《人工智能导论》课程研究报告总结讲解
人工智能课程学习总结了解机器学习和人工智能应用的原理

人工智能课程学习总结了解机器学习和人工智能应用的原理人工智能课程学习总结:了解机器学习和人工智能应用的原理人工智能(Artificial Intelligence,简称AI)是近年来发展迅猛的科学领域,其应用范围涵盖了各行各业。
作为一个具有长期学习和自我适应能力的技术,人工智能对整个社会的影响越来越深远。
在人工智能的核心技术中,机器学习(Machine Learning)起到了至关重要的作用。
在我参加的人工智能课程中,我深入学习了机器学习和人工智能应用的原理,下面是我的学习总结。
一、机器学习的基本原理机器学习是人工智能领域的核心技术之一,它主要通过使计算机系统从历史数据中学习,并利用学习到的知识来进行任务处理和预测。
机器学习的基本原理包括以下几个方面:1. 数据采集与预处理:机器学习需要大量的训练数据,这些数据来源于各个领域和行业。
在数据采集的过程中,我们需要保证数据的准确性和完整性,并进行必要的数据预处理,如数据清洗、去重和标准化等。
2. 特征工程:特征是机器学习中非常重要的因素,它直接影响着模型的性能。
特征工程旨在从原始数据中提取出具有代表性的特征向量,同时去除冗余和无用的特征。
3. 模型选择与训练:机器学习中有多种模型可供选择,如决策树、支持向量机、神经网络等。
在选择模型时,我们需要考虑问题类型、数据规模、计算资源等因素,并通过训练来调整模型参数以优化模型性能。
4. 模型评估与优化:为了评估模型的性能,我们通常会将数据集分为训练集和测试集。
通过对测试集的预测结果与真实结果进行比较,可以评估模型的准确性、召回率、精确度等指标,并根据评估结果对模型进行优化。
二、人工智能应用的原理人工智能应用是机器学习在实际场景中的运用,它可以解决各种复杂的问题,并为人们提供更加智能化的服务和体验。
人工智能应用的原理主要包括以下几个方面:1. 自然语言处理:自然语言处理是指使计算机能够理解和处理人类的语言。
通过使用机器学习和深度学习方法,我们可以构建出强大的自然语言处理系统,实现自动翻译、语音识别、情感分析等功能。
《人工智能导论》课程研究总结

《人工智能导论》课程研究总结题目:BP神经网络的非线性函数拟合班级:姓名:学号:年月日本次作业我负责程序的编写,过程如下Matlab软件中包含Matlab神经网络工具箱。
它是以人工神经网络理论为基础,用Matlab语言构造出了该理论所涉及的公式运算、矩阵操作和方程求解等大部分子程序以用于神经网络的设计和训练。
用户只需根据自己的需要调用相关的子程序,即可以完成包括网络结构设计、权值初始化、网络训练及结果输出等在内的一系列工作,免除编写复杂庞大程序的困扰。
目前,Matlab神经网络工具包包括的网络有感知器、线性网络、BP神经网络、径向基网络、自组织网络和回归网络等。
BP神经网络主要用到newff、sim和train3个神经网络函数,各函数解释如下。
1、newff:BP神经网络参数设置函数函数功能:构建一个BP神经网络。
函数形式:net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)P:输入数据矩阵。
T:输出数据矩阵。
S:隐含层结点数。
TF:结点传递函数,包括硬限幅传递函数hardlim,对称硬限幅传递函数hardlims,线性传递函数pureline,正切S型传递函数tansig,对数S型传递函数logsig。
BTF:训练函数,包括梯度下降BP算法训练函数traingd,动量反传的梯度下降BP算法训练函数traingdm,动态自适应学习率的梯度下降BP算法训练函数traingda,动量反传和动态自适应学习率的梯度下降BP算法训练函数traingdx,Levenberg_Marquardt的BP算法训练函数trainlm。
BLF:网络学习函数,包括BP学习规格learngd,带动量项的BP学习规则learngdm。
PF:性能分析函数,包括均值绝对误差性能分析函数mae,均方差性能分析函数mse。
IPF:输入处理函数。
OPF:输出处理函数。
DDF:验证数据划分函数。
一般在使用过程中设置前面6个参数,后面4个参数采用系统默认参数。
人工智能导论期末总结

