矩阵分析结课论文
矩阵分析方法及应用论文

矩阵分析方法及应用论文矩阵分析方法是一种应用矩阵论和线性代数的数学工具,用于研究和解决与矩阵相关的问题。
矩阵可以用于描述线性变换、矢量空间和方程组等数学对象。
矩阵分析方法可以应用于多个领域,包括数学、物理、工程、计算机科学等。
在以下回答中,我将简要介绍矩阵分析方法的基本原理和一些应用,并提供一些相关论文的例子。
首先,让我们来了解一下矩阵分析的基本原理。
矩阵是一个由数值排列成的矩形数组,可以表示为一个m×n的矩阵,其中m表示行数,n表示列数。
矩阵的元素可以是实数或复数。
通过矩阵分析,我们可以研究矩阵的性质、运算规则和应用。
矩阵乘法是矩阵分析中最基本的操作之一。
当两个矩阵相乘时,第一个矩阵的列数必须等于第二个矩阵的行数。
矩阵乘法的结果是一个新的矩阵,其行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
矩阵乘法可以表示线性变换和矢量的线性组合等概念。
另一个重要的矩阵分析方法是特征值和特征向量的计算。
矩阵的特征值是矩阵与一个非零向量之间的一个简单乘法关系。
特征向量是与特征值对应的非零向量。
特征值和特征向量在物理、工程和计算机科学等领域中有广泛的应用,例如图像处理、机器学习和数据压缩等。
矩阵分析方法在多个领域有着广泛的应用。
下面是一些矩阵分析方法的应用领域及相应的论文例子:1. 图像处理:矩阵分析方法在图像处理中被广泛应用,例如图像压缩和恢复。
论文例子:《基于矩阵分解的图像压缩算法研究》、《基于矩阵分析方法的图像恢复技术研究》。
2. 数据处理:矩阵分析方法在数据挖掘和机器学习中起着重要作用,例如矩阵分解和矩阵推荐系统。
论文例子:《基于矩阵分解的矩阵推荐系统研究》、《基于矩阵分析的数据挖掘技术研究》。
3. 信号处理:矩阵分析方法在信号处理中具有广泛的应用,例如语音信号处理和音频编码。
论文例子:《基于矩阵分析方法的语音信号处理技术研究》、《基于矩阵分解的音频编码算法研究》。
4. 控制系统:矩阵分析方法在控制系统设计和分析中具有重要作用,例如状态空间表示和线性二次型控制器设计。
矩阵分析期末总结

矩阵分析期末总结引言:在矩阵分析这门课程中,我们系统学习了矩阵的基本概念、运算、性质和应用等知识。
通过学习矩阵分析,我们能够更好地解决线性方程组、矩阵特征值和特征向量、矩阵的相似性等问题。
本文将对我在矩阵分析课程中的学习内容和收获进行总结与归纳。
一、矩阵的基本概念与性质矩阵作为线性代数的基础概念,具有以下基本性质:1. 矩阵的定义与表示,包括行矩阵、列矩阵、方阵和零矩阵等。
2. 矩阵的大小与维度,用行数与列数来表示矩阵的大小,例如m x n矩阵表示有m行n列的矩阵。
3. 矩阵的运算,包括矩阵的加法、数乘和乘法等。
4. 矩阵的转置与共轭转置,将矩阵的行与列进行互换,并对矩阵元素取共轭得到的转置矩阵。
5. 矩阵的逆与伴随,如果一个矩阵A存在逆矩阵A^-1,则称A为可逆矩阵或非奇异矩阵。
二、矩阵的特征值与特征向量1. 特征值与特征向量的定义,对于一个n阶方阵A,如果存在一个非零向量x使得Ax=λx,则称λ为矩阵A的特征值,x为对应的特征向量。
2. 特征值与特征向量的计算方法,通过解方程(A-λI)x=0可以求得特征值λ和特征向量x。
3. 特征值与特征向量的性质,特征值与特征向量满足一系列重要的性质,例如特征值的重数与特征向量的线性无关性等。
4. 对称矩阵的特征值与特征向量,对称矩阵的特征值都是实数,并且存在一组相互正交的特征向量。
5. 正交矩阵的特征值与特征向量,正交矩阵的特征值的模长都等于1,特征向量是正交归一化的。
三、矩阵的相似性与对角化1. 相似矩阵与对角化,如果存在一个可逆矩阵P,使得P^(-1)AP=D,其中D是一个对角矩阵,则称矩阵A与D相似,且称A可对角化。
2. 相似矩阵的性质,相似矩阵具有一系列重要的性质,例如特征多项式、迹、行列式等。
3. 矩阵的谱分解与Jordan标准形,对于n维方阵A,如果存在P使得P^(-1)AP=J,其中J 是一个Jordan标准形矩阵,则称矩阵A可谱分解。
四、矩阵分析的应用矩阵分析在实际应用中具有广泛的应用,例如:1. 线性方程组的求解,可以通过矩阵分析中的逆矩阵、伴随矩阵等方法求解线性方程组。
矩阵数学论文3000字_矩阵数学毕业论文范文模板

矩阵数学论文3000字_矩阵数学毕业论文范文模板矩阵数学论文3000字(一):Pre5G获GSMA双料大奖揭秘:竟是多维矩阵的数学创新论文最受评委认可的是Pre5G的高技术含量,它是通过高超、复杂的数学方法实现的,绝非技术的简单包装。
如果每一年巴塞罗那MWC展会都会树立几个风向标的话,那么“创新加速5G”无疑是本届MWC大会当仁不让的主题。
本届展会的第二天,中国的5G创新再次掀起了MWC的高潮,中兴通讯凭借Pre5GMassiveMIMO荣获全球移动大奖“最佳移动技术突破”(BestMobileTechnologyBreakthrough)以及CTO选择奖(OutstandingoverallMobileTechnology-TheCTO’sChoice2016),一时间被全球广泛关注。
由GSM协会主办的MWC是全球最具影响力的移动通信领域的盛会,全球移动大奖则是目前被业界认可的最高荣誉,被誉为“通信业的奥斯卡奖”。
而CTO选择奖的重量级在于,获奖技术是从6个移动专项获奖中再次选出最佳的一个“奖中奖”,该奖项的评委是由来自全球16家运营商的首席技术官组成的,他们非常看重入选内容的独到创新点,以及是否可以真正改善客户体验、降低成本,真正通过创新提升运营商商业价值。
而且,中兴通讯今年作为惟一的中国企业获此殊荣。
事实上,这也是5G领域第一次获得行业最高奖项并获得CTO的一致认可,两大奖项不仅奠定了中兴通讯在无线宽带领域的领军者形象,更意味着从3G的试探、4G的积极,到5G的超前,中国技术的不断创新已经获得全球认可。
颠覆式创新的核心GSMA大奖评委会给出的获奖点评是“Pre5GMassiveMIMO技术是移动宽带演进上的颠覆性创新”。
从技术上看,Pre5G最主要的技术MassiveMIMO通过128天线阵元,支持多达12到16流的动态beamforming,在不改变空口、不增加频点、不改变终端的前提下,快速实现了频谱效率倍增,三维立体覆盖能力超强,且Pre5G兼容4G终端,使得现网引入Pre5G更加从容。
