《整式的乘法经典习题--大全※》

合集下载

(完整版)整式的乘法练习题

(完整版)整式的乘法练习题

(完整版)整式的乘法练习题整式的乘法练习题(⼀) 填空1. a 8=(-a 5) ___ . 2. a 15=( )5.. 4. (x+a)(x+a)= _____ .5.a 3·(-a)5·(-3a)2·(-7ab 3)= ___ ____ . 7.(2x)2· x 4=( )2.的体积是 ____ .18.若 10m =a , 10n =b ,那么 10m+n= ____ . 19.3(a-b)2[9(a-b)n+2](b-a)5=__ (a-b)n+9.20.已知 3x · (x n +5)=3x n+1-8,那么 x=___________________________________________ . 21.若 a 2n-1· a 2n+1=a 12,则 n= ____ .22.(8a 3)m÷[(4a 2)n·2a]= ___ . 23.若 a <0,n 为奇数,8.24a 2b 3=6a 2· _____ .9. [(a m )n ]p= ___ . 10.(-mn)2(-m 2n)3= ____ .11.多项式的积 (3x 4-2x 3+x 2-8x+7)(2x 3+5x 2+6x-3)中 x 3项的系数是 _____ .12.m 是 x 的六次多项式, n 是 x 的四次多项式,则 2m-n是 x 的 _________________________________________________ 次多项式.14.(3x 2)3-7x 3[x 3-x(4x 2+1)]=____ . 15. { [(-1)4]m }n= ______ . 16. -{-[-(-a 2)3]4}2= ____ .17.⼀长⽅体的⾼是 (a+2)厘⽶,底⾯积是 (a 2+a-6)厘⽶ 2,则它则(a n )5____ 0.24.(x-x 2-1)(x 2-x+1)n(x-x 2-1)2n= __ .25.(4+2x-3y 2)·(5x+y 2-4xy)·(xy-3x 2+2y 4)的最⾼次项是 26.已知有理数 x ,y ,z 满⾜|x-z-2|+(3x-6y-7) 2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n 为⾃然数)等于.(⼆) 选择27.下列计算最后⼀步的依据是3. 3m 2· 2m 3= _____ 6.(-a 2b)3·(-ab 2)=5a2x4·(-4a3x)=[5×(-4)] ·a2·a3·x4·x (乘法交换律) =-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.A .乘法意义;B.乘⽅定义;C.同底数幂相乘法则;D.幂的乘⽅法则.28.下列计算正确的是[ ]A .9a3· 2a2=18a5;B .2x5· 3x4=5x9;C .3x3· 4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y 3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]B.(m-2)(m+3)=m 2+m-6 ;D.(x-3)(x-6)=x 2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是[ ] A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y) 2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y) m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A .(a3)n+1=a3n+1;B .(-a2)3a=a12;C .a8m· a8m=2a16m;D.(-m)(-m) 4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0 38.如果b2m0;B.b<0;C.0C .(-2a n)2·(3a2)3=-54a2n+6;A .(x+1)(x+4)=x2+5x+4 ;C.(y+4)(y-5)=y 2+9y-D .(3x n+1-2x n )·5x=15x n+2-10x n+1.B .(-x)(2x+x 2-1)=-x 3-2x 2+1;C .(-3x 2y)(-2xy+3yz-1)=6x 3y 2-9x 2y 2z 2-3x 2y47.把下列各题的计算结果写成 10的幂的形式,正确的是 [ ]C .1002n× 1000=104n+3; D .1005×10=10005=1015.44.下列计算正确的是 [ ]48.t 2-(t+1)(t-5) 的计算结果正确的是 [ ] A .-4t-5 ; B . 4t+5; C .t 2-4t+5; D .t 2+4t-5.49.使(x 2+px+8)(x 2-3x+q)的积中不含 x 2和 x 3的 p ,q 的值分别(1)b(x-y)=bx-by ,(4)2164=(64)3,正确;(2)b(xy)=bxby ,(5)x 2n-1y 2n-1=xy2n-2. (3)b x-y=b x-b y, A .只有 (1)与(2)B .只有 (1)与(3)正确;C .只有 (1)与(4)正确;D .只有 (2) 与(3)正确. 42.(-6x n y) 2· 3x n-1y 的计算结果是 [ ] A.18x 3n-1y 2;B .-36x 2n-1y 3;C .-108x 3n-1y ;D . 108x 3n-1y 3. 45.下列计算正确的是 [ ] A . (a+b)2=a 2+b 2; B .a m· a n=a mn; D .(a-b)3(b-a)2=(a-b)5.