数据分析论文
数据分析方法论文15篇(土工实验数据分析方法探讨)

数据分析方法论文15篇土工实验数据分析方法探讨数据分析方法论文摘要:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
这一过程也是质量管理体系的支持过程。
在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。
数据分析是数学与计算机科学相结合的产物。
关键词数据分析方法数据论文数据数据分析方法论文:土工实验数据分析方法探讨【摘要】土工实验是进行土木工程的重要前提条件,其能够为施工建设提供可靠的数据支持,能够有效防止工程建设中可能存在的潜在危险事故。
本文对其数据涉及的内容进行分析,分析了实验准确性的因素,进而提出相应的方法应用,希望可以为土工实验的发展提供借鉴。
【关键词】土工实验;实验数据;数据分析;分析方法一、引言在进行实验过程中,由于土体本身所具有的复杂性,土质质检所存在的物理学特性以及采样、运输、存储等等方面所表现出来的特点,都容易对数据造成一定程度的干扰,致使实验的结果出现误差。
另外,因为实验本身受到很多因素的干扰,也同样容易发生数据偏差的问题。
因此,本文着重从实验数据所涉及的内容,影响实验数据的因素,以及提升实验准确率的角度出发,对土工实验数据分析方法进行探讨。
二、土工试验数据所涉及内容(一)土的比重实验。
土工试验过程中,土的比重实验是非常重要的。
一般来说,地域相同或者相近,那么土的比重也将会比较相近。
但是,因为在实际操作中,其整个的操作流程比较复杂,所以不同的单位会采用本地所出具的或者考察的相关数据直接进行比重实验,这样容易导致实验数据的误差存在。
(二)土的密度实验。
通过土的密度实验可以详细的了解土的组成,可以了解其组成成分的性质,能够为之后的施工提供更多的参考。
土的密度与土粒的重量、孔隙体积、孔隙大小、孔隙水重等等内容息息相关,能够反映土的组成和基本结构特征。
统计学分析论文统计学数据分析

统计学分析论文统计学数据分析统计学分析论文篇1浅析加强统计学习提高统计分析水平【关键词】统计分析统计学习企业提高一、统计分析的重要性和作用完整的统计分析工作,通常都是通过综合运用统计数据进行统计分析工作,统计工作的作用是非常突出的,它可以充分发挥统计信息的咨询和监督职能,提高统计服务质量水平。
从而使统计分析在统计工作中占据着非常重要的地位。
从某种意义上说,统计分析的水平,在一定程度上可以反映一个单位的统计工作水平,是衡量一个单位统计水平的重要标志,对一个单位的统计分析有重要的阶段性作用。
通过统计分析,统计部门可以发挥优势,发挥与统计部门相关的整体功能的发挥,可以发现统计工作中的新问题,然后进行改革和创新统计工作,可以锻炼和培养出具有高素质的统计专业队伍力量,在统计工作中创造新优势,形成核心竞争力,人才一直是企业竞争的关键因素,综合力量的对比,最终也体现到人才的竞争上面,因此,对于统计工作来说也是一样,要重视对统计专业人才的培养,这样才能保证统计分析工作的正常进行。
二、统计分析技术统计分析技术的核心在于是不是有突破,即:研究的内容是新的,方法也是新的。
这里的统计分析技术强调的是创新,新的内容,新的方法,新的理念,等等,只有创新才能进行发展,才会有新的突破。
要求的新的内容:要定量分析,把握好经济发展的脉搏,对统计分析技能进行分析和了解,提高预警,预测能力,了解政策取向,在新的形势下,我们必须增加可以反映统计时间的因素,在统计分析中,时间要素很重要,有时候会对结果产生很大的影响。
四句话级别上做文章,抓迹象,看趋势,了解主要矛盾进行定量分析,了解自然现象的统计分析新方法的应用。
统计分析的过程应注意的一些问题。
垂直指数对比,各种相关的目标,反映客观经济现象是好还是坏,大小,速度等,揭露矛盾,找出差距,然后对经济现象进行比较分析。