矩阵分析结课论文

矩阵分析在电路中的应用本人主要通简单的实例,进行浅显地说明矩阵在求解方程过程中的应用:第一,通过矩阵进行相容方程的求解;第二,通过矩阵进行不相容方程的求解;其中,在不相容方程的求解过程中,会涉及到广义逆矩阵、伪逆矩阵以及矩阵的满秩分解。
在具有实际物理背景下的有关方程组能够通过矩阵的理论知识,得到、高效地求解。
一、 矩阵在相容方程求解中的应用已知n 元线性方程组如下表示:11112211211222221122...............n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 其矩阵的表达形式如下:111112*********2n n n n nn n n x b a a a a a a x b a a a x b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 矩阵A 可记为111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦如果矩阵A 满秩,且非矛盾方程,则可以通过消元法计算出每个未知量。
见如下示例:例1设桥式电路中闭合回路的电流分别为321I I I 、、,如图2所示:图2已知14,1,2,1,1,254321======E R R R R R ,计算流过中央支路AB 的电流AB I 。
解:由基尔霍夫第二定律(电压定律)得如下方程组:⎪⎩⎪⎨⎧=-+-=-+-+=-+-+EI I R I I R I I R I I R I R I I R I I R I R )()(0)()(0)()(2341321253242331221511即⎪⎩⎪⎨⎧=+--=-+-=--143202404321321321I I I I I I I I I同样计算如下几个行列式21321241114=------=A843214241101=----=D12631412011042=----=D 21014210410143=----=D 所以10,6,4332211======AD I A DI A D I从而,流过中央支路AB 的电流为221-=-=I I I AB 。
矩阵分析论文

矩阵分析在控制系统中的应用摘要:详细综述了LMI 在控制系统中的发展现状和应用,主要涉及了不确定系统的鲁棒性能和鲁棒稳定性、不确定系统的鲁棒控制器设计、LMI 在时滞系统中的应用及存在的问题、不确定系统的鲁棒滤波应用状况、不确定系统的模型验证应用等,并分析了基于LMI 方法的变结构控制、极点配置、模糊控制等其它相关内容。
给出了上述控制问题的LMI 描述及相关求解方法,最后并指出了LMI 进一步的应用研究方向。
主题词: 线性; 矩阵; 控制系统; 控制器1 引言在过去的10 余年内,由于LMI 的优良性质和数学的规范以及解法的突破,使其在控制系统分析和设计方面得到了广泛的重视和应用。
研究者发现许多控制问题均可描述为LMI 问题[1~4 ] ,并呈现继续增长的趋势。
本文对LMI 在控制系统中的发展和现状进行综述,着重讨论LMI 在不确定控制系统中的应用研究成果、现状以及发展。
2 线性矩阵不等式LMI 一般形式为F ( x) ≡F0 + Σmi =1xi F i > 0 (1)其中x ∈Rm ———变量; F i = F Ti ∈Rn×n 是给定的。
显然式(1) 表明矩阵F( x) 是正定的。
式(1) 的另一个含义是集合{ x/ F( x) > 0} 是凸的。
LMI 问题可描述为:给定F( x) > 0 ,找到x,使得f ( x) > 0 ,或证明LMI F( x) 是不可解的。
动态系统分析的LMI 方法可以追溯到100 多年以前。
1890 年Lyapunov 在出版他的被称为Lyapunov 理论的著作中,提出微分方程Ûx( t) = Ax ( t) (2)稳定,当且仅当存在对称正定矩阵P = P T > 0 ,使得下面的不等式成立A T P + PA < 0 (3)同时Lyapunov 也指出这样的LMI 可以精确求解。
20 世纪40 年代,前苏联科学家Lur’e、Postnikov 及其它学者将Lyapunov 方法应用于控制工程中的一些典型的问题,尤其是当执行机构具有非线性时的系统稳定性,虽然他们没有形成精确的矩阵不等式,但是所提出的稳定性准则具有LMI的雏形。
成都电子科技大学矩阵论课程结课论文

集成电路噪声模型的矩阵表示摘要:本文给出了集成电路的噪声模型及其矩阵表示,首先介绍了分立器件的噪声矩阵,根据叠加原理得出二端口网络及二端口互联网络的噪声模型。
运用矩阵理论分析集成电路噪声,直观,方便,主要运算过程都涉及矩阵的转置、矩阵的逆、矩阵的共轭以及矩阵的四则运算,便于进行计算机信息处理。
关键词:集成电路噪声二端口网络矩阵理论1引言噪声是影响现代电子系统性能的一个主要因素,随着集成电路工艺技术的发展,电源电压越来越低,噪声对电子系统的影响越来越大,已经成为大多数模拟电路设计中要考虑的最主要因素。
集成电路的低噪声化及其噪声特性分析是通信与信息系统领域中的重要研究课题,在近代信息技术各个应用领域中,低噪声集成电路的需求量越来越大,而且对噪声特性的要求越来越高,其原因是器件和电路的噪声水平及噪声特性直接关系到信号检测灵敏度和电路或系统的可靠性,关系到系统的整体性能,在电子系统设计阶段,不仅要选用低噪声集成电路器件,而且要对不同集成电路进行噪声分析,并优化各种参数及结构,显然,应用有效的噪声分析手段不仅可以大大缩短研制周期,节省研制费用,而且可保证研制开发的集成电路应用系统具有优良的性质。
集成电路应用系统通常是一个比较复杂的系统,然而,任何一个复杂的系统都可以分解成相对比较简单的单元,使大系统变成小系统,使复杂问题简单化,从而便于分析。
本文先讨论分立原件的噪声模型,进而分析互联电路网络的噪声。
2.MOSFET’s器件的噪声矩阵随着CMOS工艺技术的进步,CMOS 技术在无线通讯领域中的应用成为可能, 相应地MOSFET’s的噪声行为日益受到重视,近来有许多作者致力于MOSFET’s的噪声模型研究,一个精确的噪声模型可以使电路设计者更加充分利用现有技术。
图1是一个典型的MOSFET等效噪声电路模型,其中考虑了如下的噪声电流源:沟道噪声(i ds),栅极诱生噪声(i gs),栅极电阻热噪声(i g),源漏电阻热噪声(i s,i d)。
矩阵的分解毕业论文.

