全国统一考试、面试以及其他综合素质评价方式,全面评估学生的能力和潜力。

2.定制培养计划:针对每位入选学生,组织专业的教育团队,根据其学术兴趣和特长,制定个性化的培养计划。

计划将包括清华大学的精品课程、一对一的导师指导、参与前沿科研项目的机会,以及国际交流和实习经历等。

3.提供全面支持:为学生提供全方位的支持和服务,包括生活保障、学术辅导、心理指导等。

2016年清华大学领军计划自招(数学+物理)试题

2016年清华大学领军计划自招(数学+物理)试题

2016年清华大学领军计划测试题(数学+物理)特别说明:1、2016年清华领军计划测试为机考,全卷共100分。

2、考试时间:数学+物理共180分钟。

3、所有考题为不定项选择题。

以下内容为回忆版本,部分题改编成填空题。

4、物理测试共35题,回忆版中共26题,供大家参考。

A 、 数学部分1、已知椭圆22221(0)x y a b a b+=>>,两条直线1211:,:22l y x l y x ==-,过椭圆上一点P 作两条直线12,l l 的平行线,又分别交两条直线于,M N 两点,若||MN 为定值,则ab= ( )A 、2 D 、42、已知,,x y z 为正整数,x y z ≤≤,那么方程11112x y z ++=的解的组数为 ( ) A 、8 B 、10 C 、11 D 、123、将16个数:4个1、4个2、4个3、4个4填入一个44⨯的矩阵中,要求每行、每列正好有2个偶数,则共有___________种填法。

4、已知O 为ABC ∆内一点,且满足::4:3:2AOB AOC BOC S S S ∆∆∆=,AO AB AC λμ=+, 则λ=___________,μ=_________。

5、“sin sin sin cos cos cos A B C A B C ++>++”是“ABC ∆为锐角三角形”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6、各项均不相同的数列{}n a 中,1i i k N ≤<<≤,,,i j j k k i a a a a a a +++至少有一项在{}n a 中,N 的最大值为 ( )A 、6B 、7C 、8D 、97、已知实数,,x y z 满足22211x y z x y z ++=⎧⎨++=⎩,则 ( ) A.max ()0xyz = B.min 4()27xyz =- C.min 23z =- D.以上都不对B、物理部分1、友谊的小船说翻就翻,假如你不会游泳,就会随着小船一起沉入水底。

清华2015 清华领军计划与答案

清华2015 清华领军计划与答案

2015年清华大学领军计划测试物理学科注意事项:1.2016清华领军计划测试为机考,全卷共100分,考试时间与数学累计120分钟;2.考题全部为不定项选择题,本试卷为回忆版本,故有些问题改编为填空题。

1、(2015领军)在康普顿散射,以下1到5五个区域哪个可能是中心原子存在的区域?(曲线为光子径迹)解:康普顿散射是一个有心力场的运动,与天体运动不同的是其受到的是斥力的作用。

由轨迹我们可知在距离中心原子最近的地方散射粒子的速度不为零,即其角动量不为零。

由角动量守恒知中性粒子只能处于3,4,5三个区域中。

又由对称性可知,中心粒子必处于4区域中。

(2015领军)2、质量为m ,电阻为R 的圆环在如图的磁场磁场中下落,稳定时速度为v 。

求匀速下落时电动势,有以下两种计算方案。

方法一:由受力平衡22B L v mg R= BLv ε=有结论:ε方法二:由功能关系R P mgv =2R P R ε=有结论:ε问:关于以上哪种方案说法正确的是?( )A.都正确B.都不正确C.只有方案一正确D.只有方案二正确解:当速度达到稳定时,必然存在受力平衡。

同时功能平衡也是受力平衡的必然要求。

因此两种方案都是正确的。

注:第一方案应说明B 指B 的水平分量(2015领军)3、理想气体做p kV =的准静态过程,已知定容比热v C 和R ,求该过程的比热C(2015领军)4、如图所示,光滑且不计电阻的导轨上有一金属棒,金属棒电阻为R ,初速度为01/v m s =,空间中有恒定的垂直于导轨平面的磁场,磁感应强度为B ,当金属棒减速到010v 时,用时1s 。

速度识别器最低记录是0.001/m s ,求总共记录的该导体棒运动时间为多少?所以2133t t s ==(2015领军)5、高为H 出平抛一物体,同时在其正下方水平地面斜抛一物体,二者同时落到同地,则斜抛物体的射高为______6、(2015领军)有一厚度为D 的透明玻璃砖,一束白光以入射角60︒角射入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年清华大学自主招生数学试题(领军计划)
说明:共30小题,共100分。

在每小题给出的四个选项中,有一个或多个选项是符合题目要求的。

全选对,得满分;选对但不全,得部分分;有选错的,得0分。

1、设复数22cos sin 33z i π
π
=+,则211
11z z +=--( )
A.0
B.1
C.1
2 D.3
2
2、设{}n a 为等差数列,,,,p q k l 为正整数,则“p q k l +>+”是“p q k l a a a a +>+”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
3、设,A B 是抛物线2y x =上的两点,O 是坐标原点,若OA OB ⊥,则( )
A.||||2OA OB ⋅≥
B.||||OA OB +≥
C.直线AB 过抛物线2y x =的焦点
D.O 到直线AB 的距离小于等于1
4、设函数()f x 的定义域为(1,1)-,且满足:①()0,(1,0)f x x >∈-; ②()()(),1x y
f x f y f xy ++=+,(1,1)x y ∈-。

则()f x 为( )
A.奇函数
B.偶函数
C.减函数
D.有界函数
5、如图,已知直线y kx m =+与曲线()y f x =
相切于两点,则()()F x f x kx =-有( )
A.2个极大值点
B.3个极大值点
C.2个极小值点
D.3个极小值点
6、ABC ∆的三边长分别为,,a b c 。

