2018年广西省北部湾经济区中考数学试卷.doc

合集下载

2018年广西北部湾经济区中考数学试卷含答案解析

2018年广西北部湾经济区中考数学试卷含答案解析

第 1 页广西北部湾经济区2018年初中学业水平统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的倒数是( )A .3-B .3C .13-D .132.下列美丽的壮锦图案是中心对称图形的是( )ABCD3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为( )A .38110⨯B .48.110⨯C .58.110⨯D .50.8110⨯4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为 ( ) A .7分 B .8分 C .9分D .10分 5.下列运算正确的是( )A .2()+1+1a a a =B .235()a a =C .233+4a a a =D .523a a a ÷=第 2 页6.如图,ACD ∠是ABC △的外角,CE 平分ACD ∠,若60A ∠=︒, 40B ∠=︒,则ECD ∠等于( )A .40︒B .45︒C .50︒D .55︒7.若m n >,则下列不等式正确的是( )A .22m n -<-B .44m n > C .66m n <D .88m n ->-8.从2-,1-,2这三个数中任取两个不同的数相乘,积为正数的概率是 ( )A .23B .12C .13D .149.将抛物线21 6212y x x =-+向左平移2个单位后,得到新抛物线的解析式为 ( ) A .21(+52)8y x =- B .21(+52)4y x =- C .21(+32)8y x =-D .21(+32)4y x =-10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为( )A .π+3B .π3-C .2π3-D .2π23-11.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为 ( ) A .2()801+100x = B .2100180()x -= C .8012100()x +=D .28()01100x +=12.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP △沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP OF =,则cos ADF ∠的值为( )A .1113B .1315C .1517D .1719第 3 页第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 13.,则实数x 的取值范围是 . 14.因式分解:2 22a -= .15.已知一组数据6,,3351x ,,,的众数是3和5,则这组数据的中位数是 . 16.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30︒,从甲楼顶部B 处测得乙楼底部D 处的俯角是45︒.已知甲楼的高AB 是120m ,则乙楼的高CD 是 m (结果保留根号).17.观察下列等式:031=,133=,239=,3327=,4381=,53243=,…,根据其中规律可得22081103+3+3++3L 的结果的个位数字是 .18.如图,矩形ABCD 的顶点,A B 在x 轴上,且关于y 轴对称,反比例函数10() k y x x=>的图像经过点C ,反比例函数20() k y x x=<的图像分别与,AD CD 交于点 , E F ,若7BEF S =△,1230k k +=,则1k 等于.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演第 4 页算步骤)19.(本小题满分6分)计算:114+3tan60()2--︒.20.(本小题满分6分) 解分式方程:21133x xx x -=--.21.(本小题满分8分)如图,在平面直角坐标系中,已知ABC △的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)将ABC △向下平移5个单位后得到111A B C △,请画出111A B C △; (2)将ABC △绕原点O 逆时针旋转90︒后得到222A B C △,请画出222A B C △; (3)判断以1,,O A B 为顶点的三角形的形状.(无须说明理由)22.(本小题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林第 5 页学校对本校100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m = ,n = ;(2)在扇形统计图中,求“C 等级”所对应圆心角的度数;(3)成绩等级为A 的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛.请用树状图法或列表法求出恰好选中“1男1女”的概率.23.(本小题满分8分)如图,在ABCD Y 中,AE BC ⊥,AF CD ⊥,垂足分别为 ,E F ,且 BE DF =.(1)求证:ABCD Y 是菱形;(2)若5AB =,6AC =,求ABCD Y 的面积.24.(本小题满分10分)某公司在甲、乙两仓库共存放某种原料450吨.如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30第 6 页吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(1030a ≤≤),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,请求出总运费W 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,W 的变化情况.25.(本小题满分10分)如图,ABC △内接于⊙O ,CBG A ∠=∠,CD 为直径,OC 与 AB 相交于点E ,过点E 作EF BC ⊥,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD . (1)求证: PG 与⊙O 相切; (2)若58EF AC =,求BEOC的值. (3)在(2)的条件下,若⊙O 的半径为8,PD OD =,求OE 的长.26.