薄膜材料

合集下载

13种薄膜材料概述

13种薄膜材料概述

13种薄膜材料介绍薄膜具有良好的韧性、防潮性和热封性能,应用非常广泛;PVDC薄膜适合包装食品,并能长时间保鲜;而水溶性PVA薄膜不必开封直接投入水中即可使用;PC薄膜无味、无毒,有类似玻璃纸的透明度和光泽,可在高温高压下蒸煮杀菌。

本文将主要介绍几种塑料薄膜的性能及其使用。

从商品生产到销售,再到使用,包装件要经过储存、装卸、运输、货架陈列以及在消费者手中存放,这个过程中即可能遇到严寒、酷暑、干燥、潮湿等恶劣的自然气候条件,也要遭受振动、冲击和挤压等各种机械破坏,甚至还有微生物和虫类的侵害。

要保证商品的质量,主要依靠包装材料来保护,所以包装材料非常重要。

塑料薄膜是最主要的软包装材料之一,塑料薄膜的种类繁多,特性各异,根据薄膜的不同特性,其用处也不同,下面介绍几种常见的塑料薄膜:聚乙烯薄膜PE薄膜使用大量最大的塑料包装薄膜,约占塑料薄膜总耗用量的40%以上。

PE薄膜虽然在外观、强度等方面并不十分理想,但它具有良好的韧性、防潮性和热封性能,且加工成型方便,价格便宜,所以应用非常广泛。

1、低密度聚乙烯薄膜。

LDPE薄膜主要采用挤出吹塑法和T模法生产的LDPE 薄膜是一种柔韧而透明的薄膜,无毒、无嗅,厚度一般在0.02~0.1㎜之间。

具有良好的耐水性、防潮性、耐旱性和化学稳定性。

大量用于食品、药品、日用品及金属制品的一般防潮包装和冷冻食品的包装。

但对于吸湿性大,防潮性要求较高的物品,则需要采用防潮性更好的薄膜和复合薄膜包装。

LDPE薄膜的透气率大、无保香性且耐油性差,不能用于易氧化食品、风味食品和含油食品的包装。

但透气性好使它能用于水果、蔬菜等新鲜物品的保鲜包装。

LDPE薄膜的热粘合性和低温热封性好,因此常用作复合薄膜的粘合层和热封层等,但由于其耐热性差,故不能用作蒸煮袋的热封层。

2、高密度聚乙烯薄膜。

HDPE薄膜是一种韧性的半透明薄膜,其外观为乳白色,表面光泽度较差。

HDPE薄膜的抗张强度、防潮性、耐热性、耐油性和化学稳定性均优于LDPE薄膜,也可以热封合,但透明性不如LDPE。

薄膜材料的特点

薄膜材料的特点

薄膜材料的特点
1. 薄膜材料那可真是薄如蝉翼啊!就像你看那保鲜膜,贴在食物上几乎都看不出来。

它超级薄的特点能让它在很多地方大显身手呢,比如保护那些容易受损的东西,就像给它们穿上了一层隐形的铠甲,难道不是很厉害吗?
2. 薄膜材料的柔韧性也很强呢!你想想看,那些可以随意弯曲的手机屏,多神奇呀。

它就像个能屈能伸的小能手,不管怎么折腾都不会轻易坏掉,这可不是一般材料能做到的,对吧!
3. 透明度高也是薄膜材料的一绝啊!简直就跟透明的玻璃没啥区别,但可比玻璃轻便多了。

就好比眼镜片,能让你清晰地看到外面的世界,却几乎感觉不到它的存在,是不是很牛?
4. 薄膜材料的耐用性也不容小觑呀!你看那些长期使用的太阳能板上的薄膜,经历风吹雨打依然发挥着作用。

这就像一个坚持不懈的战士,一直坚守岗位,多可靠啊!
5. 还有啊,薄膜材料的适应性超强的!不管是高温环境还是寒冷环境,它都能稳住。

就如同那顽强的小草,不管在哪里都能生根发芽,这种特性太让人惊叹了吧!
6. 哎呀,薄膜材料的成本还相对较低呢!这意味着可以大量使用它,让更多的人受益。

这不就像是一个经济实惠的好帮手,默默地为大家服务,多贴心呀!
7. 薄膜材料的应用范围那叫一个广泛啊!从电子设备到日常生活用品,哪里都有它的身影。

它简直就是无处不在的小天使,给我们的生活带来了无尽的便利和惊喜,真的太赞了!
我觉得薄膜材料真的是非常了不起的材料,有着各种各样让人惊艳的特点和广泛的用途,给我们的生活带来了很多积极的影响。

