有限元分析过程
abaqus有限元分析过程

一、有限单元法的基本原理有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。
它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。
有限元方法的基本思路是:化整为零,积零为整。
即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。
由位移求出应变, 由应变求出应力二、ABAQUS有限元分析过程有限元分析过程可以分为以下几个阶段1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是结构离散,即划分网格。
但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。
2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。
“Part(部件)用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。
第三讲 有限元分析过程及例题讲解

→
Q2
Ke 23
→
K25
注意要用累加运算!
K25
=
K25
+
Ke 23
累加前总刚要清零!
长安大学汽车学院车辆工程系 王童
⎡ K11 K12
⎢ ⎢
K21
K22
⎢ K31 K32
⎢ ⎢
K41
K42
⎢ ⎢ ⎢
K51 K61
K52 K62
⎢ ⎢ ⎣
K71 K81
K72 K82
Tel:17792594186
K13 K14 K15 K16 K17 K18 ⎤
Ve
Ve
Ve
令: {Pbe}= ∫∫∫ [N ]T {Fb}⋅ dV 称单元等效体力载荷向量 Ve
{ } { } 单元体力虚功可以表示为: Wbe = Qe T Pbe
2)表面力虚功
W
e s
=
∫∫
{u}T {Fs }⋅ dA
=
∫∫
{Q e }T
[N ]T {Fs }⋅ dA
=
{Q e }T
∫∫
[N
]T {Fs }⋅ dA
y
Q6
③
Q5
3
4
Q7
①
Q2
②
④
Q4
1
Q1
2
Q3
x
长安大学汽车学院车辆工程系 王童 Tel:17792594186 Email:wangtong@
以单元①为例
①
Qe 2
Qe 1
Qe 4
Qe 3
⎧Q1e → Q1
局部自由度与整体自由 度的对应关系为
⎪⎪⎪⎨QQ32ee
→ →
有限元法的分析过程

有限元法的分析过程有限元法是一种数值分析方法,用于求解实际问题的物理场或结构的数学模型。
它将连续的实体分割成离散的小单元,通过建立节点和单元之间的关系,对物理问题进行逼近和求解。
以下是一般的有限元法分析过程。
1.问题建模和离散化在有限元分析中,首先需要对实际问题进行建模,确定物理场或结构的几何形状和边界条件。
然后,将几何形状分割成一系列小单元,例如三角形、四边形或四面体等。
2.网格生成根据问题的几何形状和离散化方式,生成网格。
网格是由一系列节点和单元组成的结构,节点用于描述问题的几何形状,单元用于划分问题域。
通常,节点和单元的位置和数量会直接影响有限元法的精度和计算效率。
3.插值函数和基函数的选择有限元法中的节点通常表示问题域中的几何点,而节点之间的关系由插值函数或基函数来描述。
插值函数用于建立节点和单元之间的关系,基函数用于对物理场进行逼近。
选择适当的插值函数和基函数是有限元法分析的关键。
4.定义系统参数和边界条件确定相关物理参数和材料性质,并将其转化为数值形式。
在有限元分析中,还需要定义边界条件,包括约束条件和加载条件。
5.定义数学模型和方程根据问题的物理场或结构和所选择的基函数,建立数学模型和方程。
有限元方法可以用来建立线性方程、非线性方程、静态问题、动态问题等。
具体建立数学模型和方程的过程需要根据问题的特点进行。
6.组装刚度矩阵和力载荷向量根据离散化的节点和单元,组装刚度矩阵和力载荷向量。
刚度矩阵描述节点之间的刚度关系,力载荷向量描述外部加载的作用力。
7.求解代数方程通过求解代数方程,确定节点的位移或物理场的数值解。
通常,使用迭代方法或直接求解线性方程组的方法来求解。
8.后处理和分析得到数值解后,可以进行后处理和分析。
包括计算节点和单元的应变、应力等物理量,进行矫正和验证计算结果的正确性。
还可以通过有限元法的网格适应性来优化问题的计算效率和精度。
以上是一般的有限元法分析过程,具体的步骤和方法可能会因不同的问题而有所不同。
有限元分析过程范文