矩阵的分解毕业论文.学士学位论文矩阵的分解学院、专业数学科学学院数学与应用数学研究方向代数学学生姓名林意学号************指导教师姓名周末指导教师职称教授2014年4 月 16日矩阵的分解摘要众所周知,矩阵是代数学中的一个重要概念,它的出现促进了代数学的快速发展.矩阵分解作为矩阵理论中非常重要的一部分,是指将一个矩阵分解成一些特殊类型矩阵的乘积(或和)的形式.矩阵分解的内容丰富,形式多样,是解决某些线性代数问题的重要工具.本文主要从矩阵的QR分解、满秩分解、三角分解和奇异值分解等方面对矩阵的分解作了论述,首先给出了这几种分解形式的定义以及相关性质,然后给出了它们各自的具体的分解方法,最后通过例题的形式将各分解方法呈现出来.关键词:矩阵;分解;QR分解;三角分解;满秩分解The Decomposition of the MatrixABSTRACTAs everyone knows,matrix is one of the most important concepts in algebra,whose appearance promotes the development of algebra.While as a significant part of the theory of matrix,the decomposition of matrix aims at decomposing a matrix into the product(or sum) of several specific kinds of matrices.The decomposition of matrix not only concludes rich contents and forms,but also works as one of the significant methods in dealing with some linear algebra problems.In this paper,the decomposition of matrix is mainly introduced from the aspects mentioned below,such as QR decomposition,full rank decomposition,LU decomposition and so on.Firstly,the definitions and related properties of these forms of decomposition are given.And then,specific decomposition ways of theirs are illustrated.Finally,these decomposition methodsare clearly presented by the forms of some examples.Keywords:Matrix;Decomposition;QR Decomposition;LU Matrix Decomposition;Full Rank Decomposition目录摘要...................................................................... ABSTRACT. (II)目录 (IV)一、引言 0二、矩阵的QR分解 0(一)矩阵QR分解的基本概念及定理 0(二)矩阵QR分解的常用方法及应用举例 (1)三、矩阵的三角分解 (10)(一)矩阵三角分解的基本概念及定理 (10)(二)矩阵三角分解的常用方法及应用举例 (12)四、矩阵的满秩分解 (18)(一)矩阵满秩分解的基本概念及定理 (18)(二)矩阵满秩分解的常用方法及应用举例 (19)五、矩阵的奇异值分解 (22)(一)矩阵奇异值分解的基本概念及定理 (22)(二)矩阵奇异值分解的常用方法及应用举例 (23)六、结论 (25)参考文献 (26)致谢...................................................... 错误!未定义书签。
矩阵在数学中的应用本科毕业论文

本科毕业论文(设计)题目矩阵在数学中的应用____________________________________毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它目录摘要 (I)Abstract. (II)1 前言 (1)2 有关概念及重要结论 (1)2.1矩阵的概念 (1)2.2矩阵的秩 (2)2.3矩阵的逆 (3)2.4 用矩阵表示二次型 (3)3 矩阵的应用 (6)3.1矩阵的高次幂 (6)3.1.1 矩阵的幂 (6)3.1.2矩阵高次幂的求法 (7)3.2 解线性方程组 (13)3.2.1线性方程组的有解判定定理 (13)3.2.2 线性方程组一般形式的运用 (14)3.3 解矩阵方程 (16)3.4 矩阵对角化方法 (19)3.4.1 讨论对于有n个特征单根的n阶方阵 (19)3.4.2 讨论对于有特征重根的n阶方阵 (21)结论 (24)致谢 (24)参考文献 (24)矩阵及应用杨灿(重庆三峡学院数学与统计学院数学与应用数学专业2010级重庆万州 404100)摘要:矩阵理论既是学习经典数学的基础,又是一门很有实用价值的数学理论.随着科学技术的发展,这一理论已成为现代各科技领域处理大量数据的有效工具.本文就是利用矩阵的基本理论,把矩阵作为计算工具,对实际问题如方程组的解、矩阵的幂、二次型进行了较为系统的研究并简化了一些计算.关键词: 矩阵;矩阵的幂;线性方程组Matrix and Its ApplicationYANG Can(Grade 2010, Mathematics and Applied Mathematics, College of Mathematics and statistics, Chongqing Three Gorges University, Wan Zhou, Chongqing 404100 )Abstract:Matrix theory is not only the foundation of learning classical mathematics,but also is a very useful mathematical theory.With the development of science and technology,this theory has become the effective tool for modern technology in the field of large amounts of data.This article is on the undamental theory of matrix,the matrix as a calculation tool,the practical problems such as the solution of the equations,the power of matrix,the two type are systematically studied and some simplified calculation.Keywords:Matrix; The power of matrix; Linear equation2014届数学与应用数学专业毕业设计(论文)1 前言矩阵是数学中的一个重要的基本概念,是代数学的主要研究对象之一,也是数学研究和应用的一个重要工具.“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语.而实际上,矩阵在它的课题诞生之前就已经发展的很好了.18世纪中期,数学家们开始研究二次曲线和二次曲面的方程简化问题,即二次型的化简.在这一问题的研究中,数学家们得到了与后来的矩阵理论密切相关的许多概念和结论.1748年,瑞士数学家欧拉(L .Euler,1707—1783)在将三个变数的二次型化为标准形时,隐含地给出了特征方程的概念.1773年,法国数学家拉格朗日(J .L .Lagrange,1736—1813)在讨论齐次多项式时引入了线性变换.1801年德国数学家高斯(C .F .Gauss,1777一1855)在《算术研究》中,将欧拉与拉格朗日的二次型理论进行了系统的推广,给出了两个线性变换的复合,而这个复合的新变换其系数矩阵是原来两个变换的系数矩阵的乘积.另外,高斯还从拉格朗日的工作中抽象出了型的等价概念,在研究两个互逆变换的过程中孕育了两个矩阵的互逆概念.在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解线性方程组的过程也表现为变换这些矩阵的过程.除了线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的.这使矩阵成为数学中一个极其重要的应用广泛的概念,因而也就使矩阵成为代数特别是线性代数的一个主要研究对象,也是处理高等数学很多问题的有力工具.矩阵的秩是一个基本的概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量.矩阵的秩是反映矩阵固有特性的一个重要概念,无论是在线性代数中,还是在解析几何中,甚至在概率论中,都有不可忽略的作用.矩阵方幂在高等代数题解、矩阵稳定性讨论及预测、控制等方面有广泛的应用,它的求解原理贯穿于代数教学过程的始终,可以用到矩阵各方面的知识.其计算量往往较大,但方法适当,可大大简化其计算难度.本文将给出六种求矩阵方幂地方法.矩阵方程是矩阵运算的一部分,这里我们主要讨论如何求解矩阵方程的问题.掌握简单的矩阵方程的求法,对于求解复杂的矩阵方程有很大帮助.2 有关概念及重要结论2.1矩阵的概念为了便于叙述并考虑以后的应用,我们引进矩阵的概念.由mn 个数排列而成的m 行(横的)n 列(纵的)的表⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a a a a a a a a 212222111211称为一个n m ⨯杨灿:矩阵及其应用矩阵.定义 1 把矩阵A 的行换成同序数的列得到的新矩阵, 称为A 的转置矩阵, 记作T A (或A ').即若,212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn n n m m Ta a a a a a a a a A 212221212111. 2.2矩阵的秩定义2 所谓矩阵的行秩就是指矩阵的行向量组的秩;所谓矩阵的列秩就是指矩阵的列向量组的秩.引理1 如果齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n sn s s nn n n x a x a x a x a x a x a x a x a x a 的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=sn s s n n a a a a a a a a a A 212222111211的行秩n r <,那么它有非零解.定理1 矩阵的行秩与列秩相等.