肥东县实验中学2018-2019学年上学期高三数学10月月考试题

合集下载

肥东县高中2018-2019学年高二上学期第一次月考试卷数学

肥东县高中2018-2019学年高二上学期第一次月考试卷数学

肥东县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若1sin()34πα-=,则cos(2)3πα+=A 、78-B 、14- C 、14 D 、782. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<3. 如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°4. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,95. 函数y=+的定义域是( )A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}6. 双曲线的渐近线方程是( )A .B .C .D .7. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .8. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种9. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣210.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数11.如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③12.若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( ) A .117⎡⎤⎢⎥⎣⎦,B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞,二、填空题13.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .14.若函数63e ()()32ex x bf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.15.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .16.设,则17.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .18.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .三、解答题19.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6, (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{}的前n 项和.20.求函数f (x )=﹣4x+4在[0,3]上的最大值与最小值.21.(本小题满分12分)如图ABC ∆中,已知点D 在BC 边上,且0AD AC ⋅=,sin BAC ∠=AB =BD . (Ⅰ)求AD 的长; (Ⅱ)求cos C .22.已知函数y=3﹣4cos (2x+),x ∈[﹣,],求该函数的最大值,最小值及相应的x 值.23.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体σ.(1)求几何体σ的表面积;(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形.24.已知等差数列{a n}的首项和公差都为2,且a1、a8分别为等比数列{b n}的第一、第四项.(1)求数列{a n}、{b n}的通项公式;(2)设c n=,求{c n}的前n项和S n.肥东县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-2. 【答案】D 3. 【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.4. 【答案】B【解析】 1从甲校抽取110× 1 2001 200+1 000=60人,从乙校抽取110× 1 0001 200+1 000=50人,故x =10,y =7.5. 【答案】D【解析】解:由题意得:,解得:x ≥﹣1或x ≠3, 故选:D .【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.6. 【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x . 故选:B .【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.7. 【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到, 这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B .8. 【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法; ②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C .9. 【答案】D【解析】【分析】由题意可得圆心C 1和圆心C 2,设直线l 方程为y=kx+b ,由对称性可得k 和b 的方程组,解方程组可得.【解答】解:由题意可得圆C 1圆心为(0,0),圆C 2的圆心为(﹣2,2),∵圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,∴点(0,0)与(﹣2,2)关于直线l 对称,设直线l 方程为y=kx+b ,∴•k=﹣1且=k •+b ,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D.10.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.11.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.12.【答案】D 【解析】考点:1、导数;2、单调性;3、函数与不等式.二、填空题13.【答案】①② 【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1 14.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032e ba -=,整理,得2016ab =.15.【答案】 .【解析】解:已知∴∴为所求;故答案为: 【点评】本题主要考查椭圆的标准方程.属基础题.16.【答案】9【解析】由柯西不等式可知17.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O 为圆心、半径为2的圆外区域D :表示正方形OABC ,(如图)其中O 为坐标原点,A (2,0),B (2,2),C (0,2). 因此在区域D 内随机取一个点P ,则P 点到坐标原点的距离大于2时,点P 位于图中正方形OABC 内, 且在扇形OAC 的外部,如图中的阴影部分∵S 正方形OABC =22=4,S 阴影=S 正方形OABC ﹣S 扇形OAC =4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.18.【答案】.【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.20.【答案】【解析】解:∵,∴f′(x)=x2﹣4,由f′(x)=x2﹣4=0,得x=2,或x=﹣2,∵x∈[0,3],∴x=2,x f x f x当x=0时,f(x)max=f(0)=4,当x=2时,.21.【答案】【解析】(Ⅰ)因为AD AC⊥,所以sin sin cos2BAC BAD BADπ⎛⎫∠=+∠=∠⎪⎝⎭,所以cos3BAD∠=.……3分在ABD∆中,由余弦定理可知,2222cosBD AB AD AB AD BAD=+-⋅⋅∠即28150AD AD-+=,解之得5AD=或3AD=,由于AB AD>,所以3AD=.……6分(Ⅱ)在ABD∆中,由cos3BAD∠=可知1sin3BAD∠=……7分由正弦定理可知,sin sinBD ABBAD ADB=∠∠,所以sinsinAB BADADBBD∠∠==……9分因为2ADB DAC C C π∠=∠+∠=+∠,即cos C =12分 22.【答案】【解析】解:函数y=3﹣4cos (2x+),由于x ∈[﹣,],所以:当x=0时,函数y min =﹣1 当x=﹣π时,函数y max =7【点评】本题考查的知识要点:利用余弦函数的定义域求函数的值域.属于基础题型.23.【答案】【解析】解:(1)根据题意,得; 该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)由已知S△ABD =××2×sin135°=1,因而要使四面体MABD 的体积为,只要M 点到平面ABCD 的距离为1,因为在空间中有两个平面到平面ABCD 的距离为1,它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.24.【答案】【解析】解:(1)由等差数列通项公式可知:a n =2+(n ﹣1)2=2n , 当n=1时,2b 1=a 1=2,b 4=a 8=16, (3)设等比数列{b n}的公比为q,则, (4)∴q=2, (5)∴ (6)(2)由(1)可知:log2b n+1=n (7)∴ (9)∴,∴{c n}的前n项和S n,S n=. (12)【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.。