(本小题满分10分)如图,抛物线25+y ax ax c =-与坐标轴分别交于点A ,C ,E 三点,其中0()3, A -,()0,4C,点B在x轴上,AC BC=,过点B作BD x⊥轴交抛物线于点D,点,M N分别是线段,CO BC上的动点,且CM BN=,连接, ,MN AM AN.(1)求抛物线的解析式及点D的坐标;(2)当CMN△是直角三角形时,求点M的坐标;(3)试求出+AM AN的最小值.广西北部湾经济区2018年初中学业水平统一考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】根据倒数的定义,如果两个数的乘积等于1,那么我们就说这两个数互为倒,除0以外的数都存在倒数.因此3-的倒数为1 3 -.【考点】倒数定义,有理数乘法的运算律2.【答案】A【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形.【考点】中心对称图形3.【答案】B【解析】4810008.110=⨯,故选B.第7页第 8 页【考点】科学记数法. 4.【答案】B 【解析】12410684+++=.【考点】用折线图求数据的平均分问题. 5.【答案】D【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得2()+1+a a a a =;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得236()a a =;选项C错误,直接运用整式的加法法则,23a 和a 不是同类项,不可以合并; 选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得523 a a a ÷=. 【考点】整式的乘法,幂的乘方,整式的加法,同底数幂的除法. 6.【答案】C【解析】ABC △的外角6040100ACD A B ∠=∠+∠=+=o o o ,又因为CE 平分ACD ∠,所以111005022ACE ECD ACD ∠=∠=∠=⨯=o o . 【考点】三角形外角的性质,角平分线的定义. 7.【答案】B【解析】A :不等式两边同时减去一个相等的数,不等式的符号不改变,错误 B :不等式两边同时除以一个相等的正数,不等式的符号不改变,正确 C :不等式两边同时乘以一个相等的正数,不等式的符号不改变,错误 D :不等式两边同时乘以一个相等的负数,不等式的符号改变,错误. 【考点】不等式的性质 8.【答案】C【解析】总共有三个数字,两两相乘有三种情况;根据同号得正,异号得负,而只有-2与-1相乘时才得正数,所以是13. 【考点】概率统计,有理数乘法 9.【答案】D【解析】方法1:先把解析式配方为顶点式,再把顶点平移.抛物线216212y x x -=+可配方成2(1+32)6y x =-,顶点坐标为(6,3).因为图形向左平移2个单位,所以第 9 页顶点向左平移2个单位,即新的顶点坐标变为(4,3),而开口大小不变,于是新抛物线解析式为21(+32)4y x =-方法2:直接运用函数图像左右平移的“左加右减”法则.向左平移2个单位,即原来解析式中所有的“x ”均要变为“x +2”,于是新抛物线解析式为2)1(+26+2+21()2y x x =-,整理得21 4+112y x x -=,配方后得21(+32)4y x =-. 【考点】配方法,函数图像的平移规律,点的平移规律 10.【答案】D【解析】莱洛三角形的面积实际上是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加减去两个等边三角形的面积,即32ABC S S S =⨯-⨯△阴影扇形. 由题意可得,2602π23603S π=⨯⨯=扇形.要求等边三角形ABC 的面积需要先求高.如下图,过AD 垂直BC 于D ,可知, 在Rt∆ABD 中, sin602AD ADAB ︒==, 所以22sin603AD π=⨯=o ,所以112222233ABC S BC AD ππ=⨯⨯=⨯⨯=△. 所以232322π23ABC S S S π=⨯-⨯=⨯-⨯=-△阴影扇形. 故选D .【考点】等边三角形的性质与面积计算,扇形的面积计算公式 11.【答案】A【解析】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1 +x )吨,2018年蔬菜产量为80(1 + x ) (1 + x )吨.预计2018年蔬菜产量达到100吨,即80(1 + x )(1 + x ) =100,即80(1 + x ) = 100.故选A .【考点】由实际问题抽象出一元二次方程 12.【答案】C【解析】由题意得:Rt DCP Rt DEP △≌△,所以4,DC DE CP EP === 在 Rt OEF △和 Rt OBP △中,,,EOF BOP B E OP OF ∠∠∠∠===第 10()Rt OEF Rt OBP AAS △≌△,所以,OE OB EF BP ==设EF 为x ,则,4BP x DF DE EF x ==-=-,又因为++BF OF OB OP OE PE PC ====,3PC BC BP x =-=-. 所以,()431AF AB BF x x =-=--=+在Rt DAF △,222AF AD DF +=,也就是222((134))x x ++=- 解之得35x =,所以35EF =,317455DF -== 最终,在Rt DAF △中,17cos ADF DF ∠==.【考点】折叠问题,勾股定理列方程,解三角形,三角函数值第Ⅱ卷二.填空题 13.【答案】5x ≥【解析】根据被开方数是非负数,则有50x -≥,∴5x ≥. 【考点】二次根式有意义的条件. 14.【答案】()(211)a a +-【解析】22()22212()1)(1a a a a -=-=+-步骤一:先提公因式2得到:22(1)a -, 步骤二:再利用平方差公式因式分解得到结果:()(211)a a +-. 【考点】因式分解 15.【答案】4【解析】解:因为众数为3和5,所以 5x =,所以中位数为:()3524+÷=. 【考点】中位数. 16.【答案】【解析】∵俯角是45o ,∴ 45BDA ∠=o ,∴ 120m AB AD ==,又∵30CAD ∠=o ∴在Rt △ADC中tan tan30CD CDA AD ∠===o ,∴CD =m ) 【考点】三角函数 17.【答案】3【解析】∵ 031=,133=,239=,3327=,4381=∴个位数4个数一循环, ∴2018104()453+÷=余,∴1+3+913=,∴22081103+3+3++3L 的个位数字是3. 【考点】循环规律 18.