[ ]C . (-a 2)3=(-a 3)2;41.下列计算中, [ ]A .100×103=106;B .1000×10100=10;(6xy 2-4x 2y)3xy=18xy 2-12x 2yA. p=0, q=0;B. p=-3, q=-9;C. p=3, q=1;D. p=-3, q=1.50.设xy<0,要使X n y m? X n y m>0,那么[]A . m, n都应是偶数;B. m, n都应是奇数;C.不论m, n为奇数或偶数都可以;D.不论m, n为奇数或偶数都不⾏.51.若n为正整数,且x2n=7,贝J (3x3n)2-4(x2)2n的值为[]A. 833;B. 2891;C. 3283;D. 1225.(三)计算52.(6× 108)(7 ×109)(4× 104). 53. (-5x n+1 y) ?(-2x). 54.(-3ab) ?(-a2c) ?6atf. 55.(-4a) ?(2a2+3a-1).56. (3m-n)(m-2n).57. (x+2y)(5a+3b ).58. (-ab)3 ? (-a 2b) ? (-a 2b 4c)2. 59. [(-a)]3 ?a 3m+[(-a)5m ]2.60. x n+1(x n -x n ^1+x).6162. 5X (X 2+2X +1)-(2X +3)(X -5). ÷4)..(x+y)(x 2-xy+y 2).63. (2x-3)(X64(-2at^)365. -8(a-b)366. 2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3) xy)+(-3xy 2)2.(3a 2b-2ab-4t?) 67. (-4xy 3) ?(-68.计算 [(-a)2m ] 3· a 3m +[(-a) 3m ]3(m 为⾃然数 ).1.(a+b)(a - b)= __ ,公式的条件是 __ ,结论是 ___ .1 2.(x - 1)(x+1)= ____ ,(2a+b)(2a - b)= _____ ,( 1x3 y)( 13x+y)= _ .3.(x+4)( - x+4)= ____ ,(x+3y)( __ )=9y 2- x 2,( - m69.先化简 (x-2)(x-3)+2(x+6)(x-5)-3(x 2-7x+13),再求其值,其n)( ___ )=m 2-n 2中 x=4.98×102=( ___ )( ____ )=( )2- ( )2= ____ . 5.-(2x 2+3y)(3y -2x 2)= __ . 6.(a -b)(a+b)(a 2+b 2)= __ .7.( ____ - 4b)( _ +4b)=9a 2 - 16b 2,(____ - 2x)( ___ 2x)=4x 2-25y 28.(xy -z)(z+xy)= _ ,( 5x - 0.7y)( 5x+0.7y)= .66 119.(1 x+y 2)( __ )=y 4- 1x 270.已知 ab 2=-6,求 -ab(a 2b 5-ab 3-b)的值4 1610.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1《乘法公式》练习题(⼀) (x -1)(x 3+x+1)=x 4-1、填空题15.a4+(1-a)(1+a)(1+a2)的计算结果是( )(x-1)(x n+x n 1+?+x+1)= .⼆、选择题11.下列多项式乘法,能⽤平⽅差公式进⾏计算的是()A.(x+y)(-x-y)B.(2x+3y)(2x -3z)C.(-a-b)(a -b)D.(m-n)(n-m)12.下列计算正确的是()A.(2x+3)(2x-3)=2x2-9B.(x+4)(x-4)=x2-4C.(5+x)(x-6)=x2-30D.(-1+4b)(-1-4b)=1-16b213.下列多项式乘法,不能⽤平⽅差公式计算的是()A.(-a-b)(-b+a)B.(xy+z)(xy-z)C.(-2a-b)(2a+b)D.(0.5x-y)(-y-0.5x)14.(4x2-5y)需乘以下列哪个式⼦,才能使⽤平⽅差公式进⾏计算()A. -4x2-5yB.-4x2+5yC.(4x2-5y)2A.-1B.1C.2a4- 1D.1-2a416.下列各式运算结果是x2-25y2的是( )A.(x+5y)(-x+5y)B.(-x-5y)( -x+5y)D.(x-5y)(5y-x)三、解答题17.1.03× 0.97 18.(-2x2+5)( -2x2-5)(a+6)(a-6) 20.(2x-3y)(3y+2x)-(4y-3x)(3x+4y)y)( 91x2+y2)22.(x+y)(x-y)-x(x+y) 23.3(2x+1)(2x-1)-2(3x+2)(2-3x) 24.9982-4 25.2003× 2001-20022 《乘法公式》练习题(⼆) 1.(a b)2 a2 b2--( )2.(x y) 2 x2 2xy y2---( )根据前⾯各式的规律可得C.(x-y)(x+25y)19.a(a -5)-1 21.( 311x-3.(a b)2 a2 2ab b 2- -() 4.(2x 3y)2 2x2 12xy 9y2()D.(4x+5y)25. (2x 3 y)( 2x 3y) 4 x 2 9 y 2( ) 6(2x 3y)(3x y) ______________ ; A ) ( a b)(a b) (B ) (x 2)(2 x)11C ) (3x y)(y 3x) (D ) (x 2)(x 1)337. (2 5y)28. (2 x3y)(3 x 2y) _____________ _9. (4x 6 y)(2x 3y) ______________1 10(1x 2y)22 11.(x 3)(x 3)( x 29) _________12.(2x1)(2x1) 1 ________________ 13。