肥东县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

肥东县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

肥东县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数是周期为4的奇函数,且在上的解析式为,则()()f x x R Î02[,](1),01()sin ,12x x x f x x x ì-££ï=íp <£ïî( )1741((46f f +=A . B . C . D .71691611161316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.2. 一个几何体的三视图如图所示,则该几何体的体积是( )A.64 B .72 C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.3. 函数f (x )=xsinx 的图象大致是()A .B .C .D .4. 已知函数y=f (x )的周期为2,当x ∈[﹣1,1]时 f (x )=x 2,那么函数y=f (x )的图象与函数y=|lgx|的图象的交点共有( )A .10个B .9个C .8个D .1个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________5. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A .36种B .38种C .108种D .114种6. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n7. 已知f (x )=,则f (2016)等于()A .﹣1B .0C .1D .28. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( )A .B .y=x 2C .y=﹣x|x|D .y=x ﹣29. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .410.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( )A. B.11015C. D.3102511.若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .412.记集合和集合表示的平面区域分别为Ω1,Ω2,{}22(,)1A x y x y =+£{}(,)1,0,0B x y x y x y =+£³³ 若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( )A .B .C .D .12p1p2p13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.二、填空题13.分别在区间、上任意选取一个实数,则随机事件“”的概率为_________.[0,1][1,]e a b 、ln a b ≥14.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .15.的展开式中,常数项为___________.(用数字作答)81()x x-【命题意图】本题考查用二项式定理求指定项,基础题.16.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .17.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 . 18.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 . 三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,曲线的参数方程是1C 2=ρ2C 是参数).θππθθ],2,6[,0(21sin 2,1∈>⎪⎩⎪⎨⎧+==t t y x (Ⅰ)写出曲线的直角坐标方程和曲线的普通方程;1C 2C (Ⅱ)求的取值范围,使得,没有公共点.t 1C 2C 20.已知数列{a n }的首项a 1=2,且满足a n+1=2a n +3•2n+1,(n ∈N *).(1)设b n =,证明数列{b n }是等差数列;(2)求数列{a n }的前n 项和S n .21.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.22.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.23.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.24.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天1003.32名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为.0.4(Ⅰ)确定,,,的值;x y p q (Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.①请将列联表补充完整;网龄3年以上网龄不足3年合计购物金额在2000元以上35购物金额在2000元以下20合计100②并据此列联表判断,是否有%的把握认为网购金额超过2000元与网龄在三年以上有关?97.5参考数据:()2k P K ≥0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:,其中)()()()()()22n ad bc a b c d a c b d -K =++++n a b c d =+++肥东县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C C.A A A D D D A题号1112答案D A二、填空题13.1 ee -14.2-15.7016. [,] .17. ②③ .18. [﹣,] .三、解答题19.20.21.22.23.24.。

城区高中2018-2019学年上学期高三数学10月月考试题(3)

城区高中2018-2019学年上学期高三数学10月月考试题(3)

城区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在极坐标系中,圆的圆心的极坐标系是( )。

ABC D2. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)3. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .414. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211B .227C . 32259D .324356. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象,则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 8. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1129. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 11.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能12.双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大共6小题,共70分。

2019届高三10月月考数学(文)试题(3).docx

2019届高三10月月考数学(文)试题(3).docx

一. 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的)1•已知集合A={0, 1,2},则集合B={x-y|xeA,yEA}中元素的个数是(2.命题 3x ()eR, sin的否定为()4. 一个扇形的面积为2,周长为6则扇形的圆屮角的弧度数为(是奇函数7T 17T6. 已知 sin(cr-—)=-,贝!|cos(a + —)的值是(A. 1B. -1C.空3337. sin 7° cos37° - sin 83° cos307 =(1 B. -2A. (-1,0) U (2, +8)B. (一8, -2) U (0, 2)9. 为了得到函数y=sin (2兀一申)的图象,只需把函数y=cos 加的图象上所有的点()5 77S TTA.向左平行移动莎个单位长度B.向右平行移动石个单位长度且在(_8,0)上是减函数,若f ( —2)=0,则 xf{x ) <0的解集为)•C. (―°°, —2) U (2, +°°)D. (-2,0) U (0, 2)A.1B.3C.5D.9A. 3%oR, sinxo=£()B. D.17T3.已知sin(^-S) = log 8—,且Qw(■—,0),则tan (2^-5)的值为(A.-M5C•普D.752B.1 或 4 5.设fd )是R 上的任意函数,则下列叙述正确的是A.1C.4D.2 或 4c. gn 是偶函数 D. f{x)+f{-x)是偶函数D.V32、兀Syr C. 向左平行移动「个单位长度 D.向右平行移动「个单位长度66T[7T10. 函数…沖(巧―逅)的图象是()(A) (B) (C) (D)11・某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌新的墙壁所用的材料最省时,堆料场的长和宽分别为(JA. 40 米,20 米B. 30 米,15 米C. 32 米,16 米D. 36 米,18 米 12.若函数/W 二log 2(tz-2v )+x-2有零点,则d 的取值范围为( )A. (-oc, -2]B. (-co, 4]C. [2, +oo)D. [4, +oo)二、填空题(木大题共4小题,每小题5分,共20分.)13. 函数/(兀)=J2cosx-1的定义域是 _____________ ・14. 已知函数夬力=x(x~m)2在兀=1处取得极小值,则实数加 _____________ 15. 曲线y=xe+2x~l 在点(0, —1)处的切线方程为 _______________ ..16. 已知函数 沧)=¥—1+111 x,若存在x 0>0,使得/(AO )<0有解,则实数a 的取值范围•/V是 _______ .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤”)17. (本小题满分10分)己知角u 终边上一点卩(一4, 3),⑴求sin 2a 的值; ⑵求tan 書―的值.19. (本小题满分12分).己知aWR,函数/(x)=(-?+ar)e x (xeR,e 为自然对数的底数).⑴当a=2时,求函数fg 的•单调递增区间…18.cos (号+«jsin( ~71~a) cos (■导- Jsin 伴 + J的值(本小题满分12分)已知cos (彳+a)cos(^—幺丿=—£ «e.| Z3, 2/⑵函数/U)是否为R上的单调递减函数,若是,求出a的取值范围;若不是,请说明理由.20.(本小题满分12分)已知函数fix)=x3— 3ax—}, dHO.(1)求/U)的单调区间;(2)若/(兀)在兀=—1处収得极值,直线y=m与y=/U)的图象有三个不同的交点,求加的収值范围.若人兀)的极大值为1,求a的值.21.(本小题满分12分) 已知函数几v) =(X2—Zv)ln x+ax1+2.(1)当G=—1时,求7W在点(1,川))处的切线方程;⑵若°=1,证明:当x$l时,g(x)=/U)—x—2M0成立22.(本小题满分12分)已知函数几。