【答案】9【解析】根据题意,设点C 的坐标为1,k a a ⎛⎫⎪⎝⎭, ∵矩形ABCD 关于y 轴对称, ∴12k OB OA a AB a AD BC a=====,,, ∴点F 的纵坐标为1k a ,将其代入2k y x=,得点F 的横坐标为21akk ,即点F 的坐标为211,ak k k a ⎛⎫⎪⎝⎭,点E 的坐标为2,k a a ⎛⎫-- ⎪⎝⎭, ∵1230k k +=,∴11=22kS a k a=g 矩形,()121211112223BCF k ak S a k k k a k ∆⎛⎫=-=-= ⎪⎝⎭g g , ()1222121111121229DEF k kak k S a k k k a ak k ∆⎛⎫⎛⎫⎡⎤⎛⎫=--+=++=⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭g g g , 2111223ABE k S a k a ∆⎛⎫=-= ⎪⎝⎭g g , ∴1111221-27393BEF BCF DEF ABE S S S S S k k k k ∆∆∆∆=--=---=矩形,即1779k =,解得19k =. 【考点】反比例函数的图象与性质,矩形的性质,三角形的面积. 三、解答题 19.【答案】2【解析】解:422=+-=+原式【考点】实数的综合运算. 20.【答案】32x =【解析】解:方程左右两边同乘3(1)x -, 得31)3(2x x x --=,3332x x x -+=,32x =, 检验:当32x =时,3()10x -≠, 所以,原分式方程的解为32x =.【考点】解分式方程.21.【答案】(1)如图所示,111A B C △即为所求; (2)如图所示,222A B C △即为所求; (3)三角形的形状为等腰直角三角形. 【解析】(1)如图所示,111A B C △即为所求; (2)如图所示,222A B C △即为所求; (3)三角形的形状为等腰直角三角形.【考点】平面直角坐标系中的作图变换—平移与旋转. 22.【答案】(1)51 30(2)“C 等级”对应圆心角的度数为108° (3)恰好选中是1男和1女的概率是12. 【解析】(1)m =0.51⨯100 =51看扇形可知D 的百分数为15%,则其频率为0.15,则人数为0.15⨯100 =15; 总人数为100,则C 的人数=总人数-(A 、B 、D )人数, 即n =100-4-51-15 =30(2)圆周角为360o ,根据频数之和为1,求出C 的频率为0.3,则“C 等级”对应圆心角的度数为0.3360108⨯=o o(3)将1名男生和3名女生标记为A 1、A 2、A 3、A 4 ,用树状图表示如下:由树状图可知随机挑选2名学生的情况总共有12种,其中恰好选中1男和1女的情况有6种, 概率=61122=【考点】统计表,扇形统计图,概率统计.23.【答案】证明(1)∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵BE=DF,∴△AEB≌△AFD(ASA).∴AB=AD,∴四边形ABCD是菱形.(2)如图,连接BD交AC于点O∵由(1)知四边形ABCD是菱形,AC = 6.∴AC⊥BD,1632AO OC AC===⨯=,∵AB=5,AO=3,在Rt△AOB中,2222534BO AB AO=-=-=∴BD=2BO=8,∴168242S ABCD AC BD=⋅=⨯⨯=Y【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵BE=DF,∴△AEB≌△AFD(ASA).∴AB=AD,∴四边形ABCD是菱形.(2)如图,连接BD交AC于点O∵由(1)知四边形ABCD是菱形,AC = 6.∴AC⊥BD,1632AO OC AC===⨯=,∵AB=5,AO=3,在Rt△AOB中,4BO=∴BD=2BO=8,∴168242S ABCD AC BD=⋅=⨯⨯=Y【考点】平行四边形的性质;全等三角形的性质与判定;勾股定理;菱形的判定与性质、面积计算.24.【答案】(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,根据题意得:450(140%)30(160%). x yy x +=⎧⎨--=-⎩,解得:240210. xy=⎧⎨=⎩,答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m吨原料到工厂,则从乙仓库运300m-吨原料到工厂总运费120100300()()(20000)30W a m m a m=-+-=-+即()2030000W a m=-+. (3)①当1020a≤<,200a->,由一次函数的性质可知,W随着m的增大而增大②当20a=时,200a-=,W随着m的增大没有变化③当2030a<≤,200a-<,W随着m的增大而减小.【解析】(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,根据题意得:450(140%)30(160%). x yy x +=⎧⎨--=-⎩,解得:240210. xy=⎧⎨=⎩,答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m吨原料到工厂,则从乙仓库运300m-吨原料到工厂总运费120100300()()(20000)30W a m m a m=-+-=-+即()2030000W a m=-+. (3)①当1020a≤<,200a->,由一次函数的性质可知,W随着m的增大而增大②当20a=时,200a-=,W随着m的增大没有变化③当2030a<≤,200a-<,W随着m的增大而减小.【考点】二元一次方程组;一次函数的性质及应用25.【答案】解:(1)证明:如图1,连接OB,则OB OD=∴BDC DBO∠=∠∵»»BCBC = ∴A BDC ∠=∠ ∴A BDC ∠=∠ 又∵CBG A ∠=∠ ∴CBG DBO ∠=∠ CD 是⊙O 直径 ∴90DBO OBC ∠+∠=︒ ∴90CBG OBC ∠+∠=︒ ∴90OBG ∠=︒点B 在圆上, ∴ PG 与⊙O 相切. (2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC ∠=∠=∠12AM AC =∵»»AC AC =∴1 2ABC AOC ∠=∠ 又∵ 90EFB OGA ∠=∠=︒ ∴BEF OAM △∽△ ∴BEF OAM △∽△12EF AC OA OC AM =⋅= ∴12EF BEOC AC =又∵58EF AC = ∴552284BE EF OC AC =⨯=⨯= 方法二: ∵CD 是⊙O 直径 ∴ 90DBC ∠=o 又∵DCB ECF ∠=∠∴DCB ECF =△△ ∴DCB ECF ∽△△ ∴EF ECDB DC=又∵BDE EAC ∠=∠DBE AEC ∠=∠∴DB BEAC EC=①⨯②得:EF DB EC BEDB AC DC EC⨯=⨯即∵EF BEAC DC=58BE DC = 又 ∵2DC OC = ∴528BE OC = ∴54BE OC = (3)∵ PD OD =, 90PDO ∠=︒ ∴8BD OD == 在 Rt DBC ∆中,8BC = 又OD OB =∴DOB △是等边三角形 ∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC ∠=∠+∠= ∴30OCB ∠=︒12EF FCCE EF =⋅∴可设,2,3EF x EC x FC x === ∴83BF x =-在Rt BEF ∆中,222BE EF BF =+222210(43)213EH BE BH =-=-=22100(83)x x =+-∴4OE EH OH =-=. 