定理 2 n n ⨯矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211的行列式为零的充分必要条件是A 的秩小于n .推论 1 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 有非零解的充分必要条件是它的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211的行列式等于零.2.3矩阵的逆我们知道,n 阶单位矩阵E 单位性质,即对于任意n 阶方阵A 都有A EA AE ==,是否存在n 阶方阵B 使得E AB =呢?即是否与数域P 中数一样的性质:1)0(1=⋅⇒∈≠∀-a a P a .为此,我们引进逆矩阵的概念.定义1 n 阶方阵A 称为可逆的,如果有n 阶方阵B ,使得E BA AB ==. (2.3.1)这里E 是n 级单位矩阵.并且称B 为A 的一个逆矩阵.定义2 如果矩阵B 适合(2.3.1),那么B 就称为A 的逆矩阵,记为1-A . 定理1 n 阶矩阵A 可逆的充分必要条件是A 非退化,此时,A 的逆矩阵为0,1*1≠==-A d A dA . 定理2 给出了矩阵可逆时逆矩阵的计算公式.下面给出可逆矩阵的一些性质: 性质1 如果n 阶方阵A 可逆,那么0≠=A d ,并且dA 11=-. 性质2 如果矩阵B A ,同级且都可逆,那么T A 与AB 也可逆,且11111)(,)()(-----==A B AB A A T T .性质3 如果n 阶方阵A 可逆,那么kA N k ,∈∀也可逆,并且k k A A )()(11--=. 性质4 如果n 阶方阵A 可逆,那么k A Z k ,∈∀也可逆,并且k k A A )()(11--=.性质5 如果n 阶方阵A 可逆,那么Z l k ∈∀,,有l k l k k l kl l k A A A A A A +===,)()(. 定理3 A 是一个n s ⨯矩阵,如果P 是s s ⨯可逆矩阵,Q 是n n ⨯可逆矩阵,那么)()()(A r AQ r PA r ==.推论1 在定3的假设下有,)()(A r PAQ r =成立.2.4 二次型及矩阵表示定义1 设P 是一个数域,一个系数ij a 在数域P 中的n x x x ,,,21 的二次齐次多项式 jinj i ij i ni ii n xx a x a x x x f ∑∑≤≤≤=+=121212),,,( . (2.4.1)定义2 记ij ji a a =,把n 元二次型(2.4.1),写成对称形式j i ni nj ij n x x a x x x f ∑∑===1121),,,( . (2.4.2)这样,系数ij a 可以构成一个n n ⨯对称矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛==nn n n n n nn ij a a a a a aa a a a A 212222111211)(, (2.4.3) 称(2.4.3)为n 元二次型(1)的矩阵. 令Tn x x x x ),,,(21 =,则有i n i j nj ij j i n i n j ij n x x a x x a x x x f ∑∑∑∑======111121)(),,,( ,=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑===n j j nj n j j j n j j j n x a xa x a x x x 1121121),,,( ,=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛n nn n n n n n x x x a a a a a a a a a x x x 2121222211121121),,,(,=Ax x T, (2.4.4)这就是二次型的矩阵表示.对确定的n 元二次型(2.4.1),就确定唯一的对称矩阵(2.4.3)通过(2.4.4)联系起来,即Ax x xx a x x x f T jin i nj ij n ==∑∑==1121),,,( .因此,一个n 元二次型(2.4.1)对应一个n 阶对称矩阵.每个二次型都有一个对称矩阵与之对应;反之,每个对称矩阵也有一个二次型与之对应.二次型与它的矩阵是相互唯一确定的.一般地,关于二次型的矩阵有下列结果.定理1 设B 是n n ⨯矩阵,则Bx x x x x f Tn =),,,(21 是一个二次型,它的矩阵为2BB T +.2.5 特征值与特征向量n 维线性变换空间V 与矩阵空间nn p ⨯是同构关系,可以通过矩阵来研究线性变换的性质,我们希望找到一组基,,,21n ξξξ 使得线性变换A L 在这组基下的矩阵A 的形式最简单.这个问题的一个简单设想是A 是否可以是对角形式?即),,,(,,,3,2,1,21n j j j A a a a diag A n j a L ===ξξ.这个设想可以归结为:对线性空间V 的线性变换ξξk L A =,P k ∈.这就是线性变换的特征值与特征向量.定义1 设A L 是数域P 上线性空间V 的一个线性变换,如果对于数域P 中一数0λ,存在一个非零向量ξ,使得ξλξ0=A L .那么0λ称为A L 的是一个特征值,而ξ称为A L 的属于特征值0λ的一个特征向量.定义2 设A 是数域P 上一n 级矩阵, λ是一个文字. 矩阵A -E λ的行列式nnn n nn a a a a a a a a a ---------=A -E λλλλ212222111211,称为A 的特征多项式, 这是数域P 上的一个n次多项式.上面的分析说明, 如果0λ是线性变换A L 的特征值, 那么0λ一定是矩阵A 的特征多项式的一个根; 反过来, 如果0λ是矩阵A 的特征多项式在数域P 中的一个根, 即00=-E A λ, 那么齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-----=---+-=----0)(0)(0)(022111222012112121110n nn n n nn n n x a x a x a x a x a x a x a x a x a λλλ (2.5.1)就有非零解. 这时,如果),,,(00201n x x x 是方程组(2.5.1)的一个非零解, 那么非零解向量.n n x x x ζζζζ0202101+++= .满足(2.5.1)式, 即0λ是线性变换A L 的一个特征值, ζ就是属于特征值0λ的一个特征向量.定理1 设A L 是数域P 上n 维线性空间V 的一个变换,则P ∈0λ是A L 的一个特征值当且仅当0λ是A L 的特征多项式)()(λλA L f f A≡的一个根.定理2 设0λ是线性空间V 的线性变换A L 的一个特征值,则集合{}V L V A ∈==ααλααλ,00 (2.5.2)构成V 的一个子空间.在有限维情形,)(dim 00A E R n V --=λλ,其中,V n dim =,A 是A L 在V 在某个基下的矩阵.定义3 设0λ是线性空间V 的线性变换A L 的一特征值,式(2.5.2)定义的V 的子空间称为A L 的对应特征值0λ的特征子空间0λV因此, 确定一个线性变换A 的特征值与特征向量的方法可以分成一下几步: (1)在线性空间V 中取一组基n ζζζ,,,21 , 写出A L 在这组基下的矩阵A ;(2)求出A 的特征多项式A -E λ在数域P 中全部的根, 它们也就是线性变换A L 的全部特征值;(3)把所得的特征值逐个代入方程组(2.5.1)式, 对于每一个特征值, 解方程组(2.5.1)式,求出一组基础解系, 它们就是属于这个特征值的几个线性无关的特征向量在基n ζζζ,,,21 下的坐标, 这样, 我们也就求出了属于每个特征值的全部线性无关的特征向量.矩阵A 的特征多项式的根有时也称为A 的特征值, 而相应的线性方程组(2.5.1)式的解也就称为A 的属于这个特征值的特征向量.3 矩阵的应用3.1矩阵的高次幂3.1.1 矩阵的幂定义1 设方阵n n ij a A ⨯=)(, 规定.,,0为自然数个k A A A A E A k k⋅⋅⋅==k A 称为A 的k 次幂.方阵的幂满足以下运算规律(假设运算都是可行的): (1) );,(为非负整数n m A A A n m n m +=(2) .)(mn n m A A =注意: 一般地,,)(m m m B A AB ≠ m 为自然数命题1 设B A ,均为n 阶矩阵,,BA AB = 则有,)(m m m B A AB = m 为自然数,反之不成立.3.1.2 矩阵高次幂的求法矩阵方幂在高等代数题解、矩阵稳定性讨论及预测、控制等方面有广泛的应用,它的求解原理贯穿于代数教学过程的始终,可以用到矩阵各方面的知识.其计算量往往较大,但方法适当,可大大简化其计算难度.本文将给出六种求矩阵方幂地方法.3.1.2.1 利用凯莱——哈密尔顿(Cayley —Hamilton )定理求方阵的幂定理1 (Cayley —Hamilton 定理)设A 是n 阶矩阵,)(λf 是A 的特征多项式,则0)(=λf . 设A 是数域P 上n 阶方阵,其特征多项式为)(λf ,为求A n(n 是正整数),令n g λλ=)(,做带余除法,)()()()(λλλλr q f g +=.由定理1知,)()(λλr g =,并且)(λr 的次数小于)(λg 的次数,进而可得n r g A =A =A )()(.利用上定理求幂时在计算过程中可分为两种情形:1、所求矩阵的幂指数相对较低,可直接利用定理1及余式定理求出)(λr .例1 已知 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=101121002A ,求5A .解 令5)(λλ=g 矩 阵A 的 特 征 多 项 式 为)1()2(11121002)det()(2--=-----=A -I =λλλλλλλf 做带余除法,6811649)1750)(()(225+-+++==λλλλλλλf g 于是,由定理1知I +A -A =I +A -A ++A +A A =A =A 68116496811649)1750)(()(2225f g⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1000100016810112100211610334300449 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=10313132310032 2、所求矩阵的幂指数相对较高,不便用上法直接求出余式.此种情形下矩阵的特征多项式有重根和无重根时分别给出下面的解法.(1)矩阵的特征多项式无重根.对于i ni i c q f r q f g λλλλλλλ∑=+=+=1)()()()()()(,以其n 个不同的特征值分别代入此式即可求出)(λr .例2 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A 211110101,求991003A -A .解 令991003)(λλλ-=g .矩阵A 的特征多项式为)3)(1(211110101)det()(--=-------=A -I =λλλλλλλλf .