有限元分析过程范文有限元分析(Finite Element Analysis,简称FEA)是一种通过将复杂的工程问题划分成简单的有限元单元,并对这些单元进行建模和分析的数值计算方法。
它广泛应用于结构力学、流体力学、热传导等领域,对于解决复杂的实际工程问题起到了至关重要的作用。
首先,进行几何建模,即将实际问题抽象成一个适合分析的几何模型。
这需要对待分析的实际工件进行几何形状的描述和选择合适的坐标系。
对于简单的几何形状,可以直接使用相关软件进行建模;对于复杂的几何形状,可以使用CAD软件进行建模,并将其导入到有限元分析软件中。
接下来,进行网格划分。
网格是指用一系列简单的形状(如三角形、四边形)将整个几何模型分割成小的有限元单元。
通常情况下,边界和模型的几何特征会指导网格划分。
网格的划分需要满足一定的准则,如尽量均匀划分、尽量符合实际几何形状等。
完成网格划分后,需要为每个有限元单元定义材料属性和边界条件。
材料属性包括弹性模量、泊松比、密度等。
边界条件包括施加在模型上的力、力矩、位移约束等。
这些参数的选取需要结合实际工程问题的特点和分析的目标进行。
对于线性问题,可以直接使用有限元法求解线性方程组;对于非线性问题,需要使用迭代法进行求解。
求解过程中,计算机会根据有限元模型的离散特点,将其转化为代数形式的方程组,并通过迭代求解方法来得到数值解。
最后,进行结果后处理。
结果后处理是用于分析和展示有限元模型的结果,包括模型的应力应变分布、位移分布、变形等。
常见的结果展示方式有等值线图、变形云图等。
通过对结果的分析和比较,可以对模型的工程性能进行评价。
当然,有限元分析过程中还需要进行收敛性和稳定性分析,以保证结果的准确性和可靠性。
此外,有限元模型的建立和验证也是十分重要的,需要对模型进行合理性检验和准确性验证。
总之,有限元分析是一种重要的工程分析工具,通过将实际工程问题离散化为有限元单元,并进行数值求解,可以获得工程问题的准确解。
有限元分析的一般过程

有限元分析的一般过程一、结构的离散化将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。
这一步要解决以下几个方面的问题:1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。
2、根据结构的特点,选择不同类型的单元。
对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。
3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。
4、根据工程需要,确定分析类型和计算工况。
要考虑参数区间及确定最危险工况等问题。
5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。
二、选择位移插值函数1、位移插值函数的要求在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。
位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。
但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。
2、位移插值函数的收敛性(完备性)要求:1)位移插值函数必须包含常应变状态。
2)位移插值函数必须包含刚体位移。
3、复杂单元形函数的构造对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。
因此在实际应用中更多的情况下是利用形函数的性质来构造形函数。
形函数的性质:1)相关节点处的值为 1,不相关节点处的值为 0。
2)形函数之和恒等于 1。
1、建立数学模型(特征消隐,理想化,清除)((即从 CAD 几何体→FEA 几何体),共有下列三法:▲ 特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。
▲ 理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理▲ 清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。
有限元法分析过程

有限元法分析过程有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。
对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。
在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。
有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。
这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。
有限元法包括三类:有限元位移法、有限元力法、有限元混合法。
在有限元位移法中,选节点位移作为基本未知量;在有限元力法中,选节点力作为未知量;在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。
有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。
一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。
因此,一般不做特别声明,有限元法指的是有限元位移法。
有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。
它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。
附:FELAC 2.0软件简介FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。
FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。
该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。
并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰富了文本编辑功能,改善了用户的视觉体验,方便用户快速便捷的对脚本或程序进行编辑、编译与调试。
简述有限元分析的实施步骤