通过国家,区域经济类型之间的所属单位之间的在同一时间不同的相关指标的具体比较分析。
大数据论文3000字范文(精选5篇)

大数据论文3000字范文(精选5篇)第一篇:大数据论文3000字当人们还在津津乐道云计算、物联网等主题时, “大数据”一词已逐渐成为IT网络通信领域热门词汇。
争夺大数据发展先机俨然成为世界各国高度重视的问题, 其中不乏IBM、EMC.甲骨文、微软等在内的巨头厂商的强势介入, 纷纷跑马圈地, 它们投入巨额资金争相抢占该领域的主动权、话语权。
大数据时代的来临, 除了推动现有的信息技术产业的创新, 其对我们生产生活的方式也将产生重大影响。
从个人视角来看, 不管是日常工作中遇到的海量邮件或是从网上获取的社交、购物、娱乐、学习、理财等信息, 还是生活中最常见的手机存储, 大数据已经渗透到我们日常生活的方方面面, 极大地方便了我们的生活;对企业而言, 互联网公司已开始采用大数据来冲击传统行业, 精准营销与大数据驱动的产品快速迭代, 促进企业商业模式创新;在社会公共服务方面, 教育、医疗、交通等行业在大数据的影响下, 出现了各种新的应用, 数据化、社交化的新媒体平台、智能交通与城市数字监管系统, 以及病历存储调用的医疗云等, 此外, 政府还可以通过大数据来高效完成信息采集, 这样可优化升级管理运营。
然而大数据在给我们展示前所未有的发展机遇的同时, 也给国家信息安全、信息技术、人才等方面带来了很大的挑战。
不久前, 斯诺登披露了美国国家安全局(NSA)一直进行信息监视活动、已收集数以百万计的全球人的信息数据的消息, 在全球范围内掀起轩然大波。
该事件对“大数据”的信息安全敲响了警钟。
大数据让大规模生产、分享和应用数据成为可能, 将信息存储和管理集中化, 我们在百度上面的记录, 无意识阅读的产品广告、旅游信息, 习惯去哪个商场进行采购等这些痕迹, 却不知所有的关系和活动在数据化之后都被一些组织或商家公司掌控, 这也使得我们一方面享受了“大数据”带来的诸多便利, 但另一方面无处不在的“第三只眼”却在时刻监控着我们的行动。
统计学论文(数据分析)

统计学论文(数据分析)统计学论文(数据分析)引言概述:统计学论文是一种重要的学术研究形式,它通过收集、整理和分析数据来揭示数据背后的规律和趋势。
数据分析是统计学论文的核心内容,它可以帮助我们了解数据的特征、关系和趋势,从而为决策提供科学依据。
本文将从数据收集、数据清洗、数据分析方法、结果解释和结论总结五个方面,详细介绍统计学论文中的数据分析过程。
一、数据收集:1.1 选择合适的数据源:在进行数据分析之前,首先需要确定数据的来源。
可以从公共数据库、调查问卷、实验记录等多种渠道获取数据。
1.2 确定数据采集方法:根据研究目的和数据特点,选择合适的数据采集方法。
可以采用观察、实验、调查等方法收集数据。
1.3 确保数据的可靠性和有效性:在数据收集过程中,应注意确保数据的可靠性和有效性。
可以通过多次观察、重复实验、合理设计问卷等方式提高数据的质量。
二、数据清洗:2.1 数据筛选和去除异常值:在数据分析之前,需要对数据进行清洗,筛选出符合研究目的的数据,并去除异常值,以保证数据的准确性和可靠性。
2.2 数据缺失值处理:在数据收集过程中,可能会出现数据缺失的情况。
对于缺失值,可以采用插补方法或者删除缺失数据的方式进行处理。
2.3 数据标准化和转换:为了方便数据的比较和分析,可以对数据进行标准化和转换。
常见的方法包括z-score标准化、对数转换等。
三、数据分析方法:3.1 描述性统计分析:描述性统计分析是对数据进行整体描述和总结的方法。
可以通过计算平均值、标准差、频数等指标,来了解数据的分布和变异情况。
3.2 探索性数据分析:探索性数据分析是通过可视化和图表分析等方法,发现数据中的模式和关系。
可以使用散点图、箱线图、直方图等图表来展示数据的特征。