第一讲_薄膜材料简介

第一讲_薄膜材料简介

薄膜材料的应用领域
光学应用:薄膜材料可用于制造各种光学器件,如眼镜、相机镜头等。
电子应用:薄膜材料可用于制造电子器件,如薄膜晶体管、太阳能电池等。
生物医学应用:薄膜材料可用于制造医疗器械,如人工心脏瓣膜、人工关 节等。 包装应用:薄膜材料可用于食品、药品等的包装,具有阻隔性能好、轻便 美观等优点。
环保需求:随着 环保意识的提高, 对环保型薄膜材 料的需求越来越 大,这也将成为 未来市场发展的 重要趋势。
06
薄膜材料的安全和环保问题及应对 措施
薄膜材料的安全问题及应对措施
添加标题 添加标题
薄膜材料的安全问题:主要包括生产过程中的安全问题、使用过程中的安全问题以及废弃处理 时的安全问题。
应对措施:加强生产和使用环节的安全管理,提高员工的安全意识;采用环保型材料,减少对 环境的污染;加强废弃处理的管理,避免对环境造成二次污染。
薄膜材料的工艺流程
制备方法:物 理气相沉积、 化学气相沉积、 溶胶-凝胶法等
工艺流程:原 料选择、表面 处理、薄膜生 长、后处理等
影响因素:温 度、压力、气
氛、基底等
工艺特点:成 本低、可控制 性强、适用于 大规模生产等
不同制备方法的比较和选择
物理气相沉积法:利用物理过程将材料气化,再在一定条件下沉积成薄膜
的市场需求
汽车行业:汽 车轻量化趋势, 使得对高强度、 耐腐蚀的薄膜 材料需求增加
薄膜材料的发展趋势
环保化:随着环保意识的提高,对环保型薄膜材料的需求将不断增加。 高性能化:对薄膜材料的性能要求越来越高,需要不断研发高性能的薄膜材料。 智能化:随着物联网、智能家居等领域的快速发展,对智能型薄膜材料的需求也将不断增加。 多功能化:为了满足不同领域的需求,需要开发具有多种功能的薄膜材料。

薄膜材料有哪些

薄膜材料有哪些

薄膜材料有哪些
薄膜材料是通过一种或多种工艺将原材料制成厚度很薄的膜状材料,它具有重量轻、柔韧性好、透明度高等特点,广泛应用于电子产品、太阳能电池、医药包装、食品包装、建筑材料等领域。

下面将介绍几种常见的薄膜材料。

1. 聚乙烯薄膜:聚乙烯薄膜是一种由聚乙烯制成的薄膜材料,它具有防潮、防水、绝缘等特性,广泛应用于食品包装、日常用品包装等领域。

2. 聚酯薄膜:聚酯薄膜是一种由聚酯制成的薄膜材料,它具有耐高温、耐化学品腐蚀等特点,广泛应用于电子产品、太阳能电池、医药包装等领域。

3. 聚氯乙烯薄膜:聚氯乙烯薄膜是一种由聚氯乙烯制成的薄膜材料,它具有耐候性好、耐高温等特点,广泛应用于建筑材料、广告牌等领域。

4. 尼龙薄膜:尼龙薄膜是一种由尼龙制成的薄膜材料,它具有耐磨损、耐腐蚀等特点,广泛应用于电子产品、医药包装等领域。

5. 聚丙烯薄膜:聚丙烯薄膜是一种由聚丙烯制成的薄膜材料,它具有热封性好、透明度高等特点,广泛应用于食品包装、医药包装等领域。

6. 聚甲基丙烯酸甲酯薄膜:聚甲基丙烯酸甲酯薄膜是一种由聚
甲基丙烯酸甲酯制成的薄膜材料,它具有耐高温、耐化学品腐蚀等特点,广泛应用于电子产品、太阳能电池等领域。