整式的乘法100题专项训练(精心整理)

整式的乘法100题专项训练(精心整理)

..整式的乘法 100 题专项训练同底数幂的乘法:底数不变,指(次)数相加。

公式:a m· a n =a m+n 1、填空:(1)x3x5; a a2 a3;x n x 2;(2)( a2) ( a)3; b2 b3 b x 2= x 6;(3)(x)2 x3;10410; 33233;(4)a a 4a 3=;2 2 3 2 5=;(5) a 2 a 5a3=;2a3=___________;(1)aa2( a) ( a)6;3452;(6)m m m m =(7)(b a) 3 (b a) 4; x n x2;1)216(8)(;10 610 4332、简单计算:(1)a4a6(2)b b5(3)m m2m3( 4)c c3c5c93. 计算:(1)b 3b2()( a)a32(3)( y)2( y)3(4)( a)3( a)4(5)3432(6)( 5)7( 5)6(7)( q)2n( q)3(8)( m)4( m)2(9) 23(10)( 2)4( 2)5 4.下面的计算对不对?如果不对,应怎样改正?(1)233265;(2)a3a3a6;(3)y n y n 2 y 2n;( 4)m m2m2;(5)(a)22)a4;()a3a4a12 ;( a6二、幂的乘方:幂的乘方,底数不变,指数相乘.即: ( a m )n =a mn 1、填空:(1)( 22) 4=___________ (2)( 33)2=___________(3)(22) 2=___________( 4)(22)2=___________753( 5)(m 7)= ___________( 6)m (m 3) = ___________2、计算 :(1)(22)2;(2)(y 2) 5(3)(x 4)3(4)3( b m)3 2 2 3 54 2 7(4)(y ) ? (y )(5)a ( a) ( a)(6)2 ( x 3) x x三、积的乘方:等于把积的每一个因式分别乘方, 再把所得的幂相乘. (ab) n =a n b n1、填空:( 1)( 2x )2=___________( ab )3 =_________(ac) 4. =__________2a 2) 22(2)(- 2x ) 3=___________(=_________ (a4) =_________32( 3)( 2a 2b ) =_______ ( 2a 2b 4) =_________(4)( xy 3) 2=_________( 5)(ab)n__________n21 a 2 b 3)3(6) (abc)__________ (n 为正整数 ) ( 7)(__________3332(8)( ab) a b__________ ( 9)( 3x 2y)__________3(9)(a nb 3n )3(10)( x 2y 3)________ (a2n 3=___________b )________( x 3y 2 2 ___________)2、计算:(1)( 3a )2 (2)(- 3a ) 3 (3)( ab 2)2 ( 4)(- 2× 103) 3(5)( 103) 3 (6)( a 3) 7( 7)( x 2) 4; (8)( a 2)? 3 ? a 53、选择题:(1)下列计算中,错误的是()A 2 3 2 4 6B2 2244(a b )a b(3x y ) 9x yC33D3 2 26 4( xy)x y(m nm n )(2)下面的计算正确的是()A235B235m m mm m m3 252mnmn(m n)2Cm nD22四、整式的乘法1、单项式乘单项式 1、 ( 3x 2 ) · 2x 32、3a 3 · 4a 43、 4m 5 ·3m 24、(5a 2b)3 ( 3a)25、 x 2 · x · x 56、 ( 3x) · 2xy7、 4a 2 · 3a 28、 ( 5a 2 b) · ( 3a)9、 3x · 3x510、 4b 3c · 1abc 11、 2x 3 · ( 3x) 212、 4 y · ( 2xy 2 )213、 ( 3x 2y) · ( 1xy 2 )14、 (2 104)· ( 4 105)15 、 7 x 4 · 2 x 3316、 3a 4 b 3 · ( 4a 2b 3c 2 )17、 19、 x 2 · y 2 ( xy 3 )2. .18、 (5a 2b)3 · ( ab 2c)319、 ( 2a)3 · ( 3a) 220 、5m · ( 10m 4 )221、 3m nm n22、(3x2323、 4ab21 2 c)x· 4xy) · ( 4x)· ( 8 a24、 ( 5ax) ·222 4 2252 3(3 x y)、( m a b ) ·( mab ) 26、4x y ·2x ( y) z2527、 ( 3a 3bc)3 · ( 2ab 2 ) 2 28 、(4 ab) · ( 3ab)2 29、 (2 x)3· ( 5xy 2 )330、 ( 2x 3 y 4 )3 ( x 2 yc)231 、 4xy 2· ( 3x 2 yz 3 )32、 ( 2ab 3c)2 · (2 x) 2833、( 3a 2b 3 ) 2 ·( 2ab 3 c)334、( 3a 3b 2)( 2 1a 3b 3c)35、( 4x 2 y) ·( x 2 y 2) ·( 1y 3 )7 3 236、 4xy 2 · ( 5x 3 y 2 ) · ( 2x 2 y)37、 ( 2x 2 y) 2 · (1 xyz) · 3 x 3 z 32 538、 ( 1 xyz) ·2x 2 y 2· (3yz 3 )39、 6m 2 n · ( x y)3 · ( y x) 22 3 540、 ( 1 ab 2c)2 · ( 1 a bc 2 )3· ( 1 a 3 )41、、 2xy · ( 1 x 2 y 2 z) · ( 3x 