肥东县一中2018-2019学年上学期高三数学10月月考试题

肥东县一中2018-2019学年上学期高三数学10月月考试题

肥东县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知平面向量与的夹角为3π,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D . 2. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 23. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .4. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D105. 双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=16. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .07. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016B .[]0,2015C .(]1,2016D .[]1,20178. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )9. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .9810.以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.11.已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐近线平行且距离为2,则双曲线C 的离心率是( )A B .2 C D .212.如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD二、填空题13.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

肥东县实验中学2018-2019学年高三上学期11月月考数学试卷含答案

肥东县实验中学2018-2019学年高三上学期11月月考数学试卷含答案

肥东县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=02. 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则y x ,⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y mx y z -=)3,1(实数的取值范围是( )m A .B .C .D .1-<m 10<<m 1>m 1≥m 【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.3. 下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°4. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是()A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)5. 已知空间四边形,、分别是、的中点,且,,则( )ABCD M N AB CD 4AC =6BD =A .B .C .D .15MN <<210MN <<15MN ≤≤25MN <<6. 在△ABC 中,已知D 是AB边上一点,若=2,=,则λ=( )A.B .C .﹣D .﹣7. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )A .B .﹣C .3D .﹣38. 已知函数f (x )=若f (-6)+f (log 26)=9,则a 的值为( ){log 2(a -x ),x <12x ,x ≥1)A .4B .3C .2D .19. 已知命题“p :∃x >0,lnx <x ”,则¬p 为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x10.已知函数f (x )=e x +x ,g (x )=lnx+x ,h (x )=x ﹣的零点依次为a ,b ,c ,则()A .c <b <aB .a <b <cC .c <a <bD .b <a <c11.已知全集,,,则有( )U R ={|239}xA x =<≤{|02}B y y =<≤A .B .C .D .A ØB A B B =I ()R A B ≠∅I ð()R A B R=U ð12.已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为()A .﹣3B .3C .﹣1D .1二、填空题13.用“<”或“>”号填空:30.8 30.7.14.【泰州中学2018届高三10月月考】设二次函数(为常数)的导函数为()2f x ax bx c =++,,a b c ,对任意,不等式恒成立,则的最大值为__________.()f x 'x R ∈()()f x f x ≥'222b a c+15.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .16.已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:1C x y 42=F P 3||=PF 2C 12222=-by a x (,)的渐近线恰好过点,则双曲线的离心率为 .0>a 0>b P 2C 【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.17.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .18.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 . 三、解答题19.如图,在底面是矩形的四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=2,BC=2,E 是PD 的中点.(1)求证:平面PDC ⊥平面PAD ;(2)求二面角E ﹣AC ﹣D 所成平面角的余弦值.20.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E上.(1)求椭圆E的方程;(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程.21.解不等式|3x﹣1|<x+2.22.已知椭圆C1:+=1(a>b>0)的离心率e=,且经过点(1,),抛物线C2:x2=2py(p>0)的焦点F与椭圆C1的一个焦点重合.(Ⅰ)过F的直线与抛物线C2交于M,N两点,过M,N分别作抛物线C2的切线l1,l2,求直线l1,l2的交点Q的轨迹方程;(Ⅱ)从圆O:x2+y2=5上任意一点P作椭圆C1的两条切线,切点为A,B,证明:∠APB为定值,并求出这个定值.23.已知函数f(x)=sinx﹣2sin2(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.24.坐标系与参数方程线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数.肥东县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y ﹣3=0垂直的直线斜率为2,故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),化为一般式可得2x ﹣y ﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题. 2. 【答案】C【解析】画出可行域如图所示,,要使目标函数取得最大值时有唯一的最优解,则需)3,1(A mx y z -=)3,1(直线过点时截距最大,即最大,此时即可.l A z 1>l k3. 【答案】C【解析】解:∵sin168°=sin (180°﹣12°)=sin12°,cos10°=sin (90°﹣10°)=sin80°.