3.3 推断性统计分析:推断性统计分析是通过对样本数据进行推断,来推断总体的特征和关系。
可以使用假设检验、方差分析、回归分析等方法进行推断。
四、结果解释:4.1 解释分析结果:在数据分析完成后,需要对分析结果进行解释。
统计学论文(数据分析)简版

统计学论文(数据分析)统计学论文(数据分析)引言概述:统计学论文是一种重要的学术研究形式,它通过对数据的收集、整理和分析,揭示数据背后的规律和趋势。
在当今信息爆炸的时代,数据分析在各个领域都扮演着至关重要的角色。
本文将从五个大点出发,详细阐述统计学论文中的数据分析方法和技巧。
正文内容:1. 数据收集1.1 确定研究目标和问题:在进行数据收集之前,研究人员需要明确研究的目标和问题,以便确定需要收集的数据类型和范围。
1.2 设计合适的数据收集方法:根据研究目标和问题,选择合适的数据收集方法,如调查问卷、实验观察、文献研究等,并确保数据的可靠性和有效性。
1.3 确保数据的完整性和准确性:在数据收集过程中,要注意确保数据的完整性和准确性,避免数据缺失和错误对后续分析造成的影响。
2. 数据整理与清洗2.1 数据清洗:对收集到的数据进行清洗,包括删除重复数据、处理缺失值和异常值等,以保证数据的质量和可靠性。
2.2 数据整理:对清洗后的数据进行整理和转换,使其符合分析的要求,如将数据进行分类、排序、归一化等操作。
2.3 数据可视化:通过数据可视化手段,如图表、图像等,将整理后的数据以直观的方式展示出来,帮助研究人员更好地理解数据的特征和趋势。
3. 数据分析方法3.1 描述性统计分析:通过计算数据的中心趋势、离散程度、分布形态等指标,对数据进行描述性统计分析,以了解数据的基本特征。
3.2 探索性数据分析:通过绘制直方图、散点图等可视化图形,探索数据之间的关系和趋势,寻找可能存在的模式和异常点。
3.3 推断统计分析:通过假设检验、置信区间等方法,从样本数据中推断总体的特征和参数,以便对研究问题进行推断和决策。
4. 数据解释与讨论4.1 解释分析结果:根据数据分析的结果,对研究问题进行解释和阐述,指出数据的含义和可能的解释。
4.2 讨论研究发现:在数据解释的基础上,进行深入的讨论和分析,探讨研究发现对理论和实践的意义,提出可能的解决方案和改进措施。
统计学论文(数据分析)

进出口贸易总额对我国GDP增长贡献度的分析一、分析题目:改革开放以来,我国经济取得巨大发展,国内生产总值从1978年的3624。
1亿元增长到2012年的518942.1亿元,增长数度始终保持在7%以上。
同时,进出口规模也在迅速扩大。
2012年,我国进出口总额达到3.8万亿美元,位居全球第一,大约是1978年的186倍,年均增长10%左右,有鉴于此,我们不禁要问对外贸易与我国的GDP有何关系?下面这篇论文就进出口总额对我国GDP增长的贡献度作简要探讨。
【关键词】国内生产总值(GDP)进出口总额二、分析过程(一)、基本概况在国民经济统计中,国内生产总值的核算包含了进出口一项。
这说明国内生产总值的增长与进出口水平的提高是分不开的.为了考察这一问题,我们从2013年统计年鉴中抽选国内生产总值、进出口贸易总额的相关数据,构成了本次考察的36组样本指标:(二)、模型设定1、我们将GDP作为被解释变量,用Y表示.对外贸易额作为解释变量,用X表示。
2、数据性质的选择是:时间序列数据。
3、模型设定为:Y=c+bX+u。
:http://www。
stats。
gov.cn/tjsj/ndsj/((四)、参数估计:我们用Eviews做回归分析.假定模型中随机项满足基本假定,可用OLS(最小二乘估计)法估计其参数。
具体操作:用EVie ws软件,估计结果为:表2:Dependent Variable:YMethod:Least SquaresDate: 12/14/13Time: 21:43Sample:1978 2013Includedobservations:36cient Error51 00 7X 1.428362 0。