【解析】解 :(1)证明: 如图1,连接OB ,则OB OD = ∴BDC DBO ∠=∠∵»»BCBC = ∴A BDC ∠=∠ ∴A BDC ∠=∠ 又∵CBG A ∠=∠ ∴CBG DBO ∠=∠ CD 是⊙O 直径 ∴90DBO OBC ∠+∠=︒ ∴90CBG OBC ∠+∠=︒ ∴90OBG ∠=︒点B 在圆上, ∴PG 与⊙O 相切. (2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC ∠=∠=∠12AM AC =∵»»AC AC =∴1 2ABC AOC ∠=∠ 又∵ 90EFB OGA ∠=∠=︒ ∴BEF OAM △∽△ ∴BEF OAM △∽△12EF AC OA OC AM =⋅= ∴12EF BEOC AC =又∵58EF AC =∴552284BE EF OC AC =⨯=⨯= 方法二: ∵CD 是⊙O 直径 ∴ 90DBC ∠=o 又∵DCB ECF ∠=∠ ∴DCB ECF =△△ ∴DCB ECF ∽△△ ∴EF ECDB DC=又∵BDE EAC ∠=∠DBE AEC ∠=∠∴DB BEAC EC=①⨯②得:EF DB EC BEDB AC DC EC⨯=⨯即∵EF BEAC DC=58BE DC = 又 ∵2DC OC = ∴528BE OC = ∴54BE OC = (3)∵ PD OD =, 90PDO ∠=︒ ∴8BD OD == 在 Rt DBC ∆中,8BC = 又OD OB =∴DOB △是等边三角形 ∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC ∠=∠+∠= ∴30OCB ∠=︒12EF FCCE EF =⋅∴可设,2,3EF x EC x FC x === ∴83BF x =-在Rt BEF △中,222BE EF BF =+222210(43)213EH BE BH =-=-=22100(83)x x =+-∴2134OE EH OH =-=-.【考点】切线的性质和判断,相似三角形.26.【答案】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+ 可得1,4,6a c =-=∴抛物线的解析式为215466y x x =-++ ∵AC BC =, ∴ABC △是等腰三角形. 又点B 在x 轴上,∴()3,0B 又∵BD x ⊥轴,D 在抛物线上, ∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a ∵CM BN =∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+ ①当90CMN ∠=︒时,CMN COB △∽△ 由CM CN CO CB =得41+45a a -=解得:169a = 16(0,)9M ②当∠CNM=90°时,CNM COB △∽△ 由CM CN CB CO =得41+54a a -=解得:119a = 11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M(3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN ∠=∠ ∵OCB ACM ∠=∠ ∴ ACM DBN ∠=∠ 又∵,CM BN AC BD == ∴( )CAM BDN SAS ≅△△ ∴AM DN =∴AM AN DN AN +=+当A 、N 、D 三点共线时,DN AN AD += 即AM AN +的最小值为AD ∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得,2222+6+561AD AB BD ===∴AM AN +的最小值为61.【解析】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+ 可得1,4,6a c =-=∴抛物线的解析式为215466y x x =-++ ∵AC BC =, ∴ABC △是等腰三角形. 又点B 在x 轴上,∴()3,0B 又∵BD x ⊥轴,D 在抛物线上, ∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a ∵CM BN =∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+ ①当90CMN ∠=︒时,CMN COB △∽△ 由CM CN CO CB =得41+45a a -=解得:169a = 16(0,)9M徐老师第 21 ②当90CNM ∠=︒时,CNM COB △∽△ 由CM CN CB CO =得41+54a a -=解得:119a = 11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M (3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN ∠=∠∵OCB ACM ∠=∠∴ ACM DBN ∠=∠又∵,CM BN AC BD ==∴( )CAM BDN SAS ≅△△∴AM DN =∴AM AN DN AN +=+当A 、N 、D 三点共线时,DN AN AD +=即AM AN +的最小值为AD∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得,2222+6+561AD AB BD ===∴AM AN +的最小值为61.【考点】用待定系数法求解析式,动点形成相似三角形的运用,全等三角形的证明,动点中线段和最值问题的转化。