人工智能导论期末总结随着科技的不断进步和人类对于智能的追求,人工智能(Artificial Intelligence,简称AI)正逐渐成为当今世界研究热点之一。
而作为人工智能初学者的我们,在本学期的人工智能导论课程中,通过系统地学习和研究,对人工智能的定义、发展历程、核心技术与应用等方面有了更加深入的了解。
首先,在本课程中我们从根本上认识到了人工智能的定义和范畴。
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术和应用系统的学科。
它跨领域融合了计算机科学、心理学、哲学、数学等多个学科,以模拟人类智能为目标。
人工智能的研究范畴包括:感知与认知、自然语言处理、机器学习与数据挖掘、知识表示与推理、智能控制与决策等等。
了解人工智能的定义和范畴,有助于我们从整体上把握人工智能的发展状况和未来趋势。
其次,我们学习了人工智能的发展历程和里程碑事件。
自从人工智能这个概念被提出以来,人们就一直在不断地探索和研究。
从1950年代开始的人工智能研究,到20世纪80年代开始的知识系统的兴起,再到互联网和大数据时代的到来,人工智能在不同的时期都有不同的发展重点和技术突破。
在过去几十年的探索中,人工智能取得了许多重要的里程碑事件,如IBM的深蓝战胜国际象棋世界冠军、AlphaGo战胜围棋世界冠军等。
通过学习发展历程,我们能够更好地理解人工智能的原始动力和发展方向,也能够从历史中吸取经验教训。
此外,在人工智能导论课程中,我们还深入学习了一些核心的人工智能技术。
机器学习是其中最重要的一项技术。
通过对大量数据的学习和训练,机器学习技术能够使计算机具备从数据中学习和提升性能的能力。
在机器学习中,常见的算法包括决策树、支持向量机、神经网络等。
这些机器学习算法广泛应用于各个领域,如图像识别、自然语言处理、智能推荐等。
此外,我们还学习了深度学习技术,它是机器学习的一个分支,通过多层次的神经网络模型来进行学习和推理。
深度学习在图像和语音处理方面取得了巨大的突破,为人工智能的发展带来了新的机遇和挑战。
人工智能导论课程总结报告

人工智能导论课程总结报告一、课程概述本学期,我有幸参与了“人工智能导论”课程的学习。
该课程为我们提供了一个全面而深入的人工智能领域概览,涵盖了从基础知识到前沿技术的广泛内容。
二、课程内容1. 基础知识:课程初期,我们学习了人工智能的基本概念、发展历程和应用领域。
这为我们后续的学习奠定了坚实的基础。
2. 搜索与问题求解:我们深入探讨了搜索算法,如深度优先搜索、广度优先搜索等,并理解了它们在问题求解中的应用。
3. 知识表示与推理:学习了如何表示知识(如语义网络、框架和逻辑表示法)以及如何使用这些知识进行推理。
4. 机器学习:这部分内容让我们了解了机器学习的基础算法,如决策树、支持向量机和神经网络等,并体验了它们在数据分类和预测中的强大能力。
5. 深度学习:作为机器学习的子领域,深度学习介绍了更复杂的神经网络结构,如卷积神经网络和循环神经网络,以及它们在图像和语音识别等领域的应用。
6. 伦理与社会影响:课程还讨论了人工智能的伦理问题和社会影响,使我们更加意识到技术的双重性。
三、学习体验1. 理论与实践相结合:课程不仅提供了丰富的理论知识,还通过编程作业和项目实践让我们亲身体验了人工智能技术的魅力。
2. 挑战与成就感并存:虽然课程内容有时颇具挑战性,但每当解决一个难题或完成一个项目时,那种成就感都无以言表。
3. 团队合作与沟通:在小组项目中,我们学会了如何与他人合作、有效沟通和共同解决问题。
四、收获与展望1. 知识层面:通过本课程的学习,我对人工智能领域有了更全面和深入的了解,掌握了多项基本技能和工具。
2. 能力层面:我的问题解决能力、创新能力和团队协作能力都得到了显著提升。
3. 未来展望:我计划在未来继续深入探索人工智能的某个子领域,如机器学习或深度学习,并期望能够将所学应用于实际项目或研究中。
五、结语“人工智能导论”课程为我打开了一扇通向新世界的大门。
感谢老师和同学们的陪伴与支持,期待在未来的学习和生活中继续与人工智能相伴前行。
人工智能导论 教学心得

人工智能导论教学心得
人工智能导论教学心得
自从人工智能这个概念被提出来,人们对于它的研究和应用就从未停歇过。
随着技术的不断发展,人工智能的应用范围也越来越广泛,从智能家居到无人驾驶,从医疗诊断到金融风控,无处不在。