又∵y=sinx 在x ∈[0,]上是增函数,∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.故选:C .【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小. 4. 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D .5. 【答案】A 【解析】试题分析:取的中点,连接,,根据三角形中两边之和大于第三边,两边之BC E ,ME NE 2,3ME NE ==差小于第三边,所以,故选A .15MN <<考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.6. 【答案】A【解析】解:在△ABC 中,已知D 是AB 边上一点∵=2,=,∴=,∴λ=,故选A .【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量. 7. 【答案】A【解析】解:设幂函数为y=x α,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x ﹣3,由f (x )=27,得:x ﹣3=27,所以x=.故选A . 8. 【答案】【解析】选C.由题意得log 2(a +6)+2log 26=9.即log 2(a +6)=3,∴a +6=23=8,∴a =2,故选C.9. 【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p :∃x >0,lnx <x ”,则¬p 为∀x >0,lnx ≥x .故选:B .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查. 10.【答案】B【解析】解:由f (x )=0得e x =﹣x ,由g (x )=0得lnx=﹣x .由h (x )=0得x=1,即c=1.在坐标系中,分别作出函数y=e x ,y=﹣x ,y=lnx 的图象,由图象可知a <0,0<b <1,所以a <b <c .故选:B .【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键. 11.【答案】A【解析】解析:本题考查集合的关系与运算,,,∵,∴,选A .3(log 2,2]A =(0,2]B =3log 20>A ØB 12.【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax+y ,得y=﹣ax+z ,若a=0,此时y=z ,此时函数y=z 只在B 处取得最小值,不满足条件.若a >0,则目标函数的斜率k=﹣a <0.平移直线y=﹣ax+z ,由图象可知当直线y=﹣ax+z 和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时﹣a=﹣1,即a=1.若a <0,则目标函数的斜率k=﹣a >0.平移直线y=﹣ax+z ,由图象可知当直线y=﹣ax+z ,此时目标函数只在C 处取得最小值,不满足条件.综上a=1.故选:D.【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z 的几何意义是解决本题的关键.注意要对a 进行分类讨论. 二、填空题13.【答案】 > 【解析】解:∵y=3x 是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题. 14.【答案】2-【解析】试题分析:根据题意易得:,由得:在R()'2f x ax b =+()()'f x f x ≥()220ax b a x c b +-+-≥上恒成立,等价于:,可解得:,则:{ 0a >≤V ()22444b ac a a c a ≤-=-,令,,222222241441c b ac a a a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭1,(0)c t t a =->24422222t y t t t t ==≤=-++++故的最大值为.222b ac +2-考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用15.【答案】 4 .【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b时“=”成立,故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.16.【答案】317.【答案】 2 .【解析】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.18.【答案】 存在x∈R,x3﹣x2+1>0 .【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.三、解答题19.【答案】【解析】解:(1)∵PA⊥平面ABCD,CD⊆平面ABCD,∴PA⊥CD ∵AD⊥CD,PA、AD是平面PAD内的相交直线,∴CD⊥平面PAD∵CD⊆平面PDC,∴平面PDC⊥平面PAD;(2)取AD中点O,连接EO,∵△PAD中,EO是中位线,∴EO∥PA∵PA⊥平面ABCD,∴EO⊥平面ABCD,∵AC⊆平面ABCD,∴EO⊥AC过O作OF⊥AC于F,连接EF,则∵EO、OF是平面OEF内的相交直线,∴AC⊥平面OEF,所以EF⊥AC∴∠EFO就是二面角E﹣AC﹣D的平面角由PA=2,得EO=1,在Rt△ADC中,设AC边上的高为h,则AD×DC=AC×h,得h=∵O是AD的中点,∴OF=×=∵EO=1,∴Rt△EOF中,EF==∴cos∠EFO==【点评】本题给出特殊的四棱锥,叫我们证明面面垂直并求二面角的余弦值,着重考查了平面与平面所成角的求法和线面垂直的判定与性质等知识,属于中档题.20.【答案】【解析】解:(1)由题得=,=1,又a2=b2+c2,解得a2=8,b2=4.∴椭圆方程为:.(2)设直线的斜率为k,A(x1,y1),B(x2,y2),∴,=1,两式相减得=0,∵P是AB中点,∴x1+x2=4,y1+y2=2,=k,代入上式得:4+4k=0,解得k=﹣1,∴直线l:x+y﹣3=0.【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.21.【答案】【解析】解:∵|3x﹣1|<x+2,∴,解得﹣.∴原不等式的解集为{x|﹣<x<}.22.【答案】【解析】解:(Ⅰ)设椭圆的半焦距为c,则,即,则,椭圆方程为,将点的坐标代入得c2=1,故所求的椭圆方程为焦点坐标为(0,±1),故抛物线方程为x2=4y…设直线MN:y=kx+1,M(x1,y1),N(x2,y2),代入抛物线方程得x2﹣4kx﹣4=0,则x1+x2=4k,x1x2=﹣4,由于,所以,故直线l1的斜率为,l1的方程为,即,同理l2的方程为,令,即,显然x1≠x2,故,即点Q的横坐标是,点Q的纵坐标是,即点Q(2k,﹣1),故点Q的轨迹方程是y=﹣1…(Ⅱ)证明:①当两切线的之一的斜率不存在时,根据对称性,设点P在第一象限,则此时P点横坐标为,代入圆的方程得P点的纵坐标为,此时两条切线方程分别为,此时,若∠APB的大小为定值,则这个定值只能是…②当两条切线的斜率都存在时,即时,设P(x0,y0),切线的斜率为k,则切线方程为y﹣y0=k(x﹣x0),与椭圆方程联立消元得…由于直线y﹣y0=k(x﹣x0)是椭圆的切线,故,整理得…切线PA,PB的斜率k1,k2是上述方程的两个实根,故,…点P在圆x2+y2=5上,故,所以k1k2=﹣1,所以.综上可知:∠APB的大小为定值,得证…【点评】本题考查直线与椭圆的综合应用,椭圆以及抛物线的方程的求法,考查转化是以及计算能力. 23.【答案】【解析】解:(1)∵f(x)=sinx﹣2sin2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.24.【答案】【解析】解:圆C:的标准方程为(x+1)2+(y﹣2)2=4由于圆心C(﹣1,2)到直线l:3x+4y﹣12=0的距离d==<2故直线与圆相交故他们的公共点有两个.【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键.。