广西壮族自治区广西北部湾经济区2018届数学中考模拟试卷及参考答案

广西壮族自治区广西北部湾经济区2018届数学中考模拟试卷及参考答案
广西壮族自治区广西北部湾经济区2018届数学中考模拟试卷
一、 单选题 1. 若a+b<0,a<0,b>0,则a,﹣a,b,﹣b的大小关系是( ) A . a<﹣b<b<﹣a B . ﹣b<a<﹣a<b C . a<﹣b<﹣a<b D . ﹣b<a<b<﹣a 2. 如图放置的几何体的左视图是( )
A.
三、 解答题 19. 计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣ | 20. 如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再
把△A′B′C′绕点C'顺时针旋转90°,得到△A″B″C′,
(1) 请你画出△A′B′C′和△A″B″C′(不要求写画法). (2) 求出线段A′C′在旋转过程中所扫过的面积.(结果保留) 21. 如图是某校甲班学生外出去基地参观,乘车、行步、骑车的人数分布直方图和扇形统计图.
(1) 根据统计图求甲班步行的人数; (2) 甲班步行的对象根据步行人数通过全班随机抽号来确定;乙班学生去基地分两段路走,即学校﹣﹣A地﹣﹣基地
,每段路走法有乘车或步行或骑车,你认为哪个班的学生有步行的可能性少?(利用列表法或树状图求概率说明).
22. 如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E.过点D作DF⊥AC交AC于点F.
A. B.2C.4D.6 12. 如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y= (k>0,x>0)的图象相交于点A,与x轴 相交于点B,则OA2﹣OB2=10,则k的值是( )
A . 5 B . 10 C . 15 D . 20 二、 填空题
13. 一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,8.则这名学生射击环数的众 数是________.