7. 铝箔薄膜:铝箔薄膜是一种以铝箔为基材制成的薄膜材料,它具有良好的阻隔性能和导热性能,广泛应用于食品包装、冷藏设备等领域。

除了以上几种常见的薄膜材料外,还有其他各种材质的薄膜材料,如聚酰亚胺薄膜、聚氨酯薄膜、聚苯乙烯薄膜等,它们在不同的领域具有不同的特性和应用。

薄膜材料在现代社会中扮演着重要的角色,它们的不断发展和创新将为各行各业带来更多的应用机会和发展空间。

薄膜材料有哪些

薄膜材料有哪些

薄膜材料有哪些
薄膜材料是一种在工业和科技领域中应用广泛的材料,它具有轻薄、柔韧、透明、耐腐蚀等特点,在电子、光学、医疗、包装等领域有着重要的应用。

薄膜材料的种类繁多,下面将介绍一些常见的薄膜材料及其应用。

首先,聚酯薄膜是一种常见的薄膜材料,它具有优异的机械性能和化学稳定性,适用于印刷、包装、电子等领域。

在包装领域,聚酯薄膜常用于食品包装、药品包装等,其优异的透明性和耐热性能使得产品更加吸引人。

在电子领域,聚酯薄膜常用于制备电子元件、电池等,其优异的绝缘性能和耐高温性能使得电子产品更加稳定可靠。

其次,聚乙烯薄膜是另一种常见的薄膜材料,它具有良好的柔韧性和耐磨性,
适用于包装、农业覆盖、建筑防水等领域。

在包装领域,聚乙烯薄膜常用于塑料袋、保鲜膜等,其良好的密封性和抗拉伸性能使得产品更加实用。

在农业领域,聚乙烯薄膜常用于大棚覆盖、地膜覆盖等,其良好的透光性和抗老化性能使得作物更加茁壮生长。

此外,聚丙烯薄膜也是一种常见的薄膜材料,它具有良好的耐高温性和耐化学
腐蚀性,适用于医疗、包装、建筑等领域。

在医疗领域,聚丙烯薄膜常用于制备医用器械、医用包装等,其良好的无菌性和透明性能使得医疗产品更加安全可靠。

在包装领域,聚丙烯薄膜常用于制备各种包装袋、包装盒等,其良好的耐磨性和耐高温性能使得产品更加耐用。

总的来说,薄膜材料在现代社会中有着广泛的应用,不仅提高了产品的质量和
性能,也为人们的生活带来了便利。

随着科技的不断进步,薄膜材料的种类和应用领域还会不断扩展,相信在未来会有更多新型薄膜材料的涌现,为人类社会的发展做出更大的贡献。

薄膜材料及其制备技术

薄膜材料及其制备技术

薄膜材料及其制备技术薄膜材料是指厚度在纳米级别到微米级别的材料,具有特殊的物理、化学和力学性质。

薄膜材料广泛应用于电子、光电、光学、化学、生物医学等领域。

下面将介绍薄膜材料的分类以及常用的制备技术。

薄膜材料的分类:1.无机薄膜材料:如氧化物薄膜、金属薄膜、半导体薄膜等。

2.有机薄膜材料:如聚合物薄膜、膜面活性剂薄膜等。

3.复合薄膜材料:由两种或以上的材料组成的。

如聚合物和无机材料复合薄膜、金属和无机材料复合薄膜等。

薄膜材料的制备技术:1.物理气相沉积技术:包括物理气相沉积(PVD)和物理气相淀积(PVD)两种方法。

PVD主要包括物理气相沉积和磁控溅射,通过将固态金属或合金加热,使其升华或蒸发,然后在基底表面形成薄膜。

PVD常用于制备金属薄膜、金属氧化物薄膜等。

2.化学气相沉积技术:包括化学气相沉积(CVD)和原子层沉积(ALD)两种方法。

CVD通过化学反应在基底表面形成薄膜。

ALD则是通过一系列的单原子层回旋沉积来生长薄膜。

这些方法可以制备无机薄膜、有机薄膜和复合薄膜。

3.溶液法制备技术:包括溶胶-凝胶法、旋涂法、浸渍法等。

溶胶-凝胶法通过溶胶和凝胶阶段的转化制备薄膜。

旋涂法将溶液倒在旋转基底上,通过离心力将溶液均匀分布并形成薄膜。

浸渍法将基底浸泡在溶液中,溶液中的材料通过表面张力进入基底并形成薄膜。

这些方法主要用于制备有机薄膜和复合薄膜。

4.物理沉积法和化学反应法相结合的制备技术:如离子束沉积法、激光沉积法等。

这些方法通过物理沉积或化学反应在基底表面形成薄膜,具有较高的沉积速率和较好的薄膜质量。