而作为一门新兴的学科,人工智能导论的教育和研究也变得格外重要。
在学习这门课程的过程中,我深深地感受到了人工智能的强大和神奇。
通过学习,我了解到了许多经典的机器学习算法和深度学习模型,例如线性回归、逻辑回归、决策树、神经网络等等。
每个算法和模型都有其特点和优点,可以用来解决不同类型的问题。
在学习人工智能导论的过程中,我也深刻地认识到了数据的重要性。
数据是人工智能的基础,没有高质量的数据,任何算法和模型都无法发挥出最好的效果。
因此,数据的获取、清洗和处理都是非常关键的步骤。
除此之外,我还学习了一些关于人工智能的伦理和法律方面的知识。
人工智能的应用不仅需要考虑技术层面的问题,还需要考虑到伦理和法律等方面的问题。
例如,自动驾驶汽车在行驶过程中如何做出决策,如何保证人的安全?这些问题都需要我们认真思考和研究。
在学习人工智能导论的过程中,我还参与了一些实践项目,例如手
写数字识别和情感分析等。
通过实践,我深入了解了机器学习和深度学习的实现过程,也学会了如何调参和优化模型。
这些实践项目不仅加深了我的理解,还提高了我的实践能力。
总的来说,学习人工智能导论让我更加深入地了解了人工智能的基础知识和应用,也让我认识到了人工智能在未来的重要性和潜力。
希望未来能够有更多的人加入到人工智能的研究和应用中来,共同推动人工智能技术的发展。
人工智能导论王万良第五版重点总结

人工智能是指用来实现人类智能的一种技术。
人工智能可以通过模拟人类的思维过程来进行推理、学习、规划和感知等任务。
王万良在他的第五版《人工智能导论》中详细介绍了人工智能的基本概念、发展历程、应用领域以及相关的技术和算法。
本文将对该书进行重点总结,旨在帮助读者更好地理解人工智能的核心内容。
一、人工智能的基本概念1. 人工智能的定义在第五版《人工智能导论》中,王万良对人工智能的定义进行了详细解释。
人工智能是一种模拟人类智力的技术,它可以让机器像人一样思考、学习和判断。
人工智能的发展涉及到机器学习、神经网络、自然语言处理等多个领域的知识。
2. 人工智能的发展历程王万良在书中也介绍了人工智能的发展历程,从最初的简单逻辑推理到深度学习和强化学习的应用,人工智能的发展经历了多个阶段。
在不同的阶段,人工智能应用的范围和技术手段有所不同,但其核心目标始终是模拟人类智能。
二、人工智能的应用领域1. 人工智能在医疗健康领域的应用王万良在《人工智能导论》中对人工智能在医疗健康领域的应用进行了重点介绍。
人工智能可以通过分析医疗数据、辅助诊断和制定治疗方案等方式来提高医疗水平和效率。
2. 人工智能在金融领域的应用王万良也介绍了人工智能在金融领域的应用。
人工智能可以通过大数据分析、风险评估、智能投顾等方面来提升金融机构的运营效率和服务质量。
三、人工智能的技术和算法1. 机器学习在《人工智能导论》中,王万良详细介绍了机器学习的基本原理和常用算法。
机器学习是人工智能的核心技术之一,它可以让机器从数据中学习,从而实现自主决策和智能行为。
2. 深度学习深度学习是机器学习的一个分支,它以多层神经网络为基础,可以处理复杂的非线性关系,被广泛应用于图像识别、语音识别等领域。
3. 自然语言处理自然语言处理是人工智能的一个重要方向,它致力于让机器能够理解和处理人类语言。
王万良在书中介绍了自然语言处理的基本原理和常用技术,如词向量表示、句法分析、语义理解等。
哈工大人工智能导论实验报告

人工智能导论实验报告学院:计算机科学与技术学院专业:计算机科学与技术目录人工智能导论实验报告.......................................... 错误!未定义书签。
一、简介(对该实验背景,方法以及目的的理解) ............. 错误!未定义书签。
1.实验背景......................................... 错误!未定义书签。
2.实验方法......................................... 错误!未定义书签。
3.实验目的......................................... 错误!未定义书签。
二、方法(对每个问题的分析及解决问题的方法)........... 错误!未定义书签。