北部湾经济区中考数学试卷

北部湾经济区中考数学试卷

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. 2/3D. 0.1010010001…2. 已知等腰三角形底边长为4cm,腰长为5cm,则其面积为()A. 6cm²B. 8cm²C. 10cm²D. 12cm²3. 若函数f(x) = x² - 2x + 1在区间[1, 3]上单调递增,则f(2)的值是()A. 0B. 1C. 2D. 34. 已知二次函数y = ax² + bx + c的图像开口向上,且顶点坐标为(1, -2),则a的取值范围是()A. a > 0B. a ≥ 0C. a < 0D. a ≤ 05. 在等差数列{an}中,首项a₁ = 2,公差d = 3,则第10项a₁₀的值是()A. 27B. 28C. 29D. 306. 若a,b是方程x² - 3x + 2 = 0的两个根,则a + b的值是()A. 1B. 2C. 3D. 47. 在平面直角坐标系中,点A(2, 3),B(-3, 4)关于原点对称的点分别是()A. A'(-2, -3),B'(3, -4)B. A'(2, -3),B'(-3, 4)C. A'(-2, 3),B'(-3, -4)D. A'(2, 3),B'(3, 4)8. 已知函数f(x) = log₂x在区间(1, 3)上单调递增,则f(2)的值是()A. 1B. 2C. 3D. 49. 若等比数列{an}的首项a₁ = 2,公比q = 3,则第n项aₙ的值是()A. 3n - 1B. 3nC. 3n + 1D. 2n10. 在三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°二、填空题(本大题共5小题,每小题4分,共20分)11. 若方程x² - 2ax + b = 0的解为x₁ = 1,x₂ = 3,则a + b = _______。

广西南宁市中考数学试卷和答案(word打印版)

广西南宁市中考数学试卷和答案(word打印版)

D. -8m>-8n


A. 2 3
B. 1 2
C. 1 3
9. 将抛物线 y 1 x2 6x 21 向左平移 2 个单位后,得到新抛物线的解析式为 2
D. 1 4
(
)
A. y = 1 (x - 8)2+5 2
B. y = 1 (x - 4)2+5 2
C. y 1 (x 8)23 2
D. y 1 (x 4)23 2
2
20.(本题满分 6 分)解分式方程: x 1 2x
x 1
3x 3
21.(本题满分 8 分)如图,在平面直角坐标系中,已知△ABC 的三个顶
--
--
点坐标分别是 A(1,1),B(4,1),C(3,3) (1)将△ABC向下平移 5 个单位后得到△ A1B1C1 ,请画出△ A1B1C1 ; (2)将△ABC绕原点 O 逆时针旋转 90°后得到△ A2B2C2 , 请画出△ A2B2C2 ; (3)判断以 O, A1 ,B 为顶点的三角形的形状(无须说明理由)
--
2018 年广西北部湾经济区六市同城初中毕业升学统一考试
(六市:南宁、北海、钦州、防城港、崇左和来宾市)
数学
(考试时间:120 分钟 满分:120 分)
一、选择题(本大题共 12小题,每小题 3 分,共 36 分。在每小题给出的四个选项中只有一项是符合要求的)
1. -3 的倒数是

)
A. -3
B. 3
2. 下列美丽的壮锦图案是中心对称图形的是
C. 1 3
D. 1 3


A
B
C

3. 2018年俄罗斯世界杯开幕式于6月 14 日在莫斯科卢日尼基球场举行,该球场可容纳 81000 名观众,其中数

2018年广西北部湾经济区中考数学试卷(含答案与解析)

2018年广西北部湾经济区中考数学试卷(含答案与解析)