肥东县高中2018-2019学年高三上学期11月月考数学试卷含答案

肥东县高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________ 姓名__________ 分数__________一、选择题1. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件2. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定3. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1)4. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,2017 5. 给出下列两个结论: ①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错6. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( )A .B .C .D .7. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a的值为( )A .或﹣B .或3C .或5D .3或58. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U AB =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,5 9. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π10.已知函数f (x )=x 2﹣,则函数y=f (x )的大致图象是( )A .B .C .D .11.将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b )的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )A .B .C .2D .312.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1B .y=lnxC .y=x 3D .y=|x|二、填空题13.已知实数a >b ,当a 、b 满足 条件时,不等式<成立.14.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.15.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .16.设不等式组表示的平面区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是.17.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.18.曲线y=x+e x在点A(0,1)处的切线方程是.三、解答题19.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).(Ⅰ)判断f(x)奇偶性,并证明;(Ⅱ)当0<a<1时,解不等式f(x)>0.20.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设P,M,N椭圆C上的三个动点.(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.21.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.22.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.23.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,直四棱柱木梁的体积为V(单位:m3),侧面积为S(单位:m2).(Ⅰ)分别求V与S关于θ的函数表达式;(Ⅱ)求侧面积S 的最大值; (Ⅲ)求θ的值,使体积V 最大.24.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.肥东县高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.2.【答案】B【解析】解:∵f(1988)=asin(1988π+α)+bcos(1998π+β)+4=asinα+bcosβ+4=3,∴asinα+bcosβ=﹣1,故f(2008)=asin(2008π+α)+bcos(2008π+β)+4=asinα+bcosβ+4=﹣1+4=3,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.3.【答案】D【解析】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.【点评】本题主要考查了椭圆的定义,属基础题.4.【答案】B【解析】5.【答案】C【解析】解:①命题p是一个特称命题,它的否定是全称命题,¬p是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C.【点评】考查特称命题,全称命题,和逆否命题的概念.6.【答案】C【解析】解:设A表示“甲同学收到李老师所发活动信息”,设B表示“甲同学收到张老师所发活动信息”,由题意P(A)==,P(B)=,∴甲冋学收到李老师或张老师所发活动通知信息的概率为:p(A+B)=P(A)+P(B)﹣P(A)P(B)==.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意任意事件概率加法公式的合理运用.7.【答案】C【解析】解:圆x2+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.∵•=4,∴2•2cos∠ACB=4∴cos∠ACB=,∴∠ACB=60°∴圆心到直线的距离为,∴=,∴a=或5.故选:C.8.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.9.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.10.【答案】A【解析】解:由题意可得,函数的定义域x≠0,并且可得函数为非奇非偶函数,满足f(﹣1)=f(1)=1,可排除B、C两个选项.∵当x>0时,t==在x=e时,t有最小值为∴函数y=f(x)=x2﹣,当x>0时满足y=f(x)≥e2﹣>0,因此,当x>0时,函数图象恒在x轴上方,排除D选项故选A11.【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B.【点评】题考查类比推理和归纳推理,属基础题.12.【答案】D【解析】解:选项A:y=在(0,+∞)上单调递减,不正确;选项B:定义域为(0,+∞),不关于原点对称,故y=lnx为非奇非偶函数,不正确;选项C:记f(x)=x3,∵f(﹣x)=(﹣x)3=﹣x3,∴f(﹣x)=﹣f(x),故f(x)是奇函数,又∵y=x3区间(0,+∞)上单调递增,符合条件,正确;选项D:记f(x)=|x|,∵f(﹣x)=|﹣x|=|x|,∴f(x)≠﹣f(x),故y=|x|不是奇函数,不正确.故选D二、填空题13.【答案】ab>0【解析】解,当ab>0时,∵a>b,∴>,即>,当ab<0时,∵a>b,∴<,即<,综上所述,当a、b满足ab>0时,不等式<成立.故答案为:ab>0,.【点评】本题考查二类不等式饿性质,属于基础题.14.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.15.【答案】9【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离.16.【答案】.【解析】解:作出不等式组对应的平面区域, 直线y=k (x+2)过定点D (﹣2,0),由图象可知当直线l 经过点A 时,直线斜率最大,当经过点B 时,直线斜率最小,由,解得,即A (1,3),此时k==,由,解得,即B (1,1),此时k==,故k 的取值范围是,故答案为:【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.17.【答案】7+【解析】解:如图所示,设∠APB=α,∠APC=π﹣α.在△ABP与△APC中,由余弦定理可得:AB2=AP2+BP2﹣2AP•BPcosα,AC2=AP2+PC2﹣2AP•PCcos(π﹣α),∴AB2+AC2=2AP2+,∴42+32=2AP2+,解得AP=.∴三角形ABP的周长=7+.故答案为:7+.【点评】本题考查了余弦定理的应用、中线长定理,考查了推理能力与计算能力,属于中档题.18.【答案】2x﹣y+1=0.【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)由,得,即﹣1<x<1,即定义域为(﹣1,1),则f(﹣x)=log a(1﹣x)﹣log a(1+x)=﹣[log a(1+x)﹣log a(1﹣x)]=﹣f(x),则f(x)为奇函数.(Ⅱ)当0<a<1时,由f(x)>0,即log a(1+x)﹣log a(1﹣x)>0,即log a(1+x)>log a(1﹣x),则1+x<1﹣x,解得﹣1<x<0,则不等式解集为:(﹣1,0).【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.20.【答案】【解析】解:(Ⅰ)由题意得解得a=2,b=1,所以椭圆方程为.(Ⅱ)(i)由已知,直线MN的斜率存在,设直线MN方程为y=kx﹣,M(x1,y1),N(x2,y2).由得(1+4k2)x2﹣4kx﹣3=0,∴x1+x2=,x1x2=,又.所以S△PMN=|PD|•|x1﹣x2|==.令t=,则t≥,k2=所以S△PMN=,令h(t)=,t∈[,+∞),则h′(t)=1﹣=>0,所以h(t)在[,+∞),单调递增,则t=,即k=0时,h(t)的最小值,为h()=,所以△PMN面积的最大值为.(ii)假设存在△PMN是以O为中心的等边三角形.(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上.又O为△PMN的中心,所以,可知Q(0,﹣),M(﹣,),N(,).从而|MN|=,|PM|=,|MN|≠|PM|,与△PMN为等边三角形矛盾.(2)当P在x轴上时,同理可知,|MN|≠|PM|,与△PMN为等边三角形矛盾.(3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则k OP=,又O为△PMN的中心,则,可知.设M(x1,y1),N(x2,y2),则x1+x2=2x Q=﹣x0,y1+y2=2y Q=﹣y0,又x12+4y12=4,x22+4y22=4,两式相减得k MN=,从而k MN=.所以k OP•k MN=•()=≠﹣1,所以OP与MN不垂直,与等边△PMN矛盾.综上所述,不存在△PMN是以O为中心的等边三角形.【点评】本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想21.【答案】【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x﹣3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2…①当动圆与圆O2相内切时,有|O2M|=10﹣R…②将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.22.【答案】【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x>a},∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.23.【答案】【解析】解:(Ⅰ)木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cosθ)=20(cosθ+2sin+1),θ∈(0,),梯形ABCD的面积S ABCD=﹣sinθ=sinθcosθ+sinθ,θ∈(0,),体积V(θ)=10(sinθcosθ+sinθ),θ∈(0,);(Ⅱ)木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cosθ)=20(cos +1),θ∈(0,),设g (θ)=cos +1,g (θ)=﹣2sin2+2sin+2,∴当sin=,θ∈(0,),即θ=时,木梁的侧面积s 最大.所以θ=时,木梁的侧面积s 最大为40m 2.(Ⅲ)V ′(θ)=10(2cos 2θ+cos θ﹣1)=10(2cos θ﹣1)(cos θ+1)令V ′(θ)=0,得cos θ=,或cos θ=﹣1(舍)∵θ∈(0,),∴θ=.当θ∈(0,)时,<cos θ<1,V ′(θ)>0,V (θ)为增函数; 当θ∈(,)时,0<cos θ<,V ′(θ)>0,V (θ)为减函数.∴当θ=时,体积V 最大.24.【答案】(1)()()448a b --=;(2)()()()2222,2x y x y --=>>;(3)6. 【解析】试题分析:(1)利用2CD =,得圆心到直线的距离2d =2=,再进行化简,即可求解()()44a b --的值;(2)设点P 的坐标为(),x y ,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩代入①,化简即可求得线段AB 中点P 的轨迹方程;(3)将面积表示为()()()114482446224ADP b S a a b a b a b ∆==+-=+-=-+-+,再利用基本不等式,即可求得ADP ∆的面积的最小值.(3)()()()11448244666224ADP b S a a b a b a b ∆==+-=+-=-+-+≥=,∴当4a b ==+, 面积最小, 最小值为6.考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为()()446ADP S a b ∆=-+-+,再利用基本不等式是解答的一个难点,属于中档试题.。