简述有限元分析的实施步骤1. 确定问题和目标在进行有限元分析之前,首先需要明确问题和目标。
确定问题和目标将有助于指导后续的分析工作,并确保分析结果的可靠性和实用性。
问题和目标可以是结构的强度分析、热传导分析、流体力学分析等。
2. 创建有限元模型有限元模型是有限元分析的基础,它是结构物或系统的数学模型。
在创建有限元模型时,需要进行以下步骤:•定义几何形状:通过使用CAD软件或手动绘制来定义结构物或系统的几何形状。
这包括绘制结构物的边界、孔洞和特征。
•离散化:将结构或系统划分为有限数量的离散区域,称为有限元。
这些有限元可以是三角形、四边形或其他形状,取决于需要分析的问题类型。
•定义材料属性:为每个有限元分配适当的材料属性,如弹性模量、泊松比、密度等。
这些属性将影响到模型的响应。
•定义边界条件:定义结构或系统的边界条件,如固定边界、受力边界等。
这些边界条件将模拟实际结构中的限制条件。
3. 制定数学模型在进行有限元分析之前,需要将物理模型转化为数学模型。
数学模型是基于物理方程和边界条件的方程组。
制定数学模型的步骤如下:•应用力学原理:根据问题类型,采用适当的力学原理,如静力学原理、动力学原理等。
力学原理将为问题提供方程基础。
•建立强度方程:根据力学原理,建立物体或结构物的均衡方程。
这些方程将描述结构的受力分布和变形情况。
•引入边界条件:基于前面创建的有限元模型,将边界条件应用于强度方程。
这将包括施加受力、固定节点等。
4. 进行数值计算有限元分析的核心部分是进行数值计算。
在这一步骤中,使用适当的数值方法和算法,求解数学模型得到物理问题的解。
数值计算的步骤如下:•网格生成:通过将结构物或系统划分为离散区域生成网格。
这个网格将用于数值计算过程中的逼近。
•建立刚度矩阵:根据有限元模型和材料属性,建立刚度矩阵。
刚度矩阵描述了结构物的刚度特性。
•应用边界条件:将边界条件应用于刚度矩阵。
这将创建一个系统的等式,描述结构对外部加载的响应。
有限元分析过程