数学试卷 第1页(共36页)数学试卷 第2页(共36页)绝密★启用前广西北部湾经济区2018年初中学业水平统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的倒数是( )A .3-B .3C .13-D .132.下列美丽的壮锦图案是中心对称图形的是( )ABCD3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为( )A .38110⨯B .48.110⨯C .58.110⨯D .50.8110⨯4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为 ( ) A .7分 B .8分 C .9分D .10分 5.下列运算正确的是( )A .2()+1+1a a a =B .235()a a =C .233+4a a a =D .523a a a ÷=6.如图,ACD ∠是ABC △的外角,CE 平分ACD ∠,若60A ∠=︒, 40B ∠=︒,则ECD ∠等于( )A .40︒B .45︒C .50︒D .55︒7.若m n >,则下列不等式正确的是( )A .22m n -<-B .44m n >C .66m n <D .88m n ->-8.从2-,1-,2这三个数中任取两个不同的数相乘,积为正数的概率是( )A .23B .12C .13D .149.将抛物线21 6212y x x =-+向左平移2个单位后,得到新抛物线的解析式为 ( )A .21(+52)8y x =-B .21(+52)4y x =-C .21(+32)8y x =-D .21(+32)4y x =-10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为( )A .π+3B .π3-C .2π3-D .2π23-11.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为( )A .2()801+100x =B .2100180()x -= C .8012100()x +=D .28()01100x +=12.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP △沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP OF =,则cos ADF ∠的值为( ) A .1113 B .1315 C .1517 D .1719第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 13.要使二次根式5x -在实数范围内有意义,则实数x 的取值范围是 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)14.因式分解:2 22a -= .15.已知一组数据6,,3351x ,,,的众数是3和5,则这组数据的中位数是 . 16.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30︒,从甲楼顶部B 处测得乙楼底部D 处的俯角是45︒.已知甲楼的高AB 是120m ,则乙楼的高CD 是 m (结果保留根号).17.观察下列等式:031=,133=,239=,3327=,4381=,53243=,…,根据其中规律可得22081103+3+3++3的结果的个位数字是 .18.如图,矩形ABCD 的顶点,A B 在x 轴上,且关于y 轴对称,反比例函数10() k y x x=>的图像经过点C ,反比例函数20() ky x x=<的图像分别与,AD CD 交于点 , E F ,若7BEF S =△,1230k k +=,则1k 等于 .三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:114+3tan60()2--︒.20.(本小题满分6分) 解分式方程:21133x xx x -=--.21.(本小题满分8分)如图,在平面直角坐标系中,已知ABC △的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)将ABC △向下平移5个单位后得到111A B C △,请画出111A B C △; (2)将ABC △绕原点O 逆时针旋转90︒后得到222A B C △,请画出222A B C △; (3)判断以1,,O A B 为顶点的三角形的形状.(无须说明理由)22.(本小题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m = ,n = ;(2)在扇形统计图中,求“C 等级”所对应圆心角的度数;(3)成绩等级为A 的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛.请用树状图法或列表法求出恰好选中“1男1女”的概率.数学试卷 第5页(共36页) 数学试卷 第6页(共36页)23.(本小题满分8分)如图,在ABCD 中,AE BC ⊥,AF CD ⊥,垂足分别为 ,E F ,且 BE DF =. (1)求证:ABCD 是菱形;(2)若5AB =,6AC =,求ABCD 的面积.24.(本小题满分10分)某公司在甲、乙两仓库共存放某种原料450吨.如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨. (1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(1030a ≤≤),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,请求出总运费W 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,W 的变化情况. 25.