综上所述,薄膜材料及其制备技术涉及多个领域,各种薄膜材料的制备方法各有特点,可以选择合适的技术来制备特定性质的薄膜材料。

随着对薄膜材料的深入研究和制备技术的不断进步,薄膜材料在各个应用领域的潜力将会得到更大的发掘。

薄膜材料的结构和性质

薄膜材料的结构和性质

薄膜材料的结构和性质薄膜材料是一种在现代工程和科技领域广泛应用的材料。

薄膜材料的结构和性质是决定其应用领域和性能的关键因素。

本文将介绍薄膜材料的结构和性质,并且阐述其在现代应用中的作用。

一、薄膜材料的结构薄膜材料是用溶液、气相、物理气相沉积或其他特殊方法制备的具有厚度在纳米到微米级之间的材料。

薄膜材料的结构可以分为单层膜和复合膜两种。

单层膜材料的结构简单,是由一个单一的材料组成的。

而复合膜材料由两种或两种以上的材料组成。

单层膜材料中,有机薄膜和无机薄膜是两种主要的类型。

有机薄膜可以是单一的高分子化合物,如聚合物和蛋白质,也可以是多种有机化合物的混合物。

然而,无机薄膜主要是由金属化合物和非金属化合物组成的,如氮化硅、氧化锌和氧化铝。

复合膜材料的结构复杂多样,包括两种材料的层状复合膜、不同材料的交替堆层膜和多元复合膜等。

其中,层状复合膜又可以分为层流复合、分子间作用层间复合以及互分布层间复合。

二、薄膜材料的性质薄膜材料的性质是其应用的关键,因为它们直接影响着材料的功能和性能。

薄膜材料的性质包括物理性质、化学性质和光学性质。

物理性质:薄膜材料的物理性质如密度、熔点、固化温度、硬度、弹性模量等往往与相应材料的体积相比有所变化。

例如,聚合物在形成薄膜后通常比原来的体积密度更低。

在这些性质方面,薄膜材料的行为往往是不同于体积材料的。

化学性质:薄膜材料的化学性质通常是由材料本身和加工方法共同决定的。

由于其表面积大、颗粒小,在化学反应和承受环境变化时,它们的响应也不同于体积材料。

面向化学特性的研究是用来检测这些特性并表征所使用薄膜材料的作用和性能的关键。

光学性质:薄膜材料的光学性质是其应用于光学晶体管等领域的原理依据。

光电材料必须具有较强的吸收、发射、调制和切换光学信号的能力。

因此,它们的光学性质应符合基本的光学特性,如透明度、折射率、色散、发射率和吸收率等。

三、薄膜材料在现代应用中的作用薄膜材料的结构和性质是使其在现代应用中具有广泛适用性的原因。

薄膜材料的定义

薄膜材料的定义

薄膜材料的定义薄膜材料是一种具有特殊结构和性质的材料,广泛应用于各个领域。

它的定义可以从多个角度来解释,包括材料的厚度、结构和功能等方面。

从厚度角度来看,薄膜材料是指在纳米尺度下的材料,其厚度通常在几纳米到几微米之间。

相比之下,传统的材料通常具有更大的尺寸。

由于薄膜材料的特殊厚度,它们具有许多独特的性质和应用。

从结构角度来看,薄膜材料通常由一层或多层原子、分子或离子组成。

这些层状结构使得薄膜材料具有特殊的物理、化学和光学性质。

例如,由于薄膜材料的结构紧密,它们通常具有较高的表面积和较低的体积,从而表现出更高的反应活性和更好的传输性能。

从功能角度来看,薄膜材料具有广泛的应用。

它们可以用作表面涂层,以增强材料的硬度、耐腐蚀性和耐磨性。

薄膜材料还可以用于光学器件,例如太阳能电池板和液晶显示屏,以改善光的传输和控制。

此外,薄膜材料还可以应用于电子器件、传感器、生物医学和环境保护等领域。

薄膜材料的制备方法多种多样,可以通过物理蒸发、化学气相沉积、溶液法和电化学方法等来实现。

每种制备方法都有其优点和局限性,需根据具体应用需求来选择合适的方法。

薄膜材料的研究和应用正在不断发展。

随着纳米技术的发展,人们对薄膜材料的理解和掌握将更加深入。

通过对薄膜材料的研究,可以进一步改善材料的性能,拓宽其应用领域。

预计薄膜材料将在未来的科技发展中发挥重要作用。