3 y 3)2 3 2242、 ( 1 ab 3 )3 · ( 1 ab) · ( 8a 2b 2 ) 243、 6a 2b · ( x y)3 · 1 ab 2 · ( y x)22 432221344、 ( 4x y) · ( x y ) · y二、单项式乘多项式: (利用乘法分配率,转变为单项式乘单项式,然后把结果相加减) 1、 2m(3 x 4 y)2 、 1 ab(ab1) 3 、 x(x 2x 1)4 、 2a(3a 22b 1)2 25、 3x( x 2 2x 1) 6 、 4x(3xy) 7 、 ab (a b)8、 6x(2 x 1)9、 x(x 1)10、 3a(5a 2b)11 、 3x(2 x 5)12、 2x 2 ( x1 )213、 3a 2 (a 3b 2 2a) 14 、 (x3y)( 6 x) 15、 x( x 2 y 2 xy) 16 、 (4 a b 2 )( 2b)17、 ( 3x 1)( 2x 2)18 、 ( 2a) · ( 1a 31)19 、 ( 3x 2 )(2 x 3 x 2 1)4 220、(2ab 22ab) ·1ab 21、 4m( 3m2 n 5mn2 )22 、( 3ab )(2a2b ab 2)3223、5ab·(2 a b 0.2)24 、(2 a22a4) · ( 9a) 25、 3x(2 x25x 1) 3926、2x( x2x 1)27、2x·(1x21)28、 3x(1x22)23329、4a(2 a23a 1)30、(3x2 )( x22x 1)31、xy( x2y51) 32、2x2y(13xy y)33 、3xy(3 x2y24xy2 )34、 3ab( a2 b ab2ab)235、ab2(2a23ab 2a)36 、1a2b ·(6 a23ab 9b2 ) 37、 (2 x 4 x38)(1 x2) 3238、2x3(3 x25x 6) 39、 (3a33b2c6ac2 ) ·1ab43 40、x( x1) 2x( x 1) 3x(2 x5)..41、a(b c) b(c a) c(a b)42 、(3x21y2y2 )(1xy)3 23243、(1x2 y 2xy y2 ) · ( 4xy)43 、(5a2b10a3b21)(1a b)233512244、、(x y 2xy y )( 4xy)三、多项式乘多项式:(转化为单项式乘多项式, 然后在转化为单项式乘单项式)1、(3x1)(x 2)2、( x8 y)( x y)3、(x1)(x 5)4、(2 x1)(x3)5、(m2n)(m 3n)6、 (a 3b)(a 3b)7、 (2 x21)(x 4)8 、(x23)(2 x5) 9、( x2)( x 3)10、( x4)( x 1)11、( y4)( y 2)12、( y5)( y3)13、(x p)( x q)14 、( x 6)( x 3)15 、(x 1)( x1) 16、 (3 x 2)( x 2) 2317、(4 y1)( y 5)18、( x2)( x24)19、(x4)( x 8)20、( x4)( x9)21、( x2)( x 18)22、( x3)( x p)23、( x6)( x p)24、( x7)( x5)25、( x 1)(x5)26 、1127、28 、3229、(4 x25xy)(2 x y)30、( y3)(3 y 4)31、(x3)( x 2) 32、(2 a b)(a 2b)33、(2 x3)( x 3)34、( x3)( x a)35、( x1)(x 3)36、(a2)(b2)37、(3 x 2 y)(2 x 3 y) 38、( x 6)( x 1)39、( x3y)(3 x 4 y) 40、( x 2)( x1)41、(2 x3y)(3 x 2 y)42 、(1x x2 )( x 1)43、(a b)(a2ab b2 )44、(3x22x 1)(2 x23x 1) 45、 (a b)( a2ab b2 ) 46、 ( x2xy y2 )( x y)47、(x a)( x2ax a 2 )48、(x y)( x2xy y2 ) 49、 (3x43x21)( x4x22)50、(x y)( x2xy y2 )四、平方差公式和完全平方公式1、( x1)( x 1)2、 (2 x1)(2 x1) 3 、( x5y)( x5y) 4 、(3 x2)(3 x2)5、(b2a)(2 a b) 6 、(x 2 y)( x 2 y)7、(a b)( b a) 8、( a b)(a b)9、(3a2b)(3a2b)10 、52)(a 5b2)11、(2 a5)(2 a5) 12、(1m)( 1m)(a b13、(1a b)(1a b) 14、 ( ab 2)(2ab) 15、10298 16、 97 103 2217、 4753 18 、 (a b)(a b)( a 2 b 2 ) 19 、 (3a 2b)(3a 2b)20、 ( 7m 11n)(11n 7m) 21 、 (2 y x)( x 2 y)22、 (4 a)( 4 a)23、 (2a 5)(2 a 5) 24 、 (3a b)(3 a b)25、 (2 x y)(2 x y)完全平方: 1、 ( p 1)2 2、 ( p1)2 3 、(a b)2 4、 (ab)2 5、( m2)26、 (m 2)27 、 (4 mn) 2 8 、 ( y1 )2 9 、 ( x 3y)2 10 、 ( a 2b)2211、 (a1 )2 12 、 (5 x 2 y)213 、 (2 ab)214 、 ( 1x y) 2 15 、 (2 a 3b)2a216、 (3 x 2 y)217 、 ( 2m n)218 、 (2a2c)219、(23a)220 、 (1x 3 y)2321、(3a 2b)2 22 、( a 2 b 2 )2 23 、( 2x 2 3 y) 224、(1 xy) 2 25 、(1 x 2 y 2 )2..五、同底数幂的除法:底数不变,指数相减。