179077。
9761440.00006065 var 0AdjustedR-squ ared0.862295S.D。
dependent var 84346.3S。
E. of regression 31299。
统计学论文(数据分析)

统计学论文(数据分析)统计学论文(数据分析)引言概述:统计学是一门研究收集、分析、解释和展示数据的学科。
在现代社会中,数据分析在各个领域中发挥着重要作用,从商业决策到科学研究。
本文将介绍统计学论文中的数据分析部分,重点讨论数据分析的五个关键部分。
一、数据预处理:1.1 数据清洗:对数据进行清洗是数据分析的第一步。
这包括去除缺失值、异常值和重复值等。
清洗后的数据将更加准确可靠。
1.2 数据转换:有时候需要对数据进行转换,例如将连续型数据离散化、对数据进行标准化、对数据进行归一化等。
这样可以更好地适应统计模型的要求。
1.3 数据集成:当数据来自不同的来源时,需要将它们整合到一个数据集中。
这可能涉及到数据的合并、连接和拆分等操作。
二、探索性数据分析:2.1 描述统计分析:通过计算数据的中心趋势和离散程度,可以对数据的特征进行描述。
常用的描述统计指标包括均值、中位数、标准差等。
2.2 数据可视化:通过绘制图表,可以更直观地了解数据的分布、趋势和关系。
常用的数据可视化方法包括直方图、散点图、箱线图等。
2.3 相关性分析:通过计算变量之间的相关系数,可以判断它们之间的相关性。
这有助于发现变量之间的潜在关联和影响。
三、假设检验与推断统计:3.1 假设检验:通过对样本数据进行假设检验,可以判断样本数据是否代表了总体的特征。
常用的假设检验方法包括t检验、方差分析、卡方检验等。
3.2 置信区间估计:通过计算样本数据的置信区间,可以对总体参数进行估计。
置信区间提供了总体参数的范围估计。
3.3 方差分析:方差分析用于比较两个或多个样本之间的差异,判断这些差异是否具有统计学意义。
四、回归分析:4.1 简单线性回归:通过建立一个线性模型,可以研究自变量和因变量之间的关系。
简单线性回归可以用于预测和解释因变量的变化。
4.2 多元线性回归:多元线性回归可以考虑多个自变量对因变量的影响。
通过建立一个多元线性模型,可以更全面地分析变量之间的关系。
开题报告数据分析型论文(3篇)

第1篇一、研究背景与意义随着城市化进程的加快,城市交通拥堵问题日益严重,已经成为制约城市发展的瓶颈。
据统计,我国城市交通拥堵成本已超过1万亿元,直接影响着城市居民的出行效率和生活质量。
因此,研究城市交通拥堵治理策略,对于提高城市交通运行效率、优化城市空间布局、促进城市可持续发展具有重要意义。
二、研究目的与内容1. 研究目的本研究旨在通过大数据分析技术,对城市交通拥堵问题进行深入研究,揭示城市交通拥堵的成因和规律,为政府和企业制定科学合理的交通拥堵治理策略提供理论依据和实践指导。
2. 研究内容(1)城市交通拥堵现状分析通过对城市交通拥堵数据的收集和分析,了解城市交通拥堵的时空分布、拥堵程度、影响因素等,为后续研究提供数据基础。
(2)城市交通拥堵成因分析从交通需求、交通供给、交通管理、城市规划等方面分析城市交通拥堵的成因,为治理策略提供理论支撑。
(3)大数据分析技术在城市交通拥堵治理中的应用探讨大数据分析技术在城市交通拥堵治理中的应用,如智能交通信号控制、交通流量预测、交通诱导等。
(4)城市交通拥堵治理策略研究结合大数据分析结果和国内外成功案例,提出具有针对性的城市交通拥堵治理策略。
三、研究方法与技术路线1. 研究方法(1)文献研究法:查阅国内外相关文献,了解城市交通拥堵治理的最新研究成果。
(2)数据分析法:运用大数据分析技术,对城市交通拥堵数据进行分析。
(3)案例分析法:借鉴国内外城市交通拥堵治理的成功案例,为我国城市交通拥堵治理提供借鉴。