薄膜材料是一种具有特殊结构和性质的材料,其定义可以从厚度、结构和功能等方面来解释。

薄膜材料具有广泛的应用前景,并且其研究和应用正在不断发展。

通过对薄膜材料的深入研究,可以进一步拓展其应用领域,推动科技的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄膜材料:1、金属薄膜金属薄膜具有反射率高,截止带宽、中性好,偏振效应小的特点。

复折射率n-ik n折射率,k消光系数。

垂直入射时,R=((1-(n-ik))/(1+(n-ik))2=((1-n)2+k2)/((1+n)2+k2)倾斜入射时,下面介绍几种最常用的金属膜特性。

(1)Al唯一从紫外(0.2mm)到红外(30mm)具有很高反射率的材料,在大约波长0.85mm处反射率出现一极小值,其反射率为86%。

铝膜对基板的附着力比较强,机械强度和化学稳定性也比较好,广泛用作反射膜。

新淀积的Al膜暴露在大气中后,薄膜立即形成一层非晶的高透明Al2O3膜,短时间内氧化物迅速生长到15~20A0。

在紫外区一般采用MgF2膜作为保护膜,可见区采用SiO作为初始材料,蒸发得到以Si2O3为主的SiOx 膜作为Al保护膜。

制备条件:高纯镀的Al(99.99%);在高真空中快速蒸发(50~100nm/s);基板温度低于50℃。

(2)Ag银适用于可见区和红外区波段,具有很高的反射率。

可见区的反射率可以达到95%,红外区反射率99%,紫外区反射率很低。

Ag层需加保护膜,Al2O3与Ag有很高的附着力,SiOx具有极强的保护性能,所以常用结构为G|Al2O3-Ag-Al2O3-SiOx|A Al2O3膜层厚度为20~40nm,SiOx膜补足设计波长的二分之一。

制备条件:高真空、快速蒸发和低的基板温度。

(3)金Au在红外波段内具有几乎和银差不多的反射率,用作红外反射镜,金膜新蒸发时,薄层较软,大约一周后,金膜硬度趋于稳定,膜层牢固度也趋于稳定。

制备条件:高真空,蒸发速率30~50A/s,基板温度100~150℃。

需要在基板先打底,以Cr或Ti膜作底层。

常用Bi2O3,ThF4等作保护膜,以提高强度。

(4)铬CrCr膜在可见区具有很好的中性,膜层非常牢固,常用作中性衰减膜。

制备条件:真空度在1×10-2~2×10-4Pa,淀积速率95~300A/s。

基板温度增加,反射率提高,淀积在300℃基板上的Cr膜,其反射率比室温淀积的高20%。

2、介质和半导体薄膜对材料的基本要求:透明度、折射率、机械牢固度和化学稳定性以及抗高能辐射。

(1)透明度短波吸收或本征吸收:主要是由光子作用使电子由价带跃迁到导带引起的,只有当光子能量(E=ћν=ћc/λ=12.4keV/λ(A))大于禁带宽度(Eg),ћν>=Eg才有本征吸收。

透明区:光子能量不足促使价电子激发,除了少量杂质吸收和半导体中自由载流子吸收外,没有其他吸收机理。

长波吸收区:主要是晶格振动吸收,在半导体还有自由载流子吸收。

高折射率材料在可见区的消光系数比低折射率材料大1~2数量级,因为高折射率的λc1要靠向长波。

多晶薄膜的损耗最大,无定形为其次,单晶为最小。

(2)折射率薄膜的折射率主要依赖:材料种类:材料的折射率是由它的价电子在电场作用下的性质决定。

材料外层价电子很容易极化,其折射率一定很高;对化合物,电子键结合的化合物要比离子键的折射率高。

折射率大致次序递增:卤化物、氧化物、硫化物和半导体材料。

波长:折射率随波长变化为色散。

正常色散为随波长增加而减小。

正常色散位于透明区,反常色散位于吸收区。

晶体结构:(3)机械牢固度和化学稳定性对膜料的要求:膜料本身具有良好的机械强度和化学性能;薄膜与基板,薄膜与薄膜之间要有良好的附着力;薄膜应力要尽可能小,而且其性质要相反,以降低多层膜的积累应力。