《整式的乘法经典习题--大全※》

《整式的乘法经典习题--大全※》

二、填空题:222 2 5 3单项式与单项式相乘、选择题1. 计算x 2 y 2( xy 3)2的结果是() 14. 计算 2xy ( -x 2y 2z) ( 3x 3y 3)的结果是()2A. 3x 6y 6zB. 3x 6y 6zC. 3x 5y 5zD. 3x 5y 5z5. 计算(a 2b)3 2a 2b ( 3a 2b)2 的结果为() A.17a 6b 3 B.18a 6b 3 C.17a 6b 3 D.18a 6b 36. x 的m 次方的5倍与x 2的7倍的积为() A. 12x 2m B. 35x 2m C. 35x m 2D.m 212x7. ( 2x 3y 4)3 ( x 2 yc)2 等于()A.8x 13y 14c 2B.C 1314 8x y c 2C.8x 36 24 2 y c D.c 3624 28x y c3 m 1m n8. x y x2n 2y99x y , 则4m3n ()A. 8B. 9C. 10D.无法确定9. 计算(3x 2) ( 2x 3m y n )( y m )的结果是() 34m mn 112m 2 m3m 2 m n115m n.3x y B.x y C. 2x y D. (x y)3310. 下列计算错误的是() A. (a 2)3 ( a 3)2 a 12 B. ( ab 2)2 ( a 2b 3) a 4b 7C. (2xy n ) ( 3x n y)218x 2n 1 y n 2 D. ( xy 2)( yz 2)( zx 2)x 3 y 3z 3A A. x 5y 10B.x 4y 8C. x 5y 8D. x 612y2. A.3. 1 2 3(x y)23 6 3x y 16(2.5 103)3 12 2(-x 2y)2 ( 4x 2y)计算结果为B. 0C.x 6y 3D.5x 6y 312A. 6 1013B.0.8 102)2计算结果是 6 1013 C. 2 1013 D.14103. ( 3x 3y) ( x 4) ( y 3) _________ -4. 6a ?b (-abc)225.( 3a 2b 3)2 4( a 3b 2)5 ____________________ .6. 15x n y 2x n 1 y n 11 37. 2m ( 2mn) ( — mn)3 _________________ .28. (1.2 103)(2.5 10-1)(4 109) _____________________ .三、解答题1. 计算下列各题 (1) 4xy 2 ( 3x 2yz 3)8(4) ( 1xyz) |x 2y 2 ( | yz 3)2 3 5(7) ( 5xy) 3x 2 y 12x 3 ( - y 2)42、已知:x 4, y1,求代数式 1 xy 2 14(xy)2 1 x 5 的值.8743、已知: 39m 27 m 36,求 m单项式与多项式相乘1⑸ 5x (3ax) ( 2.25axy) (1^y2)(6) |x 2y ( 50.5xy)23 3(2x) xy(2) (3a 3b 2)( 2-a 3b 3c)7 3(3) 3.2mn 2( 0.125m 2n 3)3 2 (8) 5a b ( 3b)23 2(6ab) ( ab) ab ( 4a)一、选择题1化简x(2x 1) x 2(2 x)的结果是( )、填空题(3x 2)(x 2 2x 3) 3x(x 3 2x 2 5)7x(2x 1) 3x(4x 1) 2x(x 3)17. _________________________________________ ( 2a 2b)2(ab 2 a 2b a 3) 。