肥东县第二中学2018-2019学年上学期高三数学10月月考试题

肥东县第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是()A .()1,10B .()1,+∞C .()0,1D .()10,+∞2. 设集合A={﹣1,0,1},B={x ∈R|x >0},则A ∩B=()A .{﹣1,0}B .{﹣1}C .{0,1}D .{1}3. 已知函数,则( )1)1(')(2++=x x f x f =⎰dx x f 1)(A . B .C .D .67-676565-【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.4. 如图,棱长为的正方体中,是侧面对角线上一点,若 1111D ABC A B C D -,E F 11,BC AD 1BED F 是菱形,则其在底面上投影的四边形面积( )ABCD A .B . C.D12345. 已知,,则“”是“”的( )α[,]βππ∈-||||βα>βαβαcos cos ||||->-A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.6. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( )A .0B .1C .2D .37. (文科)要得到的图象,只需将函数的图象( )()2log 2g x x =()2log f x x =A .向左平移1个单位 B .向右平移1个单位 C .向上平移1个单位D .向下平移1个单位8. 中,“”是“”的()ABC ∆A B >cos 2cos 2B A >A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.9. 已知函数,若存在常数使得方程有两个不等的实根211,[0,22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩()f x t =12,x x(),那么的取值范围为( )12x x <12()x f x ∙A .B .C .D .3[,1)41[831[,)1623[,3)810.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是()A .B .C .D .11.如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是()A .B .C .D . 12.的外接圆圆心为,半径为2,为零向量,且,则在方向上ABC ∆O OA AB AC ++ ||||OA AB =CA BC 的投影为( )A .-3B .C .3D 二、填空题13.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.14.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .15.若展开式中的系数为,则__________.6()mx y +33x y 160-m =【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.16.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .三、解答题17.(本小题满分12分)已知平面向量,,.(1,)a x = (23,)b x x =+-()x R ∈(1)若,求;//a b ||a b -(2)若与夹角为锐角,求的取值范围.18.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(Ⅱ)若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A .在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率. 19.(本小题满分10分)选修4-5:不等式选讲已知函数,.|1||2|)(+--=x x x f x x g -=)((1)解不等式;)()(x g x f >(2)对任意的实数,不等式恒成立,求实数的最小值.111])()(22)(R m m x g x x f ∈+≤-m 20.(本题满分13分)已知圆的圆心在坐标原点,且与直线:相切,设点为圆上1C O 1l 062=+-y x A一动点,轴于点,且动点满足,设动点的轨迹为曲线.⊥AM x M N OM ON )2133(-=N C (1)求曲线的方程;C (2)若动直线:与曲线有且仅有一个公共点,过,两点分别作,2l m kx y +=C )0,1(1-F )0,1(2F 21l P F ⊥,垂足分别为,,且记为点到直线的距离,为点到直线的距离,为点21l Q F ⊥P Q 1d 1F 2l 2d 2F 2l 3d P到点的距离,试探索是否存在最值?若存在,请求出最值.Q 321)(d d d ⋅+21.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0).(1)讨论f(x)的单调性;(2)是否存在a>0,使f(x)∈[e-1,e2]对于x∈[1,e]时恒成立,若存在求出a的值,若不存在说明理由.22.函数。