做带余除法,注意到)(λf 的次数是3,即c b a q f g +++=-=λλλλλλλ299100)()(3)(. 以3,1,0=λ分别代入上式得0)0(==c g .2)1(-=++=c b a g .039)3(=++=c b a g . 所以0,3,1=-==c b a .由定理1 ,A -A =I +A +A =A -A =A 33)(2299100c b a g⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0000110112111101013631321312.(3)矩阵的特征多项式有重根.同上法,为获得足够的信息求出)(λr ,可对)()()()(λλλλr q f g +=求导.例3 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=A 210111111,求100A .解 A 的特征多项式是)2()1()det()(2--=A -E =λλλλf 令100)(λλ=g ,做带余除法0122)()()(b b b q f g +++=λλλλλ以2,1=λ分别代入上式,有⎩⎨⎧=++==++=100012012234)2(1)1(b b b g b b b g 为求)2,1,0(=i b i ,就)(λg 对λ求导得10012'2'1002)()()()]1()2)(1(2[)(λλλλλλλλλ=+++-+--=b b q g q g 以1=λ代入上式,有100212=+b b ,从而求得 1000201110022102,3022,2201-=-=-=b b b , 于是 I +A +A =A0122100b b b .3.1.2.2 对于秩为1的n 阶方阵A 有下面定理定理1 对于n 阶方阵A,若1)(=A rank ,那么A 可分解为一个列向量与一个行向量的乘积'αβ=A ,其中⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n n b b b b a a a a .,.321321 βα.例4 已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A 1233321231211,求n A . 解 显然1)(=A rank ,并且⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A 1233321231211⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3121132`1,而331211321=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡,所以⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A =⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A ---123332123121133312113213111n n n n .3.1.2.3 可分解为数量矩阵和零幂矩阵之和的情况要点 观察推敲矩阵A ,看其是否可以分解为一个数量矩阵E λ与一个零幂矩阵P 之和,即P +E =λA ,其中O m ≠P ,但O m =P+1,因为数量矩阵E λ和P 可以交换,于是由二项式定理得m m n kn n k k n nk k k n nk nnm n n k n k n A P ⎪⎪⎭⎫ ⎝⎛++P +=P ⎪⎪⎭⎫ ⎝⎛=P E ⎪⎪⎭⎫ ⎝⎛=P +E =---=-=∑∑λλλλλλ 100)()(.例5 已知矩阵,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2000420000210042A ,求n A . 解 观察矩阵A 的特点,可先将其分块写成⎪⎪⎭⎫ ⎝⎛=C O O B A ,其中⎪⎪⎭⎫ ⎝⎛=2142B ,⎪⎪⎭⎫⎝⎛=2042C ,则⎪⎪⎭⎫ ⎝⎛=n nn C OO B A ,下面就先求n B 和nC . 显然1)(=B r ,即pq B =,这里⎪⎪⎭⎫⎝⎛=12p ,⎪⎪⎭⎫⎝⎛=21q ,且4=qp ,所以B B n n 14-=. 至于P +E =⎪⎪⎭⎫⎝⎛+E =⎪⎪⎭⎫ ⎝⎛=2004022042C ,⎪⎪⎭⎫ ⎝⎛=P 0040满足O P =2,代入上述给出的二 次项式公式⎥⎦⎤⎢⎣⎡⋅=P +E =P E +E =+E =---nn nn n n nnnn n n P C 2024222)2()2()2(111. 因此本题得解 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅=---n n n n n n n A 2024200004200442111. 3.1.2.4 归纳法例6 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101αβαA ,求其n 次幂. 解 先来计算A 的较低次幂2A 和3A ,由矩阵乘法直接计算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=10021022122αβααA ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=100310333123αβααA ,……由此猜想⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=100102)1(12αβααn n n n n A n. 以下用数学归纳法加以证明. (1)当1=n 时成立.(2)归纳假设结论对k n =时亦成立,即⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=100102)1(12αβααk k k k k A k . 所以当1+=k n 时,A A Ak k =+1,而⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+(++++(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=100)110)1(2)1()11100101100102)1(122αβαααβααβααk k k k k k k k k k A A k , 即当1+=k n 时成立,从而证明结论成立.即⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=100102)1(12αβααk k k k k A k. 3.1.2.5 利用相似变换法要点 若已知矩阵可以经过相似变换化为对角阵时,即存在可逆矩阵P ,使Λ=AP P -1,其中Λ为对角阵,其对角线上元素为矩阵A 的特征值.由上可得1-PΛP =A ,1-P PΛ=A n n .于是求A的方幂就转化为求过渡矩阵P 和对角阵nΛ,而对于P 和阵nΛ,我们应用代数知识要好求得多了,具体如下:例7 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A 122212221,求其n 次幂. 解 经过计算,矩阵A 的特征值1-=λ和5=λ,对于特征值1-=λ有线性无关特征向量T )101(1-=α和()3011Tα=-()T 1102-=α.对于特征值5=λ有特征向量()T 1113=α.令()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==P 111110101,,321ααα,即P 可逆,且有,5000)1(000)1(,5000100011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=Λ=AP P -n n n n 于是.,11--P PΛ=A PΛP =A nn计算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-+-+-+-+-+-+-=A ++++++n n nn n n n n n n nn n n n n nn n 52)1(5)1(5)1(5)1(52)1(5)1(5)1(5)1(52)1(31111111.3.1.2.6 利用Jordan 标准形例8 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=A 411301621,求k A .解 第一步:首先求矩阵A 的若尔当标准形.由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+=A -E 2)1(0001000141131621λλλλλλ.从而初等因子为)1(-λ,2)1(-λ,故A 的若尔当标准形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001J .第二步:求可逆矩阵T 使J AT T =-1,即TJ AT =.设),,(321ααα=T ,所以有332211,,αααααα=A =A =A .由22αα=A 得32)(αα-=A -E ,设()Tx x x 3212,,=α,()Ty y y 3213,,=α,则由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=A -E 3221321000311622311311622)(y y y y y y y , 而32)(αα-=A -E 有解,故32y y =,又33αα=A ,从而0)(3=A -E α即0311311622321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---y y y , 于是有03321=-+y y y ,所以得212y y =.令132==y y ,则21=y .于是T )112(3=α,再解T )001(2-=α.于是求得()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==101100213,,321αααT . 第三步:由第二步得1-=A TJT .