整式的乘法练习题

整式的乘法练习题

整式的乘法练习题(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=__ ____.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.假设10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.3x·(x n+5)=3x n+1-8,那么x=______.21.假设a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.假设a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择27.以下计算最后一步的依据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.以下计算正确的选项是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.以下计算错误的选项是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是 [ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.以下计算中错误的选项是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.以下计算正确的选项是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.假设0<y<1,那么代数式y(1-y)(1+y)的值肯定是 [ ] A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-3)2·(-4m)3的计算结果是 [ ] A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A .b>0;B.b<0;C.0<b<1;D.b≠1.40.以下运算中错误的选项是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.以下计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.以下计算正确的选项是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.以下计算正确的选项是[ ]A.(a+b)2=a2+b2;B.a m·a n=a mn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[ ]47.把以下各题的计算结果写成10的幂的形式,正确的选项是[ ]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的选项是[ ]A.-4t-5 ;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[ ]A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[ ]A.m,n都应是偶数;B.m,n都应是奇数;C.不管m,n为奇数或偶数都可以;D.不管m,n为奇数或偶数都不行.51.假设n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ] A.833;B.2891;C.3283;D.1225.(三)计算52.(6×108)(7×109)(4×104).53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).56.(3m-n)(m-2n).57.(x+2y)(5a+3b).58.(-ab)3·(-a2b)·(-a2b4c)2.59.[(-a)2m]3·a3m+[(-a)5m]2.60.x n+1(x n-x n-1+x).61.(x+y)(x2-xy+y2).62.5x(x2+2x+1)-(2x+3)(x-5).63.(2x-3)(x +4).64.(-2ab2)3·(3a2b-2ab-4b2) 65.-8(a-b)3·3(b-a)66.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).67.(-4xy3)·(-xy)+(-3xy2)2.68.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).69.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=70.ab 2=-6,求-ab(a 2b 5-ab 3-b)的值 《乘法公式》练习题〔一〕 一、填空题1.(a +b )(a -b )=_____,公式的条件是_____,结论是_____.2.(x -1)(x +1)=_____,(2a +b )(2a -b )=_____,(31x -y )(31x +y )=_____.3.(x +4)(-x +4)=_____,(x +3y )(_____)=9y 2-x 2,(-m -n )(_____)=m 2-n 2×102=(_____)(_____)=( )2-( )2=_____. 5.-(2x 2+3y )(3y -2x 2)=_____. 6.(a -b )(a +b )(a 2+b 2)=_____.7.(_____-4b )(_____+4b )=9a 2-16b 2,(_____-2x )(_____-2x )=4x 2-25y 28.(xy -z )(z +xy )=_____,(65xy )(65xy )=_____.9.(41x +y 2)(_____)=y 4-161x 2 10.观察以下各式: (x -1)(x +1)=x 2-1 (x -1)(x 2+x +1)=x 3-1 (x -1)(x 3+x 2+x +1)=x 4-1 根据前面各式的规律可得 (x -1)(x n +x n -1+…+x +1)=_____. 二、选择题11.以下多项式乘法,能用平方差公式进行计算的是( ) A.(x +y )(-x -y ) B.(2x +3y )(2x -3z ) C.(-a -b )(a -b )D.(m -n )(n -m )12.以下计算正确的选项是( ) A.(2x +3)(2x -3)=2x 2-9 B.(x +4)(x -4)=x 2-4 C.(5+x )(x -6)=x 2-30D.(-1+4b )(-1-4b )=1-16b 213.以下多项式乘法,不能用平方差公式计算的是( )A.(-a -b )(-b +a )B.(xy +z )(xy -z )C.(-2a -b )(2a +b )x -y )(-yx )14.(4x 2-5y )需乘以以下哪个式子,才能使用平方差公式进行计算( ) A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y )2D.(4x +5y )215.a 4+(1-a )(1+a )(1+a 2)的计算结果是( ) a 4-1D.1-2a 4x 2-25y 2的是( )A.(x +5y )(-x +5y )B.(-x -5y )(-x +5y )C.(x -y )(x +25y )D.(x -5y )(5y -x ) 三、解答题×0.97 18.(-2x 2+5)(-2x 2-5) 19.a (a -5)-(a +6)(a -6)20.(2x -3y )(3y +2x )-(4y -3x )(3x +4y ) 21.(31x +y )(31x -y )(91x 2+y 2)22.(x +y )(x -y )-x (x +y ) 23.3(2x +1)(2x -1)-2(3x +2)(2-3x )2×2001-20022《乘法公式》练习题〔二〕1.222)(b a b a +=+--〔 〕 2.2222)(y xy x y x +-=----〔 〕 3.2222)(b ab a b a ++=----〔 〕 4.2229122)32(y xy x y x +-=-〔 〕5.2294)32)(32(y x y x y x -=-+〔 〕6______________)3)(32(=-+y x y x ; 7._______________)52(2=+y x ; 8.______________)23)(32(=--y x y x ; 9.______________)32)(64(=-+y x y x ;10________________)221(2=-y x 11.____________)9)(3)(3(2=++-x x x ;12.___________1)12)(12(=+-+x x ; 13。

《整式的乘法》典型例题

《整式的乘法》典型例题

典型例题
例1 计算:
(1)
(2)
(3)
解:(1)原式
(2)原式
(3)原式
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
例2 计算题:
(1);(2).
分析:(1)中单项式为,多项式里含有,,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.
解:(1)原式
(2)
说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
例3 化简
(1);
(2).
分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号和,再去中括号.
解:(1)原式
(2)原式
例4 求值:,其中.
解:原式
当时,
说明:求值问题,应先化简,再代入求值.
例5 设,求的值.
分析:由已知条件,显然,再将所求代数式化为的形式,整体代入求解.
解:
说明:整体换元的数学方法,关键是识别转化整体换元的形式.
如有侵权请联系告知删除,感谢你们的配合!。

整式的乘法典型题

整式的乘法典型题

整式的乘法典型题1.若1216x +=,则x=________2.若a m =a 3·a 4,则m=______;若x 4·x a =x 16,则a=_______; 若x ·x 2·x 3·x 4·x 5=x y ,则y=_____;若a x ·(-a )2=a 5,则x=______3.若a m =2,a n =5,则m n a+=________ ,a 2m+3n =________ 4.若102·10m =102003,则m= 5.已知a m =2,b n =32,则n m 1032+=________6.代数式()27b a +-的最大值是7.计算23()()()a b a b a b -⋅-⋅-= ;(2x-y )3·(2x-y )·(2x-y )4= ; 2323()()()()x y x y y x y x -⋅-⋅-⋅-= ;23()()()a b c b c a c a b --⋅+-⋅-+=8.①已知321(0,1)x x a a a a ++=≠≠,则x 的值是 ;②已知2m =4,2n =16,则2m +n 的值是 ;③若15(3)59n n x x x -⋅+=-,则 x 的值是9.把结果写成一个底数幂的形式:(1) 43981=⨯⨯ ;(2) 66251255=⨯⨯10.①32011的个位数字是 ;②已知a=-3,b=25,则a2013+b 2013的末位数字是 11.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是12.①计算()()2000199919992 1.513⎛⎫⨯⨯- ⎪⎝⎭的结果是 ; ②333)31()32()9(⨯-⨯-= ; ③19981999)532()135(⋅-= 13.若3x =27,2y =16,则x+y=14.已知2x+5y=3,则4x •32y 的值为_________15.已知25m •2•10n =57•24,则m 、n 的值分别为_________16. 已知10a =3,10β=5,10γ=7,试把105写成底数是10的幂的形式 _________17.若52x+1=125,则(x -2)2005+x 的值是________ 18.9m =4,27n =2,则32m-3n-2= _________19.如果x=3时,代数式13++qx px 的值为2008,则当x=-3时,代数式13++qx px 的值是20.1022223x x y π--+-是_____次_____项式,常数项是_____,最高次项是_____21.①若9m+1-32m =72,则m= ;②若2n ×24-2n+1=112,则n= 22.计算:(0.125)1999·(-8)1999=_______; ()__________10211042335=⎪⎭⎫ ⎝⎛⨯-⨯⨯;-81994×(-0.125)1995=_______;20019911323235.0⎪⎭⎫ ⎝⎛⨯-⋅⎪⎭⎫ ⎝⎛⨯=_______;(-0.125)3×29=_______;(-a 2)2·(-2a 3)2=_______; (-a 3b 6)2-(-a 2b 4)3=_______;23.有理数a, b,满足0)822(22=-++--b a b a , 求)2()()31(3ab b ab ⋅-⋅-+1的值24.若有理数a,b,c 满足(a+2c-2)2+|4b-3c-4|+|2a -4b-1|=0,试求a 3n+1b 3n+2- c 4n+2。