(4)抗高能辐射考虑:激光波长、激光脉冲宽度、重复频率;薄膜材料本身的特性,除了吸收外,还与薄膜结构、机械强度、附着力、应力、热稳定性、熔点、热膨胀系数等。

冰晶石(Na3AlF6)在可见区折射率大约1.35,透明区为0.2~14mm。

特点:折射率低,应力小;易于吸潮,易损伤。

主要用于和ZnS组合制成胶合保护的干涉滤光片。

淀积膜层的成分依赖于蒸发温度或蒸发速率,NaF为1.29~1.31,AlF3为1.385,快蒸发的膜层折射率较高。

氟化镁MgF2在λ=550nm的折射率约为1.38,透明区为0.12~10mm。

是所有低折射率的卤化物中最牢固的,特别是当基板温度250℃左右时,非常坚硬耐久,在减反膜中广泛应用,膜层折射率接近体材料,聚集密度接近于1。

MgF2膜具有很高的张应力。

MgF2蒸发时易于喷溅:蒸发表面形成了一层熔点比MgF2更高的MgO,材料蒸发次数越多,这种现象越严重;材料本身晶粒太细,除气预熔的气体来不及释放,所以选用一定晶态结构的块状材料。

硫化锌ZnS用于可见和红外波段的最重要的一种膜料。

在可见区常与低折射率的氟化物组合,在红外区,与高折射率的半导体材料组合。

在可见区的折射率为2.3~2.6,在红外区为2.2,透明区为0.38~14mm。

ZnS的凝结系数随基板温度上升而迅速下降:蒸发ZnS时,分解为Zn和S,在凝结过程中又重新化合。

在基板温度300℃时,ZnS基本上停止凝结。

聚集密度较高,压应力。

直接使用电阻蒸发时,出现刺激性很强的H2S,剩余的ZnS块材料分解出Zn并发黑。

这种Zn还可能氧化成高熔点的ZnO,附着在ZnS表面,使ZnS难于蒸发。

用电子枪蒸发这种现象明显减少。

电子枪蒸发的ZnS膜具有闪锌矿立方结构,用舟蒸发的是闪锌矿和纤锌矿的混合物,后者对高温不稳定。

淀积在室温基板上的ZnS膜,牢固度很差。

改善牢固度的措施(1)离子轰击并在轰击结束后尽快蒸发;(2)基板烘烤,温度为150~200℃;(3)老化处理,在空气中250~300℃温度烘烤4小时。

二氧化钛TiO2折射率高,牢固稳定,在可见和近红外呈透明。

TiO2材料在真空中加热蒸发时因分解而失氧,形成高吸收的亚氧化钛,故常采用反应蒸发技术。

初始膜料TiO、Ti2O3随着蒸发量增加,氧含量增加,折射率降低;TiO2则含氧量减少,折射率升高,唯有Ti3O5氧含量不变,能够得到稳定的折射率。

TiO2膜的吸收和折射率均随着基板温度和蒸发速率的升高而增加,随着氧压升高而降低。

在空气中加热处理能有效地减少膜内的低价氧化物,TiO、Ti2O3和Ti3O5的转化温度为:200℃,250~350℃,大于35 0℃。

膜料中掺杂一定量的ZrO2或Ta2O5,可使吸收降低。

二氧化锆ZrO2具有较高的折射率,易于得到低吸收的薄膜,膜层十分牢固稳定。

短波250nm处消光系数为0.001,可作为紫外材料。

ZrO2具有明显的负折射率不均匀性,采用ZrO2中掺入某种金属或氧化物(30%Ta金属+70%ZrO2)可以消除折射率不均匀性。

ZrO2具有很大的张应力,使ZrO2-SiO2多层膜处于高应力状态。

ZrO2会某些光学玻璃发生反应产生“白晕膜”,其原因在于:玻璃中的金属离子(Ba2+、Cd2+、Pb2+)与不稳定的Zr氧化物在水蒸气和CO2作用下反应。

防止白晕膜的途经:避免选用含Ba、Cd和Pb成分较高的玻璃;减少ZrO2在蒸发时的热分解和彻底清洁干燥基板;在易于产生白晕膜的玻璃基板上预先淀积一层SiO2膜,对抑制白晕膜有一定效果。