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==A -k k k k k k k kk k TTJ k k 31316221010311110100100011011002131.3.2 解线性方程组3.2.1线性方程组的有解判定定理定理1 (克拉默法则) 如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (4.2.1)的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211的行列式,0≠=A d 那么线性方程组(4.2.1)有解,并且解是唯一的,解可以通过系数表为,,,,2211dd x d dx d d x n n ===其中j d 是矩阵A 中第j 列换成方程组的常数项n b b b ,,,21 所成的矩阵的行列式,即.,,2,1,1,1,121,221,22111,111,111n j a a b a a a a b a a a a b a a d nnj n nj n n nj j nj j j==+-+-+- 定理(线性方程组的有解判定定理) 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********有解的充分必要条件为它的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=sn s s n n a a a a a a a a a A 212222111211与增广矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=s sns s n n b a a a b a a a b a a a A 21222221111211有相同的秩.3.2.2 线性方程组一般形式的运用例9 求下述齐次线性方程组的一个基础解系⎪⎪⎩⎪⎪⎨⎧=+++-=++-+-=---+-=+-+-0931050320117630426354321543215432154321x x x x x x x x x x x x x x x x x x x x把方程组的系数矩阵经过初等行变换化成阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------000000000078100650219131051312111716341263于是方程组的一般解为:⎩⎨⎧+=--=543542178652x x x x x x x 其中542,,x x x 是自由未知量.令0,0,1542===x x x 得)0,0,0,1,2(1=η 0,1,0542===x x x 得)0,1,8,0,5(2-=η 1,0,0542===x x x 得)1,0,7,0,6(3-=η 这里321,,ηηη就是方程组的一个基础解系.例10 解线性方程组:⎪⎪⎩⎪⎪⎨⎧-=++-+-=++-+-=---+-=++-+2573431272327225354321543215432154321x x x x x x x x x x x x x x x x x x x x解 把此方程组的增广矩阵经过初等行变换化成阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------000000666100121010875001000000666100545110112111257343112111721132712253从而得到此方程组的一般解为:⎪⎩⎪⎨⎧-+=---=-+=66662875543542541x x x x x x x x x 其中54,x x 是自由未知量. 对于方程个数与未知量个数相等的非齐次线性方程组,如果它的系数行列式不为零,我们还可以用克莱姆法则求解.但是这种方法计算量很大,因此我们一般不用它,只是对少数字母系数的方程组采用克莱姆法来进行求解.例11 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=++-=+--=+--321934443522134321432143214321x x x x a x x x x x x x x x x x x 求当a 为何值时方程组有解?此时有多少解?解 把方程组的增广矩阵经过初等行变换化成阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------00000340000211001131132211193444352211311a a ⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------00000340000211001131132211193444352211311a a 显然,当34≠a 时,方程组无解;当34=a 时,方程组无解,此时由于阶梯形矩阵的非零行有2行,而未知量有4个,所以方程组有无穷多个解,易求出一般解为⎩⎨⎧+-=+-=27443421x x x x x 其中42,x x 是自由未知量.3.3 解矩阵方程矩阵方程是矩阵运算的一部分,这里我们主要讨论如何求解矩阵方程的问题.掌握简单的矩阵方程的求法,对于求解复杂的矩阵方程有很大帮助.简单的矩阵方程有三种形式:.,,C AXB C XA C AX ===如果这里的A 、B 都是可逆矩阵,则求解时需要找出矩阵的逆,注意左乘和右乘的区别.它们的解分别为.,,1111----===B A X CA X C A X例如,求解方程C AC =先考察A 是否可逆,如果A 可逆时,方程两边同时左乘1-A ,得,11C A AX A --=即,1C A X -=这里要注意只能左乘不能右乘,因为矩阵的乘法不满足交换律.同样,对于方程,C XA =只能右乘1-A ,得,11--=CA XAA 即.1-=CA X 而对于方程,C AXB =只能是左乘1-A 而右乘1-B ,得,1111----=CB A ACBBA 即.11--=CB A X看下面解矩阵方程例题:例12 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡315432343122321X 解 先求出1-A ,则,111253232313431223211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=332123315432111253232313154321343122321X 例13 ⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡212101343122321X解 先求出1-A ,则,111253232313431223211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-则⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-27525120111253232312121013431223212121011X 例14 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡3154321325343122321X解 先求出1-A ,则,111253232313431223211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-532113251, 则⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=--532131543211125323231132531543234312232111X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=131148735331332123当矩阵方程C AXB C XA C AX ===,,中的A 、B 不是方阵或者是不可逆的方阵时,前面的方法就不能用了.这时,我们需要用待定元素法来求矩阵方程.设未知矩阵X 的元素为ij x ,即)(ij x X =,然后由所给的矩阵方程列出ij x 所满足的线性方程组,通过解线性方程组求出所有元素ij x ,从而得到所求矩阵)(ij x X =.例15 解矩阵方程⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-4152102011X解 利用元素法,先确定X 的行数等于左边矩阵的行数3,X 的列数等于积矩阵的列数2,则X 是23⨯的矩阵.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2221y y y x x x X ,则⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-41521020112121y y y x x x. 即⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++--4152222111y y x x y y x x ,于是得方程组⎪⎪⎩⎪⎪⎨⎧=+=+=-=-4212522211y y x x y y x x . 解得⎪⎪⎩⎪⎪⎨⎧-=-=-=-=y y x x y y x x 2421522211,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=y y y x x x X 245212,其中y x ,为任意实数.例16 解矩阵方程,C AX =其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=031334213A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7577111793C . 解 由于0=A ,所以A 是不可逆矩阵,需要用元素法求解.设,222111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=z y x z y x z yxX 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--7577111793031334213222111z y x z y x z y x,即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-+-+-+-+-+-7577111793323334334334232323111212121212121z z y y x x z z z y y y xx x z z z y y y x x x .比较第一列元素得⎪⎩⎪⎨⎧=+=+-=+-73133432312121x x x x x x x x ,解得⎩⎨⎧-=-=9537121x x x x 同样,比较第二、三列元素可得对应方程组,分别解得7537,3535121121-=-=-=-=z z z z y y y y ,所以可得 ⎥⎦⎤⎢⎣⎡------=7573535953711111`1z z y y x x X ,其中111,,z y x 是任意实数. 总之,对于矩阵方程,当系数矩阵是方阵时,先判断是否可逆.如果可逆,则可以利用左乘或右乘逆矩阵的方法求未知矩阵,如果方阵不可逆或是系数矩阵不是方阵,则需要用待定元素法通过解方程确定未知矩阵.3.4 矩阵对角化方法3.4.1 讨论对于有n 个特征单根的n 阶方阵3.4.1.1 基本原理引理1 设A 是秩为r 的n m ⨯阶矩阵,且()n TE A−−−→−行初等变换⎪⎪⎭⎫ ⎝⎛*--n r n mr n rmP D )()(0 其中D 是秩为r 的行满秩矩阵,则齐次线性方程组0=AX 的一个基础解系即为矩阵P 所含的r n -个行向量),,2,1(r n i i -= ξ.引理2 矩阵A 的特征矩阵)(λA 经过一系列行初等变换可化为上三角形的λ-矩阵)(λB ,且)(λB 的主对角线上元素乘积的λ多项式的解为矩阵A 的全部特征根.