(完整版)整式的乘法习题(含详细解析答案)

(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。

整式的乘法经典习题--大全 (1)

整式的乘法经典习题--大全 (1)

单项式与单项式相乘一、选择题1.计算2322)(xy y x -⋅的结果是( )A. 105y xB. 84y xC. 85y x -D.126y x 2.)()41()21(22232y x y x y x -⋅+-计算结果为( ) A. 36163y x - B. 0 C. 36y x - D. 36125y x - 3.2233)108.0()105.2(⨯-⨯⨯ 计算结果是( )A. 13106⨯B. 13106⨯-C. 13102⨯D. 14104.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( ) A. z y x 663 B. z y x 663- C. z y x 553 D. z y x 553-5.计算22232)3(2)(b a b a b a -⋅+-的结果为( )A. 3617b a -B. 3618b a -C. 3617b aD. 3618b a6.x 的m 次方的5倍与2x 的7倍的积为( )A. m x 212B. m x 235C. 235+m xD. 212+m x7.22343)()2(yc x y x -⋅-等于( )A. 214138c y x -B. 214138c y xC. 224368c y x -D. 224368c y x8.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定9. 计算))(32()3(32m n m y y x x -⋅-⋅-的结果是( ) A. mn m y x 43 B. m m y x 22311+- C. n m m y x ++-232 D. n m y x ++-5)(311 10.下列计算错误的是( )A.122332)()(a a a =-⋅B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=---二、填空题:3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)21(622=⋅-abc b a 5.._____________)(4)3(523232=-⋅-b a b a 6..______________21511=⋅⋅--n n n y x y x 7.._____________)21()2(23=-⋅-⋅mn mn m 8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯三、解答题1.计算下列各题(1))83(4322yz x xy -⋅ (2))312)(73(3323c b a b a -(3))125.0(2.3322n m mn - (4))53(32)21(322yz y x xyz -⋅⋅-(5))2.1()25.2()31(522y x axy ax x ⋅-⋅⋅ (6)3322)2()5.0(52xy x xy y x ⋅---⋅(7))47(123)5(232y x y x xy -⋅-⋅- (8)23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅2、已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.3、已知:693273=⋅m m ,求m .单项式与多项式相乘一、选择题1.化简2(21)(2)x x x x ---的结果是( )A .3x x --B .3x x -C .21x --D .31x -2.化简()()()a b c b c a c a b ---+-的结果是( )A .222ab bc ac ++B .22ab bc -C .2abD .2bc -3.如图14-2是L 形钢条截面,它的面积为( )A .ac+bcB .ac+(b-c)cC .(a-c)c+(b-c)cD .a+b+2c+(a-c)+(b-c)4.下列各式中计算错误的是( )A .3422(231)462x x x x x x -+-=+-B .232(1)b b b b b b -+=-+C .231(22)2x x x x --=--D .342232(31)2323x x x x x x -+=-+ 5.2211(6)(6)23ab a b ab ab --⋅-的结果为( ) A .2236a b B .3222536a b a b +C .2332223236a b a b a b -++D .232236a b a b -+ 二、填空题1.22(3)(21)x x x --+-= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单项式与单项式相乘一、选择题1.计算的结果是( )2322)(xy y x -⋅A. B. C. D.105y x 84y x 85y x -126y x 2.计算结果为( ))()41()21(22232y x y x y x -⋅+-A. B. 0 C. D. 36163y x -36y x -36125y x -3. 计算结果是( )2233)108.0()105.2(⨯-⨯⨯A. B. C. D. 13106⨯13106⨯-13102⨯14104.计算的结果是( ))3()21(23322y x z y x xy -⋅-⋅A. B. C. D. z y x 663z y x 663-z y x 553zy x 553-5.计算的结果为( )22232)3(2)(b a b a b a -⋅+-A. B. C. D. 3617b a -3618b a -3617b a 3618b a 6.x 的m 次方的5倍与的7倍的积为( )2x A. B. C. D. m x 212m x 235235+m x 212+m x 7.等于( )22343)()2(yc x y x -⋅-A. B. C. D. 214138c y x -214138c y x 224368c y x -224368c y x 8.,则( )992213y x y x y x n n m m =⋅⋅++-=-n m 34A. 8 B. 9 C. 10 D.无法确定9. 计算的结果是( )))(32()3(32m n m y y x x -⋅-⋅-A. B. C. D. mn m y x 43m m y x 22311+-n m m y x ++-232nm y x ++-5)(31110.下列计算错误的是( )A. B.122332)()(a a a =-⋅743222)()(b a b a ab =-⋅-C. D.212218)3()2(++=-⋅n n n n y x y x xy 333222))()((z y x zx yz xy -=---二、填空题:1. 2..___________))((22=x a ax 3522)_)((_________y x y x -=3. 4..__________)()()3(343=-⋅-⋅-y x y x ._____________)21(622=⋅-abc b a 5. 6.._____________)(4)3(523232=-⋅-b a b a .______________21511=⋅⋅--n n n y x y x 7.._____________)21()2(23=-⋅-⋅mn mn m 8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯三、解答题1.计算下列各题(1) (2))83(4322yz x xy -⋅)312)(73(3323c b a b a -(3) (4))125.0(2.3322n m mn -)53(32)21(322yz y x xyz -⋅⋅-(5) (6))2.1()25.2()31(522y x axy ax x ⋅-⋅⋅3322)2()5.0(52xy x xy y x ⋅---⋅(7) (8))47(123)5(232y x y x xy -⋅-⋅-23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅2、已知:,求代数式的值.81,4-==y x 52241)(1471x xy xy ⋅⋅3、已知:,求m .693273=⋅m m单项式与多项式相乘一、选择题1.化简的结果是( )2(21)(2)x x x x ---A .B .C .D .3x x --3x x -21x --31x -2.化简的结果是( )()()()a b c b c a c a b ---+-A .B .222ab bc ac ++22ab bc-C .D .2ab 2bc-3.如图14-2是L 形钢条截面,它的面积为( )A .ac+bcB .ac+(b-c)cC .(a-c)c+(b-c)cD .a+b+2c+(a-c)+(b-c)4.下列各式中计算错误的是( )A .B .3422(231)462x x x x x x -+-=+-232(1)b b b b b b-+=-+C .D .231(22)2x x x x --=--342232(31)2323x x x x x x -+=-+5.的结果为( )2211(6)(6)23ab a b ab ab --⋅-A .B .2236a b 3222536a b a b +C .D .2332223236a b a b a b -++232236a b a b -+二、填空题1. 。