安徽省肥东县高级中学2019届高三数学10月调研考试试题理

2018~2019 学年度第一学期高三 10 月份调研卷 理科数学试题
考试时间 120 分钟 ,满分 150 分。仅在答题卷上作答。
一、选择题(本题有 12 小题,每小题 5 分,共 60 分。) 1.已知全集 A. D. 2.当 0 x A. 0, , B. ,则 ( C. )
1 x 时, 4 log a x ,则 a 的取值范围是( 2
18. (10 分)已知函数 f x
m m, a ( 为常数, a 0 且 a 1 )的图象过点 A 2, 4 , ax
2 AB AC ,则 AP 的取值范围为( ) 3 2 10 3 3 8 A. 2, B. 2, 3 3
若 AP

C. 0,
2 13 3
D. 2,
2 13 3
①函数 f x 的最小值是 1 ; ②函数 f x 在 R 上是单调函数; ③若 f x 0 在 , 上恒成立,则 a 的取值范围是 a 1 ;
1 2

④对任意的 x1 0, x2 0 且 x1 x2 ,恒有 f 其中正确命题的序号是__________. 三、解答题(本题有 6 小题,共 70 分。) 17.(12 分)设函数 f x cos 2 x
C ,若 ABC 的 2
8. ABC 的内角 A, B, C 所对的边分别为 a, b, c ,已知 sinC cosC 1 cos 面积 S
1 3 a b sinC ,则 ABC 的周长为( 2 2
B.
) C. 2 7 3
A. 2 7 5 D.
7 5

肥东县高级中学2018-2019学年上学期高三数学10月月考试题

肥东县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.2. 已知抛物线C :28y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++= 3. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .B .(4+π)C .D .4. 下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台5. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6B .在[﹣7,0]上是增函数,且最小值是6C .在[﹣7,0]上是减函数,且最小值是6D .在[﹣7,0]上是减函数,且最大值是66. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A .B .C .D .7. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题. 8. 已知集合,则A0或 B0或3C1或D1或39. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=11.某几何体的三视图如图所示,该几何体的体积是( )A.B.C. D.12.《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 【答案】D 【解析】 试题分析:∵ A B ,∴ a 2 .故选 D. 考点:集合的包含关系. 2. 【答案】B 【解析】 试题分析:由等差数列的性质可知, a 2 a10 a 4 a8 16 . 考点:等差数列的性质. 3. 【答案】A 【解析】解:当 x>2 时,x>1 成立,即 x>1 是 x>2 的必要不充分条件是, x<1 是 x>2 的既不充分也不必要条件, x>3 是 x>2 的充分条件, x<3 是 x>2 的既不充分也不必要条件, 故选:A 【点评】本题主要考查充分条件和必要条件的判断,比较基础. 4. 【答案】B 【解析】解:已知抛物线 y2=4 则双曲线的焦点坐标为( 即 c= , x 的焦点和双曲线的焦点重合, ,0),
13. 如图 : 直三棱柱 ABC﹣A′B′C′的体积为 V, 点 P、 Q 分别在侧棱 AA′和 CC′上, AP=C′Q, 则四棱锥 B﹣APQC 的体积为 .
14.二面角 α﹣l﹣β 内一点 P 到平面 α,β 和棱 l 的距离之比为 1: 度. 15.圆心在原点且与直线 x y 2 相切的圆的方程为_____
肥东县实验中学 2018-2019 学年上学期高三数学 10 月月考试题 班级__________ 一、选择题
1. 设集合 A {x |1 x 2} , B {x | x a} ,若 A B ,则的取值范围是( A. {a | a 2} A.12 B. {a | a 1} C. {a | a 1} B.16 ) D. {a | a 2} ) C.20 D.24 2. 在等差数列 {an } 中,已知 a4 a8 16 ,则 a2 a10 ( 3. 设 x∈R,则 x>2 的一个必要不充分条件是( A.x>1 B.x<1 C.x>3 D.x<3 4. 已知双曲线 ﹣ =1 的一个焦点与抛物线 y2=4 ) ﹣y2=1 C.x2﹣ =1 D. ﹣ =1 x 的焦点重合,且双曲线的渐近线方程为 y=± x,则 )
6. 如图,圆 O 与 x 轴的正半轴的交点为 A,点 C、B 在圆 O 上,且点 C 位于第一象限,点 B 的坐标为( ,﹣ ),∠AOC=α,若|BC|=1,则 cos2 ﹣sin cos ﹣ 的值为( )
A.
B. )
C.﹣
D.﹣
7. 集合 1, 2,3 的真子集共有( A.个 8. 抛物线 y=﹣ 8x2 B.个 的准线方程是(
图,A、C、B、P 四点共面,∠ACB 为二面角的平面角,
第 9 页,共 15 页
由题设条件,点 P 到 α,β 和棱 l 的距离之比为 1: 故答案为:75.
2 可求∠ACP=30°,∠BCP=45°,∴∠ACB=75°. :
【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关 键. 2 2 15.【答案】 x y 2 【解析】由题意,圆的半径等于原点到直线 x y 2 的距离,所以 r d
又因为双曲线的渐近线方程为 y=± x, 则有 a2+b2=c2=10 和 = , 解得 a=3,b=1. 所以双曲线的方程为: 故选 B. 【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题. 5. 【答案】D 【解析】解:∵全集 I={1,2,3,4,5,6,7,8},集合 M={3,4,5},集合 N={1,3,6}, ∴M∪N={1,2,3,6,7,8}, ﹣y2=1.
C.个 )
D.个
第 1 页,共 15 页
A.y=
B.y=2 C.x=
D.y=﹣2
9. 设平面 α 与平面 β 相交于直线 m,直线 a 在平面 α 内,直线 b 在平面 β 内,且 b⊥m,则“α⊥β”是“a⊥b”的( ) A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分也不必要条件 10.某班设计了一个八边形的班徽(如图) ,它由腰长为 1,顶角为 的四个等腰三角形,及其底边构成的正 方形所组成,该八边形的面积为( )
:2,则这个二面角的平面角是 .
【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 16.在△ABC 中,若 a=9,b=10,c=12,则△ABC 的形状是 .
第 2 页,共 15 页
三、解答题
17.(本小题满分 12 分)已知函数 f ( x) x (2a 1) x a ln x ( a R ).
xa