Q1: Depth First Search ................................ 错误!未定义书签。
Q2: Breadth First Search .............................. 错误!未定义书签。
Q3: Uniform Cost Search ............................... 错误!未定义书签。
Q4: A* Search ......................................... 错误!未定义书签。
Q5: Corners Problem: Representation ................... 错误!未定义书签。
Q6: Corners Problem: Heuristic ........................ 错误!未定义书签。
Q7: Eating All The Dots: Heuristic .................... 错误!未定义书签。
人工智能概论课程总结

人工智能概论课程总结一、课程概述人工智能概论课程是引领我们深入了解人工智能领域的核心课程。
本课程涵盖了人工智能的基本概念、发展历程、主要技术及应用领域,帮助我们建立起对人工智能的整体认知。
通过学习,我深入了解了人工智能的潜力与限制,对未来的科技发展有了更明确的认知。
二、课程内容与学习体会1. 人工智能定义与历程:这部分内容让我对人工智能有了初步的认识。
从早期的专家系统到现在的深度学习,人工智能的发展历程充满了挑战与突破。
这使我深刻体会到科技发展的不易,以及创新思维在推动科技进步中的重要性。
2. 知识表示与推理:知识表示与推理是人工智能的核心技术之一。
通过学习,我掌握了如何将知识转化为计算机可理解的格式,以及如何利用推理进行问题求解。
这对我理解人工智能如何模拟人类的思考过程具有重要意义。
3. 机器学习与深度学习:这部分内容是课程的重点,也是最令我着迷的部分。
通过学习各种算法,我理解了机器如何从数据中学习并做出预测。
深度学习的发展更让我看到了人工智能的巨大潜力,以及对未来技术革新的无限期待。
4. 自然语言处理:自然语言处理是人与机器交互的关键技术。
通过本课程的学习,我掌握了自然语言处理的基本原理和技术,理解了机器翻译、问答系统等应用的实现原理。
这对我未来的学习和职业发展都将产生深远影响。
5. 计算机视觉:计算机视觉在人工智能领域具有广泛应用。
通过学习,我掌握了图像处理的基本技术,了解了计算机视觉在目标检测、图像识别等领域的应用。
这使我对未来的人工智能技术充满期待。
三、课程实践与反思在人工智能概论课程中,我参与了多个实践项目,如基于机器学习的预测模型、自然语言处理应用等。
这些实践项目让我将理论知识应用于实际场景,加深了我对人工智能技术的理解。
同时,我也意识到自己在人工智能领域的知识储备仍需加强,特别是在算法实现和编程技能方面。
未来,我将继续深入学习相关知识和技能,以适应不断发展的科技环境。
四、总结与展望通过人工智能概论课程的学习,我对人工智能领域有了更深入的了解,掌握了其基本原理和技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《人工智能导论》课程研究报告题目:BP神经网络的非线性函数拟合班级:自动化1303班姓名:汪洋、房亮、彭正昌、蔡博、刘航、范金祥学号:2016年1月1日目录第一章人工智能相关介绍1.1人工神经网络与matlab (3)1.2人工神经网络的研究背景和意义 (3)1.3神经网络的发展与研究现状 (4)1.4神经网络的应用 (5)第二章神经网络结构及BP神经网络 (5)2.1神经元与网络结构 (5)2.2 BP神经网络及其原理 (9)2.3 BP神经网络的主要功能 (11)第三章基于matlab的BP神经网络的非线性函数拟合3.1运用背景 (5)3.2模型建立 (9)3.3MatLab实现 (11)参考文献 (15)附录 (17)人工智能相关介绍1.1人工神经网络与matlab人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。
近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。