引理3 对于数域P 上的n 阶方阵A ,若A 的特征多项式在P 内有n 个单根,则由特征向量构成的n 阶可逆矩阵T ,使得⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n AT T λλλ211定理1 若数域P 上的n 阶方阵A 的特征多项式)(λf 在P 内有n 个单根,则A 可通过如下方法对角化:设()())()()(,)(λλλλλQ B E A A E A n TT T −−−→−-=行初等变换且)()1λB 为上三角形矩阵,则有方阵A 的特征根i λ即为)(λB 中主对角线上各个元素乘积的解;)2对于方阵A 的每一个特征根i λ,总有)(i B λ中零行向量所对应的)(i Q λ中的行向量i ξ与之对应.3.4.1.2举例说明例17 设⎪⎪⎪⎭⎫ ⎝⎛=210131012A ,问方阵A 是否可以化为对角形,若可以,求出其对角化后的方阵.解 ()⎪⎪⎪⎭⎫ ⎝⎛-------=100210010131001012)(λλλλE A T−−−−−−→−第一行与第二行互换⎪⎪⎪⎭⎫ ⎝⎛-------100210001012010131λλλ −−−−−−−−−→−-行上乘以第一行再加到第二)2(λ⎪⎪⎪⎭⎫ ⎝⎛---+-+----10021002125500101312λλλλλλ−−−−−−→−第二行与第三行互换⎪⎪⎪⎭⎫ ⎝⎛-+-+------02125501002100101312λλλλλλ −−−−−−−−−−→−+-行上乘以第二行再加到第三)55(2λλ⎪⎪⎪⎭⎫ ⎝⎛+----------5521)4)(2)(1(001002100101312λλλλλλλλ =())()(λλQ B由题意知)4)(2)(1(---λλλ=0⇒11=λ,22=λ,43=λ ,此时方阵A 有3个特征单根,故方阵A 可以化为对角形;将11=λ代入)()(λλQ B 和中知)(λB 的第三行为零,由定理1知)(λQ 的第三行向量)1,1,1(-即为属于1λ的特征向量,同理可知)1,2,1(),1,0,1(-分别为属于32λλ和的特征向量.于是可得⎪⎪⎪⎭⎫ ⎝⎛--=111201111T ,使得⎪⎪⎪⎭⎫ ⎝⎛=-4211AT T .3.4.2 讨论对于有特征重根的n 阶方阵对于有特征重根的方阵,可以通过上述方法将其化为上三角形矩阵,接着再对上三角形矩阵施行一系列初等变换将其化为对角形矩阵,这样就避免了上三角形矩阵中非零行向量可能不构成行满秩的情形. 3.4.2.1基本定理定理2 设TT A E A -=λλ)(,则()())()()(λλλP D E A T −−−→−初等变换且)(λD 为对角形矩阵,则有)1对于A 的每个特征根i λ,)(i P λ中与)(i D λ的零行对应的行向量即为属于i λ的特征向量;)2设s λλλ ,,21为A 的所有不同的特征根,重数分别为s r r r ,,21,则A 可以化成对角形⇔)(i D λ中的零行数目等于i λ的重数),,2,1(s i r i =.由此我们不难得到对于有特征重根的方阵化为对角形方阵的简单步骤如下:)1作()()())()()()()(λλλλλP D Q B E A T −−−→−−−−→−初等变换行初等变换,其中))(),(),(()(21λλλλn d d d diag D =,则A 的特征根恰为0)()()(21=λλλn d d d 的根;)2若A 的特征根全在P 内,且每个i λ有)(i D λ中零行数目等于i λ的重数,则A 可以化为对角形方阵,否则A 不可以化为对角形方阵;)3对于每个特征根i λ,在)(i P λ中取出与)(i D λ中零行对应的行向量),,,(21im i i P P P 得A属于i λ的特征向量且都是线性无关的. 3.4.2.2 举例说明例18 ⎪⎪⎪⎭⎫⎝⎛-=110111110)1A ; ⎪⎪⎪⎭⎫ ⎝⎛--=100112001)2B问方阵A 和B 是否可以化为对角形,若可以,试求出其对角化后的方阵.解 ()⎪⎪⎪⎭⎫ ⎝⎛------=10011101011100101)()1λλλλE A T−−−−−−→−第一行与第三行互换⎪⎪⎪⎭⎫ ⎝⎛------00101010111100111λλλ−−−−−−−−→−-行上乘以第一行再加到第二)1(⎪⎪⎪⎭⎫ ⎝⎛------0010111020100111λλλλ−−−−−−−→−行上乘以第一行再加到第三λ⎪⎪⎪⎭⎫ ⎝⎛-------λλλλλλλ0110110201001112 −−−−−−−−→−-二行上)乘以第三行再加到第(1⎪⎪⎪⎭⎫⎝⎛---------λλλλλλλ011011110111122−−−−−−−−−→−-三行上)乘以第二行再加到第(1λ⎪⎪⎪⎭⎫⎝⎛++------------112)1(001111010*******λλλλλλλλλ−−−−−−−−−→−-列上乘以第二列再加到第三)(2λ⎪⎪⎪⎭⎫ ⎝⎛++----------+--112)1(00111010100111222λλλλλλλλλ−−−−−−−−−−→−-+-列上乘以第一列再加到第三)1(2λλ⎪⎪⎪⎭⎫ ⎝⎛++----------112)1(0011101010001122λλλλλλλ−−−−−−→−第二行加到第一行上⎪⎪⎪⎭⎫⎝⎛++------------112)1(001110101100122λλλλλλλλ())()(λλP D =由题意知0)1(2=-λλ⇒01=λ,)(12二重=λ,因为)(2λD 中零行数目≠1等于2λ的重数,故A 不可以化为对角形方阵.)2 ()⎪⎪⎪⎭⎫ ⎝⎛--+-=100110010010001021)(λλλλE A T2014届数学与应用数学专业毕业(论文)第 23 页 共 24页−−−−−−→−第二行与第三行互换⎪⎪⎪⎭⎫ ⎝⎛+---010*********001021λλλ −−−−−−−−−→−+行上乘以第二行再加到第三)1(λ⎪⎪⎪⎭⎫ ⎝⎛+----1101001001100010212λλλλ −−−−−−−−−→−-列上乘以第二列再加到第三)1(λ⎪⎪⎪⎭⎫ ⎝⎛+----110100100010001)1(2212λλλλ −−−−−−−−→−-列上乘以第一列再加上第三)2(⎪⎪⎪⎭⎫ ⎝⎛+---1101001000100010212λλλ −−−−−−−→−行上乘以第二行再加到第一2⎪⎪⎪⎭⎫ ⎝⎛+---1101001000102010012λλλ())()(λλP D =. 由题意知0)1)(1(2=--λλ⇒)(11二重=λ,12-=λ,此时)(1λD 中零行数等于=21λ的重数,故B 可以化为对角形方阵;将11=λ代人)()(λλP D 和中知)(λD 的第一行和第三行为零,由定理2知)(λP 的第一行向量)2,0,1(和第三行向量)2,1,0(即为属于1λ的特征向量,同理可知)0,1,0(为属于2λ的特征向量.由此可知⎪⎪⎪⎭⎫ ⎝⎛=022110001T 使得⎪⎪⎪⎭⎫ ⎝⎛-=-1111BT T .结 论通过以上对矩阵的学习,我们知道,想要在学习过程中灵活应用矩阵思想,首先要理解矩阵思想,在此基础上,遇到难解的数学问题,能发现矩阵是可以解决此类问题的关键,最后能正确无误的利用矩阵思想把数学问题得以解决.矩阵是代数特别是线性代数的一个主要研究对象,他对于研究矩阵的相关运算、解线性与非线性方程组、特征值和特征向量的求解方法、对角化及二次型矩阵、求解矩阵高次幂等重要问题都有极为广泛的应用.杨灿:矩阵及其应用参考文献[1]李志慧,李永明.高等代数中的典型问题与方法[M].科学出版社,2008.205-211[2]王萼芳,石生明.高等代数(第三版).高等教育出版社[3] 张禾瑞.高等代数(第五版)[M].北京:高等教育出版社,2007[4] 吕林根,许道子.解析几何[M].北京:高等教育出版社,2006[5] 许以超.线性代数与矩阵[M].北京:高等教育出版社,1992[6] 李师正.高等代数解题方法与技巧[M].北京:高等教育出版社,2004[7] 徐仲,张凯院,陆全,冷国伟.矩阵论简明教程[M].北京:科学出版社,2005[8] 贾美娥.矩阵的秩与运算的关系[J].赤峰学院学报,2010,26(9):3-4[9] 钟成义,肖宏儒.方阵秩与零特征值代数重数相关性探讨[J].高等数学研究.2009,12(1):96-97[10] 史明仁. 线性代数600证明题详解[M]. 北京科学技术出版社.1985[11] 徐德余.高等代数(第二版)[M].四川大学出版社.2005:175-178[12] 丘维声. 高等代数[M]. 北京: 高等教育出版社, 1996[13] 赵树嫄. 线性代数(第三版[M]). 北京: 中国人民大学出版社, 2006[14] 程云鹏.矩阵论[M].第二版.西安:西北工业大学出版社,2002[15] 赵树塬.线性代数[M].北京:中国人民大学出版社,1997[16] 李君文.线性代数理论与解题方法[M].长沙 :湖南大学出版社,2002致谢从上学期选题、收集资料到这学期写开题报告,完成初稿,到定稿,期间几个月历经喜悦、聒噪、痛苦、彷徨,在写论文时心情如此复杂,到今天随着论文的完成,都落下了帷幕.在此论文撰写过程中,要特别感谢我的导师向以华老师的指导与督促,同时感谢他的谅解与包容.没有老师的帮助也就没有今天的这篇论文.求学历程是艰苦的,但又是快乐的.感谢我大学所有教过的老师,谢谢他们在这四年中的教诲.在这四年的学期中结识的各位生活和学习上的挚友让我得到了人生最大的一笔财富.在此,也对他们表示衷心感谢.本文参考了大量的文献资料,在此,向各学术界的前辈们致敬!第24页共24 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵分析在电路中的应用
本人主要通简单的实例,进行浅显地说明矩阵在求解方程过程中的应用:第一,通过矩阵进行相容方程的求解;第二,通过矩阵进行不相容方程的求解;其中,在不相容方程的求解过程中,会涉及到广义逆矩阵、伪逆矩阵以及矩阵的满秩分解。
在具有实际物理背景下的有关方程组能够通过矩阵的理论知识,得到、高效地求解。
一、 矩阵在相容方程求解中的应用
已知n 元线性方程组如下表示:
11112211
21122222
1122...............n n n n n n nn n n
a x a x a x
b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨
⎪⎪+++=⎩ 其矩阵的表达形式如下:
111112*********
2n n n n nn n n x b a a a a a a x b a a a x b ⎡⎤⎡⎤
⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 矩阵A 可记为
1112121
2221
2
n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦
如果矩阵A 满秩,且非矛盾方程,则可以通过消元法计算出每个未知量。
见如下示例:
例1设桥式电路中闭合回路的电流分别为
3
21I I I 、、,如图2所示:
图2
已知14
,1,2,1,1,254321======E R R R R R ,计算流过中央支路AB 的电
流AB I .