有限元分析过程有限元分析过程可以分为以下三个阶段:1.建模阶段:建模阶段是根据结构的实际形状和实际工况,建立有限元分析的计算模型——有限元模型,为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是离散结构。
然而,我们仍然需要处理许多相关的工作:如结构形式处理、集合模型建立、元素特征定义、元素质量检查、编号顺序、模型边界条件定义等。
2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。
3.后处理阶段:它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
注:在上述三个阶段中,有限元模型的建立是整个有限元分析过程的关键。
首先,有限元模型为计算提供了所有原始数据,这些输入数据的误差将直接决定计算结果的准确性;其次,有限元模型的形式对计算过程有很大影响。
合理的模型不仅可以保证计算结构的准确性,而且可以避免计算量过大和对计算机存储容量要求过高;第三,由于结构形状和工作条件的复杂性,不容易建立实用的有限元模型。
需要综合考虑多种因素,对分析人员提出了更高的要求;最后,建模时间在整个分析过程中占相当大的比例,约占整个分析时间的70%。
因此,缩短整个分析周期的关键是注重模型的建立,提高建模速度。
原始数据的计算模型,模型中一般包括以下三类数据:1.节点数据:包括每个节点的编号、坐标值等;2.单元数据:A.组成单元的单元号和节点号;b、单位材料特性,如弹性模量、泊松比、密度等;c、单元的物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d、一维单元的截面特征值,如截面面积、惯性矩等;e、相关几何数据3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.建立有限元模型的一般过程:1分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析过程可以分为以下三个阶段:
1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是结构离散,即划分网格。
但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。
2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。
3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。
首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。
原始数据的计算模型,模型中一般包括以下三类数据:
1.节点数据: 包括每个节点的编号、坐标值等;
2.单元数据: a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据
3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.
建立有限元模型的一般过程:
1.分析问题定义
在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。
总的来说,要定义一个有限元分析问题时,应明确以下几点:
a.结构类型;
b.分析类型;
c.分析内容;
d.计算精度要求;
e.模型规模;
f.计算数据的大致规律
2.几何模型建立
几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点。
3.单元类型选择
划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。
单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。
4.单元特性定义
有限元单元中的每一个单元除了表现出一定的外部形状外,还应具备一组计算所需的内部特征参数,这些参数用来定义结构材料的性能、描述单元本身的物理特征和其他辅助几何特征等.
5.网格划分
网格划分是建立有限元模型的中心工作,模型的合理性很大程度上可以通过所划分的网格形式反映出来。
目前广泛采用自动或半自动网格划分方法,如在Ansys 中采用的SmartSize网格划分方法就是自动划分方法。
6.模型检查和处理
一般来说,用自动或半自动网格划分方法划分出来的网格模型还不能立即应用于分析。
由于结构和网格生成过程的复杂性,划分出来的网格或多或少存在一些问题,如网格形状较差,单元和节点编号顺序不合理等,这些都将影响有限元计算的计算精度和计算时间。
7.边界条件定义
在对结构进行网格划分后称为离散模型,它还不是有限元模型,只有在网格模型上定义了所需要的各类边界条件后,网格模型才能成为完整的有限元模型。
计算机几何建模方法
㈠.几何模型的形式
1.线框模型:用组成结构的棱边表示结构形状和大小的模型称为线框模型,或线架模型。
它是使用最早的几何模型,其特点是数据量少、数据结构简单、算法处理方便,模型输入可以通过定义线段端点坐标来实现。
但是这种模型有很大的局限性,它的几何描述能力差,只能提供一个框架,对几何形状的理解很容易产生多义性,也不能计算结构的重量、体积、惯性积等。
2.表面模型:由线框模型中棱边围成的封闭区域定义成面,那么这些面形成的模型就是表面模型,或称曲面模型。
它描述的结构可以是封闭的,也可以是未封闭的。
与实体模型相比,表面模型的数据结构简单、数据存储量少、操作运算方便。
表面模型用于二维单元的自动划分。
3.实体模型:把表面模型中所有表面围成的封闭体积定义成结构材料的存在空间,所形成的模型就是实体模型。
与表面模型相比,实体模型数据量大、数据结构复杂,但是由于它定义了结构的完整空间,因此可以剖切结构显示其内部形状,进行结构间复杂的布尔运算,计算结构体积、质量、惯性矩等。
㈡.实体模型建立方法
1.体素建模法
在计算机几何建模方法中,体素是指一些基本的简单三维结构,如立方体、圆柱体、球体和圆锥台等。
如Ansys中提供了很多类型的体素,只要输入与这些体素相关的关键尺寸便可以直接生成它们的实体模型。
许多复杂的实体模型都可由体素通过一定步骤的运算生成,所以体素建模法既是最基本、最简单又是最重要、最常见的一种方法。
2.扫描变换法
扫描变换是通过将封闭的平面曲线沿给定的方向拉伸或绕给定轴线旋转,由平面曲线在三维空间中所扫过的体积生成实体模型。
⑴.拉伸变换:拉伸长度L,扭转角θ,扩张角α;⑵.旋转变换:旋转角θ,行程s,半径增量ΔR
3.构造实体法
4.断面拟合法
5.由曲面变换成实体
6.变换生成实体
网格划分:
一、网格数量
网格数量又称绝对网格密度,它通过网格尺寸来控制。
在有限元分析中,网格数量的多少主要影响以下两个因素:
1.计算精度
网格数量增加,计算精度一般会随之提高。
这是因为:
⑴.网格边界能够更好地逼近结构实际的曲线或曲面边界;
⑵.单元位移函数能够更好的逼近结构实际位移分布;
⑶.在应力梯度较大的部位,能够更好地反映应力值的变化。
但是也需要提醒的是:网格数量太多时,计算的累积误差反而会降低计算精度。
2.计算规模
网格数量增加,将主要增加以下几个方面的时间:
⑴.单元形成时间
⑵.求解方程时间
⑶.网格划分时间
二.网格疏密
网格疏密是指结构不同部位采用不同大小的网格,又称相对网格密度,它通过在不同位置设置不同的网格尺寸来控制。
在实际结构中应力场很少有均匀变化的,绝大多数结构或多或少的存在不同程度的应力集中。
为了反映应力场的局部特性和准确计算最大应力值,应力集中区域就应采用较多的网格,而对于其他的非应力集中区域,为了减少网格数量,则采用较稀疏的网格。
三.单元阶次
结构单元都具有低阶和高阶形式,采用高阶单元的目的是为了提高计算精度,这主要考虑了以下两点:1.利用高阶单元的曲线或曲面边界更好地逼近结构的边界曲线或曲面;2.利用高阶单元的高次位移函数更好地逼近结构复杂的位移分布。
但是高阶单元具有较多的节点,使用时也应权衡计算精度和模型规模两个因素,处理好单元阶次和节点数量的关系。
四.网格质量
网格质量是指网格几何形状的合理性。
网格质量的好坏将影响计算结果的精度,质量太差的网格将中止有限元计算过程。
值得注意的是,有些网格形状是不允许的,它们会导致单元刚度矩阵为零或负值,有限元计算将出现致命错误,这种网格称为畸形网格。
单元分类
1.分类方法:平面应力单元;平面应变单元;轴对称实体单元;空间实体单元;板单元;壳单元;轴对称壳单元;杆单元;梁单元;弹簧单元;间隙单元;界面单元;刚体单元;约束单元;集中质量单元
也可以分为:
a.一维、二维和三维单元
b.线形、二次和三次单元
c.等参元、次参元和超参元
d.协调单元和非协调单元
e.传弯单元和非传弯单元
f.结构单元和非结构单元
g.位移单元和温度单元。