MATLAB是一种科学与工程计算的高级语言,广泛地运用于包括信号与图像处理,控制系统设计,系统仿真等诸多领域。
为了解决神经网络问题中的研究工作量和编程计算工作量问题,目前工程领域中较为流行的软件MATLAB,提供了现成的神经网络工具箱(Neural Network Toolbox,简称NNbox),为解决这个矛盾提供了便利条件。
神经网络工具箱提供了很多经典的学习算法,使用它能够快速实现对实际问题的建模求解。
在解决实际问题中,应用MATLAB 语言构造典型神经网络的激活传递函数,编写各种网络设计与训练的子程序,网络的设计者可以根据需要调用工具箱中有关神经网络的设计训练程序,使自己能够从烦琐的编程中解脱出来,减轻工程人员的负担,从而提高工作效率。
1.2 人工神经网络的研究背景和意义人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
人工神经网络就是模拟人思维的一种方式,是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。
虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
近年来通过对人工神经网络的研究,可以看出神经网络的研究目的和意义有以下三点:(1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。
(2)争取构造出尽可能与人脑具有相似功能的计算机,即神经网络计算机。
(3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。
人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。
近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。
将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。
神经计算机的研究发展很快,已有产品进入市场。
光电结合的神经计算机为人工神经网络的发展提供了良好条件。
1.3 神经网络的发展与研究现状神经网络的发展神经网络起源于20世纪40年代,至今发展已半个多世纪,大致分为三个阶段。
1)20世纪50年代-20世纪60年代:第一次研究高潮自1943年M-P模型开始,至20世纪60年代为止,这一段时间可以称为神经网络系统理论发展的初期阶段。
这个时期的主要特点是多种网络的模型的产生与学习算法的确定。
2)20世纪60年代-20世纪70年代:低潮时期到了20世纪60年代,人们发现感知器存在一些缺陷,例如,它不能解决异或问题,因而研究工作趋向低潮。
不过仍有不少学者继续对神经网络进行研究。
Grossberg 提出了自适应共振理论;Kohenen 提出了自组织映射;Fukushima 提出了神经认知网络理论;Anderson提出了BSB模型;Webos 提出了BP理论等。
这些都是在20世纪70年代和20世纪80年代初进行的工作。
3)20世纪80年代-90年代:第二次研究高潮进入20世纪80年代,神经网络研究进入高潮。
这个时期最具有标志性的人物是美国加州工学院的物理学家John Hopfield。
他于1982年和1984年在美国科学院院刊上发表了两篇文章,提出了模拟人脑的神经网络模型,即最著名的Hopfield模型。
Hopfield网络是一个互连的非线性动力学网络,它解决问题的方法是一种反复运算的动态过程,这是符号逻辑处理方式做不具备的性质。
20世纪80年代后期到90年代初,神经网络系统理论形成了发展的热点,多种模型、算法和应用被提出,研究经费重新变得充足,使得研究者们完成了很多有意义的工作。
神经网络的现状进入20世纪90年代以来,神经网络由于应用面还不够宽,结果不够精确,存在可信度问题,从而进入了认识与应用研究期。
1)开发现有模型的应用,并在应用中根据实际运行情况对模型、算法加以改造,以提高网络的训练速度和运行的准确度。
2)充分发挥两种技术各自的优势是一个有效方法。
3)希望在理论上寻找新的突破,建立新的专用/通用模型和算法。
4)进一步对生物神经系统进行研究,不断地丰富对人脑的认识。