(4)比较分析法:对比不同城市交通拥堵治理策略的效果,为我国城市交通拥堵治理提供参考。
2. 技术路线(1)数据收集:收集城市交通拥堵相关数据,包括交通流量、交通事故、交通设施等。
(2)数据预处理:对收集到的数据进行清洗、整合和标准化处理。
(3)数据分析:运用大数据分析技术,对预处理后的数据进行挖掘和分析。
(4)结果展示:将分析结果以图表、报告等形式进行展示。
(5)策略制定:根据分析结果,制定城市交通拥堵治理策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩评定表课程设计任务书摘要汇率是在商品交易和货币运动越出国界时产生的,是一国货币价值在国际的又一表现。
因为一国货币汇率受制于经济、政治、军事和心理等因素的影响,这些因素彼此之间既相互联系又相互制约,而且在不同时间,各因素产生作用的强度也会出现交替变化,所以很难准确地找出究竟哪些因素影响着一国货币汇率的变化,在开放经济中,汇率是一种重要的资源配置价格。
汇率的失衡或错估,不仅会破坏经济的外部平衡,而且会给国内宏观经济稳定和经济可持续增长带来一系列不利影响。
另外,汇率的变化还能对人们的日常生活和企业的生产销售生产较大的影响。
所以,对影响汇率的因素进行分析和探讨,对于指导汇率政策的制定、预测汇率变化趋势、优化投资策略,以及研究与汇率有关的生活消费等问题都有重要的应用价值。
spss在经济、管理、医学及心理学等方面的研究起着很重要的作用,在我国的国民经济问题中,增加农民收入是我国扩大内需的关键,通过运用SPSS分析方法对我国人民币及其影响因素的相关分析以便能够更好地了解我国的汇率的情况。
关键词:spss;汇率;影响因素;回归目录1问题分析 (1)2数据来源 (1)3数据定义 (2)4数据输入 (2)5变量的标准化处理 (2)5.1描述性分析选入变量及参数设置 (2)5.2描述性分析 (2)5.3描述性分析结果输出 (2)6.1描述性分析选入变量及参数设置 (3)6.2线性回归分析 (4)7进一步的分析和应用 (11)总结 (14)参考文献 (14)汇率影响因素分析1问题分析汇率是在商品交易和货币运动越出国界时产生的,是一国货币价值在国际上的又一表现。
因为一国货币汇率受制于经济、政治、军事和心理等因素的影响,这些因素彼此之间既相互联系又相互制约,而且在不同时间,各种因素产生作用的强度也会出现交替变化,所以很准确地找出究竟哪些因素影响着一国货币汇率的变化。
在开放经济中,汇率是一种重要的资源配置价格。
汇率的失衡或错估,不仅会破坏经济的外部平衡,而且会给国内宏观经济稳定和经济可持续增长带来一系列不利影响。
另外,汇率的变化还能对人们的日常生活和企业的生产销售产生较大的影响。
所以,对影响汇率的因素进行分析和探讨,对于指导汇率政策的制定、预测汇率变化趋势、优化投资策略,以及研究与汇率有关的生产消费等问题都有重要的应用价值。
2数据来源所用数据参考自“人民币汇率研究”(陈瑨,CENET网刊,2005)、“汇率决定模型与中国汇率总分析”(孙煜,复旦大学<经济学人>,2004)和“人民币汇率的影响因素与走势分析”(徐晨,对外经济贸易大学硕士论文,2002),其中通货膨胀率、一年期名义利率、美元利率和汇率4个指标的数据来自于<中国统计年鉴>(2001,中国统计出版社);2000年的部分数据来自于国家统计局官方网站。
3数据定义4数据输入5变量的标准化处理在初始的12个自变量里,变量的取值单位有比率、亿元和亿美元等,度量方式不统一,所以有必要先对它们进行标准化处理。
描述性分析步骤如下:5.1描述性分析选入变量及参数设置依次单击菜单“分析、描述统计、描述”,打开“描述性”对话框,如图1·1所示。