22(3)(21)x x x --+-=2. 。

321(248)()2x x x ---⋅-=3. 。

222(1)3(1)a b ab ab ab -++-=4. 。

2232(3)(23)3(25)x x x x x x ---+--=5. 。

228(34)(3)m m m m m -+--=6. 。

7(21)3(41)2(3)1x x x x x x ----++=7. 。

22223(2)()a b ab a b a --+=8.当t =1时,代数式的值为 。

322[23(22)]t t t t t --+9.若,则代数式的值为 。

20x y +=3342()x xy x y y +++三、解答题1.计算下列各题(1) (2)111()()(2)326a ab a b a b -++---32222211(2)(2)()342x y xy x y xy x y z ⋅-+-⋅-⋅(3) (4)223121(3)()232x y y xy +-⋅-3212[2()]43ab a a b b --+5) (6)32325431()(2)4(75)2a ab ab a b ab -⋅--⋅--223263()(2)2(1)x x y x x y --⋅-+-=2.已知,求的值。

26ab =253()ab a b ab b --3.若,,求的值。

12x =1y =2222()()3()x x xy y y x xy y xy y x ++-+++-4.解方程:2(25)(2)6x x x x x --+=-m n h5.某地有一块梯形实验田,它的上底为m,下底为m,高是m。

(1)写出这块梯形的面积公式;(2)当m,m,m时,求它的面积。

n=7h=m=148多项式与多项式相乘一、选择题1.计算(2a-3b)(2a+3b)的正确结果是()A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y34.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定5.若0<x<1,那么代数式(1-x)(2+x)的值是()A.一定为正B.一定为负C.一定为非负数D.不能确定6.方程(x+4)(x-5)=x2-20的解是()A.x=0B.x=-4C.x=5D.x=407若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36B.15C.19D.21二、填空题1.(3x-1)(4x+5)=__________.2.(-4x-y)(-5x+2y)=__________.3.(x+3)(x+4)-(x-1)(x-2)=__________.4.(y-1)(y-2)(y-3)=__________.5、若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.6、若a2+a+1=2,则(5-a)(6+a)=__________.7、当k=__________时,多项式x-1与2-kx的乘积不含一次项.8、若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______.三、解答题1、计算下列各式(1)(2x +3y )(3x -2y ) (2)(x +2)(x +3)-(x +6)(x -1)(3)(3x 2+2x +1)(2x 2+3x -1) (4)(3x +2y )(2x +3y )-(x -3y )(3x +4y )(5)(a 2+2)(a 4-2a 2+4)+(a 2-2)(a 4+2a 2+4)2、求(a +b )2-(a -b )2-4ab 的值,其中a =2002,b =2001.3、2(2x -1)(2x +1)-5x (-x +3y )+4x (-4x 2-y ),其中x =-1,y =2.52四、探究创新乐园1、若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .2、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题(1)(x-4)(x-9) (2)(xy-8a)(xy+2a)。

相关文档
最新文档