1.4 神经网络的应用神经网络理论的应用取得了令人瞩目的发展,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别、CAD/CAM等方面都有重大的应用实例。
下面列出一些主要应用领域:(1)模式识别和图像处理。
印刷体和手写字符识别、语音识别、签字识别、指纹识别、人体病理分析、目标检测与识别、图像压缩和图像复制等。
(2)控制和优化。
化工过程控制、机器人运动控制、家电控制、半导体生产中掺杂控制、石油精炼优化控制和超大规模集成电路布线设计等。
(3)预报和智能信息管理。
股票市场预测、地震预报、有价证券管理、借贷风险分析、IC卡管理和交通管理。
(4)通信。
自适应均衡、回波抵消、路由选择和ATM网络中的呼叫接纳识别和控制。
(5)空间科学。
空间交汇对接控制、导航信息智能管理、飞行器制导和飞行程序优化管理等。
2神经网络结构及BP神经网络2.1 神经元与网络结构人工神经网络(artificial neural network,ANN)是模仿生物神经网络功能的一种经验模型。
生物神经元受到传入的刺激,其反应又从输出端传到相联的其它神经元,输入和输出之间的变换关系一般是非线性的。
神经网络是由若干简单(通常是自适应的)元件及其层次组织,以大规模并行连接方式构造而成的网络,按照生物神经网络类似的方式处理输入的信息。
模仿生物神经网络而建立的人工神经网络,对输入信号有功能强大的反应和处理能力。
神经网络是由大量的处理单元(神经元)互相连接而成的网络。
为了模拟大脑的基本特性,在神经科学研究的基础上,提出了神经网络的模型。
但是,实际上神经网络并没有完全反映大脑的功能,只是对生物神经网络进行了某种抽象、简化和模拟。
神经网络的信息处理通过神经元的互相作用来实现,知识与信息的存储表现为网络元件互相分布式的物理联系。
神经网络的学习和识别取决于各种神经元连接权系数的动态演化过程。
若干神经元连接成网络,其中的一个神经元可以接受多个输入信号,按照一定的规则转换为输出信号。
由于神经网络中神经元间复杂的连接关系和各神经元传递信号的非线性方式,输入和输出信号间可以构建出各种各样的关系,因此可以用来作为黑箱模型,表达那些用机理模型还无法精确描述、但输入和输出之间确实有客观的、确定性的或模糊性的规律。
因此,人工神经网络作为经验模型的一种,在化工生产、研究和开发中得到了越来越多的用途。
2.1.1 生物神经元人脑大约由1012个神经元组成,神经元互相连接成神经网络。
神经元是大脑处理信息的基本单元,以细胞体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞,其形状很像一棵枯树的枝干。
它主要由细胞体、树突、轴突和突触(Synapse,又称神经键)组成。
如图1所示。
图1生物神经元从神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近。
当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质。
2.1.2 人工神经元归纳一下生物神经元传递信息的过程:生物神经元是一个多输入、单输出单元。
常用的人工神经元模型可用图2模拟。
图2 人工神经元(感知器)示意图当神经元j 有多个输入xi(i=1,2,…,m)和单个输出yj 时,输入和输出的关系可表示为:⎪⎩⎪⎨⎧=-=∑=)(1j j j m i i ij j s f y x w s θ其中j 为阈值,wij 为从神经元i 到神经元j 的连接权重因子,f( )为传递函数,或称激励函数。
2.1.3人工神经网络的构成神经元的模型确定之后,一个神经网络的特性及能力主要取决于网络的拓扑结构及学习方法。
神经网络连接的几种基本形式:1)前向网络前向网络结构如图3所示,网络中的神经元是分层排列的,每个神经元只与前一层的神经元相连接。
神经元分层排列,分别组成输入层、中间层(也称为隐含层,可以由若干层组成)和输出层。
每一层的神经元只接受来自前一层神经元的输入,后面的层对前面的层没有信号反馈。
输入模式经过各层次的顺序传播,最后在输出层上得到输出。
感知器网络和BP 网络均属于前向网络。
图3 前向网络结构2)从输出到输入有反馈的前向网络其结构如图4所示,输出层对输入层有信息反馈,这种网络可用于存储某种模式序列,如神经认知机和回归BP网络都属于这种类型。