ZrO2膜的晶体结构呈四方相,在激光加热时因相变而变成单斜相,使ZrO2膜的激光损伤阈值大为降低。

在ZrO2中掺入重量比为5~6:1的Y2O3,不仅可避免相变的产生而使阈值提高,还可以减小折射率非均匀性和吸收散射。

二氧化硅SiO2唯一的分解小的低折射率氧化物,其折射率为1.46,透明区从真空紫外导中波红外(0.18~8mm)。

吸收很小,膜层牢固,耐磨耐腐蚀。

结构精细,呈网状玻璃态,散射吸收小,保护能力强。

SiO2在高温蒸发时,也会分解生成低价氧化物SiO,Si2O3。

三种硅氧化物的吸收带位臵:SiO 10.0~10.2mm; Si2O3 9.6~9.8mm SiO2 9.0~9.5mm和12.5mm.3、红外薄膜材料红外波段0.76~50mm。

能够使用的材料很有限。

介质材料的禁带宽度很大,大部分仅在可见光和近红外区透明在中红外波段就出现长波晶格振动吸收带;金属卤化物的晶格振动吸收带相应的波长较长,但普遍易吸潮;常用的红外介质材料ZnS、ZnSe透射波段分别体材料为14mm和22mm,薄膜态时,为23mm和25mm。

半导体材料或其化合物禁带宽度窄,短波吸收限较长,折射率高。

限制他们在长波使用的是杂质吸收和自由载流子吸收,特别是自由载流子吸收和波长平方成正比。

要求半导体材料具有尽可能高的纯度和低的自由载流子浓度。

通常1.6~5mm波段采用Ge-SiO膜系;4~10mm波段采用Ge-ZnS膜系;8~20mm波段采用PbTe-ZnSe膜系;更长波段采用PbTe-CdSe,PbTe-CsI膜系组合。

Ge膜的折射率约为4.0,其硬度(莫氏6级)比PbTe(3级)和Te(2~2.5级)高2~3倍,当基板温度为200℃左右时可以获得较好的结果。

PbTe要求材料的自由载流子浓度低,且在250℃的基板温度上得到较小的吸收。

4、紫外薄膜材料在400-200nm的近紫外区,高折射率如:HfO2、ZrO2中等折射率MgO、Al2O3;低折射率:SiO2、MgF2、LiF等。

在小于200nm的真空紫外,只有少量的低折射率材料,没有高折射率材料。

常采用Al-MgF2(或LiF3)制备100~200nm紫外反射镜。

采用驻波场设计,低吸收材料臵于波腹位臵吸收较高的高折射率材料臵于膜系的驻波波节位臵。

5、基板材料1、玻璃非晶的光学玻璃、红外玻璃和激光玻璃光学玻璃可以分为:冕牌玻璃(K)和火石玻璃(F)冕牌玻璃折射率较低,色散系数较高;硼硅酸玻璃分为:氟冕(FK)、磷冕(PK)、轻冕(QK)、钡冕(BaK)、重冕(ZK)、镧冕(LaK)、特冕(TK)等;火石玻璃折射率较高,色散系数较低。

铅硅玻璃分为:冕火石(KF)、轻火石(QF)、钡火石(BaF)、重火石(ZF)和镧火石(LaF)等。

光学玻璃的折射率可以从光学玻璃材料中查到。

波长587.7nm(氦黄线)或589.3nm(钠黄线)处的折射率nd或n D,相对色散(阿贝数)由波长486.1n m和656.3nm处的折射率n F和n C确定。

νd=(nd-1)/(n F–n C)或νD=(nD-1)/(n F–n C)玻璃的折射率可以从色散公式计算:n G(λ)=n D+(n C-n D)(λ-λD)/(λC-λD)线膨胀系数α主要取决于玻璃中碱金属氧化物(Na2O,K2O)和碱土金属氧化物(BaO,PbO)的含量,一般在55~85×10-7。

QK2具有特别低的热膨胀系数32×10-7,常用于制造大型光学零件、反射镜及光栅。

F13(α~100×10-7)具有和钢相似的热膨胀系数,可以作为玻璃刻尺材料。

光学玻璃的密度主要决定于成分,并随着折射率而直线上升。

相关文档
最新文档