解:由基尔霍夫第二定律(电压定律)得如下方程组:
⎪⎩
⎪
⎨⎧=-+-=-+-+=-+-+E
I I R I I R I I R I I R I R I I R I I R I R )()(0)()(0
)()(2341321253242331221511
即
⎪⎩⎪
⎨⎧=+--=-+-=--14
3202404321
321321I I I I I I I I I
同样计算如下几个行列式
2132124
1
114=------=A
8432
1424
1101=----=D
1263
14120
11042=----=D 210
14
2104
1
0143=----=D 所以
10,6,4332211======
A
D I A D
I A D I
从而,流过中央支路AB 的电流为221-=-=I I I AB . 即电流是从B 流向A 的.
二、 矩阵在不相容方程组求解中的应用
但是在实际问题中,会出现A 不满秩,需要根据实际情况补充相关的方程,使得方程封闭;同时,在求解的实际问题当中,可能会出现矛盾方程,因为这些系数不是通过理论的推导得到,而是经过数值的计算或是实验的测量,往往不是精确解。
如何才能得到满足精度要求,且得到最优的解。
这就用到矩阵的广义逆相关理论知识。
若线性方程组Ax b =,对于任意m 维向量()b R A ∈,有使解x A b -=成立的A -存在时,便称A -为A 矩阵的广义逆矩阵。
广义逆矩阵应满足AA A A -=。
设,,m n n A C b C ⨯∈∈n 维向量0x 满足对于任何一个n 维向量x ,都有
22
0Ax b Ax b -≤-
便称0x 是方程组Ax b =的一个最小二乘解。
x A b -=是方程组的最小二乘解,其中广义逆矩阵A -还需满足Penrose-Moore 方程(1)、(3)。
即满足()H
AA AA --=、()H
A A A A --=。
有了广义逆便可以得到矛盾方程的最小二乘解,也就是可以得到一组近似解,该近似解带入原方程后,与方程右端b 向量的误差最小。
通过广义逆,可以求解矛盾方程,但是对于一个确定的矩阵(对应一个方程组)有着多个符合上述条件的广义逆矩阵,这样带来新的问题便是如何在这多组最小二乘解中确定一组最优解。
矩阵分析给出了最佳最小二乘解,也就是所有最小二乘解中,解向量模长最小的一组解。
{}0min u x =,则u 为最佳最小二乘解。
在求解最佳最小二乘解时,需要系数矩阵A 的伪逆矩阵A +。
伪逆矩阵是唯一的,这也对应着最佳最小二乘解唯一性。
把满足Penrose-Moore 4个方程的矩阵定义为伪逆矩阵。
伪逆矩阵A +的求法一般通过矩阵A 的满秩分解A=BC ,得到矩阵B 、C ,然后
以某一算法求得对应的伪逆矩阵,一般通过A +=()()
1
1
H H H
H C CC B B B --得到伪逆
矩阵。
通过一个示例给出矩阵的满秩分解方法, 例2求矩阵
1415
6200014124012
6557A -⎡⎤
⎢⎥-⎢
⎥=⎢⎥
--⎢⎥
--⎣⎦ 的满秩分解。
解:对矩阵A 只做初等行变换
1000
71415610
290
10
20001477124015
25001
7
72
65
5
70
000
0A -⎡⎤⎢
⎥-⎡⎤⎢⎥⎢⎥-⎢⎥
⎢
⎥=→⎢⎥⎢⎥--⎢⎥⎢⎥--⎢
⎥⎣⎦⎢⎥⎣⎦
注意将矩阵化为阶梯型矩阵,且每行首元素为1,并且该元素1所在列的其他元素必为0。
然后以主元所在列对应变换前的矩阵A 的各列向量构成矩阵B
1
412001242
65B -⎡⎤⎢⎥⎢
⎥=⎢⎥
--⎢⎥-⎣⎦
以阶梯矩阵主元所在行向量构成矩阵C
1000710
29010
77525001
77C ⎡
⎤
⎢⎥-⎢
⎥⎢⎥
=⎢⎥⎢⎥⎢⎥⎣
⎦
容易验证A=BC
在构造B 矩阵时,若所化简的阶梯阵形式不同,则所选取的列向量会有差别,这也导致了矩阵的满秩分解不唯一。
那么,是否与伪逆矩阵的唯一性相协调?
虽然,矩阵的满秩分解不唯一,如11A BC B C ==,但由BC 以及11B C 求得的伪逆矩阵是唯一的。
即()()
()()1
1
11
H
H H
H
H
H H H 1
11
1
11C CC B B B C
C C B
B B ----=。
现给
出证明, 证明:
若11A BC B C ==,则H H 11BCC B C C =,
易知H rank rank C CC r ==(r 也为矩阵A 的秩),H r r r CC C ⨯∈, 则()1H H 1111B B C C CC B θ-== (1)
记()
1
H
H 11C C
CC θ-=
同理可知()
1
H
H 1121C B B
B B
C C θ-==, (2)
记()1
H H 21B B B B θ-=
将式(1)、(2)带入11BC B C =可得111121B C B C θθ= 则有H H H H 1111111211B B C C B B C C θθ= 因此12θθ=E
再将()1
H H 1111B B C C CC B θ-==、()1
H H 1121C B B B B C C θ-==带入到
()
()
1
1
H H H
H C CC B B B --
可得
()
()()
()1
1
1
1
H H H H H H H H 111111C CC B B B C C C B B B ----=
通过以上内容介绍了矩阵在方程求解过程的应用。
. .。