若2,3c C π
=∠=,且s i n s i n ()2s i n 20C B A A +--=,则(

A.2b a =
B.ABC ∆的周长为2+
C.ABC ∆
D.ABC ∆7、设函数2()(3)x f x x e =-,则( )
A.()f x 有极小值,但无最小值
B.()f x 有极大值,但无最大值
C.若方程()f x b =恰有一个实根,则36
b e >
D.若方程()f x b =恰有三个不同实根,则36
0b e <<
8、已知222{(,)|}P x y x y r =+=,222
{(,)|()()}Q x y x a y b r =-+-=,已知1122{(,),(,)}P Q x y x y =,则( ABD )
A .1212()()0a x x b y y -+-=
B .22
1122ax by a b +=+
C .22202a b r <+<
D .1212,x x a y y b +=+= 9、非负实数,,x y z 满足2224423x y z z +++=,则543x y z ++的最小值为( )
A.1
B.2
C.3
D.4
引申:改求543x y z ++的最大值呢?
3
10、设数列{}n a 的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n m S a =,则( )
A.{}n a 可能为等差数列
B.{}n a 可能为等比数列
C.{}n a 的任意一项均可写成{}n a 的两项之差
D.对任意正整数n ,总存在正整数m ,使得n m a S =
11、运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名。

比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )
A.甲
B.乙
C.丙
D.丁
12、长方体1111ABCD A B C D -中,12,1AB AD AA ===,则A 到平面1A BD 的距离为( )
A.1
3 B.23
D.13、设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩
所表示的区域为D ,其面积为S ,则( ) A.若4S =,则k 的值唯一 B.若12S =
,则k 的值有2个 C.若D 为三角形,则203
k <≤ D.若D 为五边形,则4k > 14、ABC ∆的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( )
A.0
B.15-
C.212-
D.292
- 15、设随机事件A 与B 相互独立,且()0.5,()0.2P B P A B =-=,则( )
A.()0.4P A =
B.()0.3P B A -=
C.()0.2P AB =
D.()0.9P A B +=
16、过ABC ∆的重心作直线将ABC ∆分成两部分,则这两部分的面积之比为( )
A.最小值为34
B.最小值为45
C.最大值为43
D.最大值为54
17、从正十五边形的顶点中选出3个构成钝角三角形,则不同的选法有( C )
A.105种
B.225种
C.315种
D.420种
提示:正2k +1边形对应的钝角三角形个数为
12k (k −1)(2k +1). 18、已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ACD )
A.4
B.6
C.8
D.12
提示:r =.
19、设复数z 满足2|||1|z z ≤-,则( )
A.||z 的最大值为1
B.||z 的最小值为13
C.z 的虚部的最大值为23
D.z 的实部的最大值为13
20、设,m n 是大于零的实数,向量(cos ,sin ),(cos ,sin )a m m b n n ααββ==,其中,[0,2)αβπ∈。

定义12(cos )22a m αα=,12(cos )22b n ββ=,记θαβ=-,则( ) A.1
122a a a ⋅= B.11222a b mn θ⋅= C.112222||44a b mn θ-≥ D.112222||44
a b mn θ+≥ 21、设数列{}n a 满足:1136,n n n a a a n ++==
,则( ) A.*3,(1)n n N a n ∀∈<+ B.*,2015n n N a ∀∈≠
C.*,n n N a ∃∈为完全平方数
D.*,n n N a ∃∈为完全立方数
22、在极坐标系中,下列方程表示的图形是椭圆的有( )
A.1cos sin ρθθ=+
B.12sin ρθ=+
C.12cos ρθ=-
D.112sin ρθ=+ 23、设函数2sin ()1x f x x x π=
-+,则( ) A.4()3
f x ≤ B.|()||5|f x x ≤ C.曲线()y f x =存在对称轴 D.曲线()y f x =存在对称中心
24、ABC ∆的三边长分别为,,a b c ,若ABC ∆为锐角三角形,则( )
A.sin cos A B >
B.tan cot A B >
C.222a b c +>
D.333a b c +>
25、设函数()f x 的定义域是(1,1)-,若(0)(0)1f f '==,则存在实数(0,1)δ∈,使得( )
A.()0,(,)f x x δδ>∈-
B.()f x 在(,)δδ-上单调递增
C.()1,(0,)f x x δ>∈
D.()1,(,0)f x x δ>∈-
26、在直角坐标系中,已知(1,0),(1,0)A B -。

若对于y 轴上的任意n 个不同点12,,...,n P P P ,总存在两个不同点,i j P P ,使得1|sin sin |3
i j APB AP B ∠-∠≤,则n 的最小值为( ) A.3 B.4 C.5 D.6
27、设非负实数,x y 满足21x y +=,x A )
A.最小值为45
B.最小值为25
C.最大值为1
D.最大值为
提示:最小值为
45,无最大值. 提示:令x t =,用判别式法即可. 28、对于50个黑球和49个白球的任意排列(从左到右排成一行),则( A )
A.存在一个黑球,它右侧的白球和黑球一样多
B.存在一个白球,它右侧的白球和黑球一样多
C.存在一个黑球,它右侧的白球比黑球少一个
D.存在一个白球,它右侧的白球比黑球少一个
29、从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( )
A.300个
B.450个
C.900个
D.1800个
30、设曲线L 的方程为42242(22)(2)0y x y x x +++-=,则( )
A.L 是轴对称图形
B.L 是中心对称图形
C.22{(,)|1}L x y x y ⊆+≤
D.11{(,)|}22
L x y y ⊆-≤≤。

相关文档
最新文档