1 1 . x
1 a 1 (3)当 0 a 时,求证:对任意 x , + ,都有 1 2 x 2
e.
22.已知椭圆 C:
+
=1(a>b>0)的左,右焦点分别为 F1,F2,该椭圆的离心率为 相切.
,以原点为圆心
,椭圆的短半轴长为半径的圆与直线 y=x+ (Ⅰ)求椭圆 C 的方程;
第 3 页,共 15 页
(Ⅰ)证明 AD⊥BE; (Ⅱ)求多面体 EF﹣ABCD 体积的最大值.
21.【2017-2018 学年度第一学期如皋市高三年级第一次联考】设函数 f x alnx (1)当 a 2 时,求函数 f x 在点 1, f 1 处的切线方程; (2)讨论函数 f x 的单调性;
2 2




19.△ABC 中,角 A,B,C 所对的边之长依次为 a,b,c,且 cosA= (Ⅰ)求 cos2C 和角 B 的值; (Ⅱ)若 a﹣c= ﹣1,求△ABC 的面积.
,5(a2+b2﹣c2)=3
ab.
20.如图,已知 AC,BD 为圆 O 的任意两条直径,直线 AE,CF 是圆 O 所在平面的两条垂线,且线段 AE=CF= ,AC=2.
﹣(
+α)]
∵α 为钝角,即 ∴ ∴sin( ∴sin( =﹣ =﹣ , . < ﹣
<α<π, ,
﹣α)<0, ﹣α)=﹣
故答案为:﹣
【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必 须注意角的范围,以确定函数值的符号. 13.【答案】 V 【解析】 【分析】四棱锥 B﹣APQC 的体积,底面面积是侧面 ACC′A′的一半,B 到侧面的距离是常数,求解即可. 【解答】解:由于四棱锥 B﹣APQC 的底面面积是侧面 ACC′A′的一半,不妨把 P 移到 A′,Q 移到 C, 所求四棱锥 B﹣APQC 的体积,转化为三棱锥 A′﹣ABC 体积,就是: 故答案为: 14.【答案】 75 度. 【解析】解:点 P 可能在二面角 α﹣l﹣β 内部,也可能在外部,应区别处理.当点 P 在二面角 α﹣l﹣β 的内部时,如
(Ⅱ)如图,若斜率为 k(k≠0)的直线 l 与 x 轴,椭圆 C 顺次交于 P,Q,R(P 点在椭圆左顶点的左侧)且 ∠RF1F2=∠PF1Q,求证:直线 l 过定点,并求出斜率 k 的取值范围.
第 4 页,共 15 页
第 5 页,共 15 页
肥东县实验中学 2018-2019 学年上学期高三数学 10 月月考试题(参考答案) 一、选择题
|002| 2 ,故圆的方程为 2
x2 y 2 2 .
16.【答案】锐角三角形 【解析】解:∵c=12 是最大边,∴角 C 是最大角 根据余弦定理,得 cosC= ∵C∈(0,π),∴角 C 是锐角, 由此可得 A、B 也是锐角,所以△ABC 是锐角三角形 故答案为:锐角三角形 【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础 题. = >0
三、解答题
17.【答案】 【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决 问题的能力.
第 6 页,共 15 页
M∩N={3}; ∁IM∪∁IN={1,2,4,5,6,7,8}; ∁IM∩∁IN={2,7,8}, 故选:D. 6. 【答案】 A 【解析】解:∵|BC|=1,点 B 的坐标为( 又∠AOC=α,∴∠AOB= ∴sin( ﹣α)= ﹣( = ﹣( = ﹣sin ﹣ cos ﹣ = ﹣α)]=sin . = (2cos2 , ﹣1)﹣ sinα= cosα﹣ sinα . ﹣α)]=cos , cos( ﹣α)﹣cos sin( ﹣α ) cos( ﹣α)+sin sin( ﹣α ) ﹣α,∴cos( ,﹣ ﹣α)= ),故|OB|=1,∴△BOC 为等边三角形,∴∠BOC= ,﹣sin( ﹣α)=﹣ , ,
∴cosα=cos[ = +
∴sinα=sin[ = ∴ = 故选:A. ﹣ cos2
【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题. 7. 【答案】C 【解析】
考点:真子集的概念. 8. 【答案】A 【解析】解:整理抛物线方程得 x2=﹣ y,∴p= ∵抛物线方程开口向下,
形面积公式 S




答案.
二、填空题
11.【答案】﹣280 解:∵( 由 ﹣2)7 的展开式的通项为 ,得 r=3. . = .
∴x2 的系数是 故答案为:﹣280. 12.【答案】 ﹣ . +α)= ,
【解析】解:∵sin(
第 8 页,共 15 页
∴cos( =sin(
﹣α)=cos[ +α)= ,
座号_____
姓名__________
分数__________
该双曲线的方程为( A. ﹣ =1 B.
5. 已知全集 I={1,2,3,4,5,6,7,8},集合 M={3,4,5},集合 N={1,3,6},则集合{2,7,8}是 ( ) B.M∩NC.∁IM∪∁IN D.∁IM∩∁IN A.M∪N
2 2


腰三角形面积 S 2 4 正确答案为 A.
相关文档
最新文档