在对话的左侧变量列表框中选择变量“通货膨胀率”、“一年期名义利率”、“美元利率”、“GDP-亿元”、“净出口-亿美元”、“居民总储蓄-亿美元”、“居民消费-亿元”、“外商直接投资-亿美元”、“实使外资-亿美元”、“外汇储备-亿美元”和“外债规模-亿美元”,单击选中按钮,将其选入到左侧的“变量”列表框。
如图1·2所示图1·1图1·25.2描述性分析单击图1·1中的“选项”按钮,打开“描述:选项”对话框,如图1·3所示,依次选择“均值”;在“离散”选项组中选择“标准差”、“最小值”和“最大值”;在“分布”选项组中选择“峰度”和“偏度”;在“显示顺序”选项中选择“变量列表”。
图35.3描述性分析结果输出设置完毕后,单击图1·1对话框中的确定按钮,执行描述性分析。
[数据集1]表1描述统计量结果分析:表1为描述性统计量。
通过观察每个变量的描述性统计信息,可以了解这个变量的极值情况(极大值和极小值)、取值波动情况(标准差)以及分布情况(峰度和偏度)。
从各变量的取值范围来看,相差的数据级很大,所以有必要进行标准化;从峰度、偏度的取值来看(都接近0),各变量都没有过分地偏离正态分布。
6多元线性回归分析本题中的自变量较多,并且它们之间可能存在着共线性问题,所以采用逐步回归分析法多元线性回归分析步骤如下:6.1描述性分析选入变量及参数设置依次单击菜单“分析、回归、线性”命令,打开“线性回归”对话框如图2·1所示,在对话框的左侧变量列表框中选择变量“汇率”,单击选择按钮,将其选入“因变量”列表框;按下ctrl键,同时选中变量“通货膨胀率”、“一年期名义利率”、“美元利率”、“GDP-亿元”、“净出口-亿美元”、“居民总储蓄-亿元”、“居民消费-亿元”、“外商直接投资-亿美元”、“实使外资-亿美元”、“外汇储备-亿美元”和“外债规模-亿美元”,单击选择按钮,将其选入到右侧的自变量列表框,如图2.2所示图2·1图2·26.2线性回归分析在本题中向前逐步法只能在最终模型只保留一个变量,向后逐步法只能在最终模型保留多个变量,可见向后逐步回归法更能充分利用本题中的数据。
单击图2.1中的统计量安缪,打开线性回归:统计量的对话框如图2.3所示,在该对话框中,“回归系数”选项组中选择估计;在残差选项组中选择“Durbin-Watson”;其它复选框中的选择“模型拟合度”和“共线性诊断”再单击图2.1中绘制按钮,打开线性回归图对话框如图2.4所示在左侧变量列表框中选中变量“*ADJPRED”,单击选择按钮,将其选入到“Y”列表框,用同样的办法,将变量“DEPENDENT”选入到“X”列表框;“标准化残差图”选项组选择“正态概率图”。
单击图2.1中的保存按钮,打开线性分析保存对话框,如图2.5所示。
在预测值选项组中选择“未标准化”,在残差选项组中选择“未标准化”、“标准化”和“学生化”;再单击图2.1选项按钮,打开线性回归:选项对话框如图2.6所示。
在默认状态下,回归分析模式包含“在等式中包含常量”选项,若不选此项,则回归模型经过原点。
回归方程是否包含常数项,对某些回归结果的解释将不一样。
“缺失值”选项组中给出处理缺失值的方式,主要有“按列表排除个案”、“按对排除个案”和“使用均值替换”3种。
设置完毕后,单击图2.1的确定按钮,执行多元回归分析。
多元回归分析结果:数据集:[数据集1]模型摘要:模型汇总g模型R R 方调整 R 方标准估计的误差Durbin-Watson1 .999a.999 .995 .153332 .999b.999 .996 .137183 .999c.999 .997 .128014 .999d.998 .997 .125105 .999e.998 .996 .133906 .999f.998 .996 .13597 2.943a. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 通货膨胀率, 居民总储蓄(亿元), 净出口(亿美元), GDP(亿元), 外商直接投资(亿美元), 实使外资(亿美元), 居民消费(亿元)。
b. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 居民总储蓄(亿元), 净出口(亿美元), GDP(亿元), 外商直接投资(亿美元), 实使外资(亿美元), 居民消费(亿元)。
c. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 居民总储蓄(亿元), 净出口(亿美元), GDP(亿元), 外商直接投资(亿美元), 实使外资(亿美元)。
d. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 居民总储蓄(亿元), 净出口(亿美元), GDP(亿元), 外商直接投资(亿美元)。
e. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 居民总储蓄(亿元), GDP(亿元), 外商直接投资(亿美元)。
f. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 居民总储蓄(亿元), GDP(亿元), 外商直接投资(亿美元)。
g. 因变量: 汇率结果分析:从表中可以看出,模型摘要给出了逐步回归的各模型的拟合情况,最终模型的R值、R方直和调整R方值都达到0.99以上,即模型几乎解释了总变异的全部,说明模型的整体拟合效果非常好。
方差分析表残差.143 8 .018总计71.975 156 回归71.808 6 11.968 647.355 .000f残差.166 9 .018总计71.975 15a. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 通货膨胀率, 居民总储蓄(亿元), 净出口(亿美元), GDP(亿元),外商直接投资(亿美元), 实使外资(亿美元), 居民消费(亿元)。
b. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 居民总储蓄(亿元), 净出口(亿美元), GDP(亿元), 外商直接投资(亿美元), 实使外资(亿美元), 居民消费(亿元)。
c. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 居民总储蓄(亿元), 净出口(亿美元), GDP(亿元), 外商直接投资(亿美元), 实使外资(亿美元)。
d. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 居民总储蓄(亿元), 净出口(亿美元), GDP(亿元), 外商直接投资(亿美元)。
e. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 外汇储备(亿美元), 居民总储蓄(亿元), GDP(亿元), 外商直接投资(亿美元)。
f. 预测变量: (常量), 外债规模(亿美元), 一年期名义利率, 美元利率, 居民总储蓄(亿元), GDP(亿元), 外商直接投资(亿美元)。
g. 因变量: 汇率结果分析:从表中可以看出,6个模型回归的均方分别为6.535、7.188、7.896、8.983、10.262、11.968;剩余的均方分别为0.024、0.019、0.016、0.016、0.018、0.018;F检验统计量的观测值分别为277.953、381.967、487.379、573.982、572.309、647.355,相应的概率p值均为0.000,小于0.05,可以认为因变量“汇率”和自变量通货膨胀率、一年期名义利率、美元利率、GDP-亿元、净出口-亿美元、居民总储蓄-亿元、居民消费-亿元、外商直接投资-亿美元、实使外资-亿美元、外汇储备-亿美元、外债规模-亿美元存在线性关系。