(本小题满分10分)如图,ABC △内接于⊙O ,CBG A ∠=∠,CD 为直径,OC 与 AB 相交于点E ,过点E 作EF BC ⊥,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD . (1)求证: PG 与⊙O 相切; (2)若58EF AC =,求BEOC的值. (3)在(2)的条件下,若⊙O 的半径为8,PD OD =,求OE 的长.26.(本小题满分10分)如图,抛物线25+y ax ax c =-与坐标轴分别交于点A ,C ,E 三点,其中0()3, A -,()0,4C ,点B 在x 轴上,AC BC =,过点B 作BD x ⊥轴交抛物线于点D ,点,M N 分别是线段,CO BC 上的动点,且CM BN =,连接, , MN AM AN . (1)求抛物线的解析式及点D 的坐标;(2)当CMN △是直角三角形时,求点M 的坐标; (3)试求出+AM AN 的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------4广西北部湾经济区2018年初中学业水平统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】根据倒数的定义,如果两个数的乘积等于1,那么我们就说这两个数互为倒,除0以外的数都存在倒数.因此3-的倒数为13-.【考点】倒数定义,有理数乘法的运算律 2.【答案】A【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形. 【考点】中心对称图形 3.【答案】B【解析】4810008.110=⨯,故选B . 【考点】科学记数法. 4.【答案】B 【解析】12410684+++=.【考点】用折线图求数据的平均分问题. 5.【答案】D【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得2()+1+a a a a =;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得236()a a =;选项C 错误,直接运用整式的加法法则,23a 和a 不是同类项,不可以合并; 选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得523 a a a ÷=. 【考点】整式的乘法,幂的乘方,整式的加法,同底数幂的除法. 6.【答案】C【解析】ABC △的外角6040100ACD A B ∠=∠+∠=+=,又因为CE 平分ACD ∠,所以5 / 18111005022ACE ECD ACD ∠=∠=∠=⨯=.【考点】三角形外角的性质,角平分线的定义. 7.【答案】B【解析】A :不等式两边同时减去一个相等的数,不等式的符号不改变,错误 B :不等式两边同时除以一个相等的正数,不等式的符号不改变,正确 C :不等式两边同时乘以一个相等的正数,不等式的符号不改变,错误 D :不等式两边同时乘以一个相等的负数,不等式的符号改变,错误. 【考点】不等式的性质 8.【答案】C【解析】总共有三个数字,两两相乘有三种情况;根据同号得正,异号得负,而只有-2与-1相乘时才得正数,所以是13.【考点】概率统计,有理数乘法 9.【答案】D【解析】方法1:先把解析式配方为顶点式,再把顶点平移.抛物线21 6212y x x -=+可配方成2(1+32)6y x =-,顶点坐标为(6,3).因为图形向左平移2个单位,所以顶点向左平移2个单位,即新的顶点坐标变为(4,3),而开口大小不变,于是新抛物线解析式为21(+32)4y x =-方法2:直接运用函数图像左右平移的“左加右减”法则.向左平移2个单位,即原来解析式中所有的“x ”均要变为“x +2”,于是新抛物线解析式为2)1(+26+2+21()2y x x =-,整理得21 4+112y x x -=,配方后得21(+32)4y x =-.【考点】配方法,函数图像的平移规律,点的平移规律 10.【答案】D【解析】莱洛三角形的面积实际上是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加减去两个等边三角形的面积,即32ABC S S S =⨯-⨯△阴影扇形. 由题意可得,2602π23603S π=⨯⨯=扇形.要求等边三角形ABC 的面积需要先求高.如下图,过AD 垂直BC 于6D ,可知,在Rt∆ABD 中, sin602AD ADAB ︒==, 所以22sin603AD π=⨯=,所以112222233ABC S BC AD ππ=⨯⨯=⨯⨯=△. 所以232322π23ABC S S S π=⨯-⨯=⨯-⨯=-△阴影扇形. 故选D .【考点】等边三角形的性质与面积计算,扇形的面积计算公式 11.【答案】A【解析】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x )吨,2018年蔬菜产量为80(1 + x ) (1 + x )吨.预计2018年蔬菜产量达到100吨,即80(1 + x )(1 + x ) =100,即80(1 + x ) = 100.故选A . 【考点】由实际问题抽象出一元二次方程 12.【答案】C【解析】由题意得:Rt DCP Rt DEP △≌△,所以4,DC DE CP EP === 在 Rt OEF △和 Rt OBP △中,,,EOF BOP B E OP OF ∠∠∠∠===()Rt OEF Rt OBP AAS △≌△,所以,OE OB EF BP ==设EF 为x ,则,4BP x DF DE EF x ==-=-,又因为++BF OF OB OP OE PE PC ====,3PC BC BP x =-=-. 所以,()431AF AB BF x x =-=--=+在Rt DAF △,222AF AD DF +=,也就是222((134))x x ++=- 解之得35x =,所以35EF =,317455DF -==最终,在Rt DAF △中,17cos ADF DF ∠==.【考点】折叠问题,勾股定理列方程,解三角形,三角函数值第Ⅱ卷二.填空题 13.【答案】5x ≥【解析】根据被开方数是非负数,则有50x -≥,∴5x ≥.7 / 18【考点】二次根式有意义的条件. 14.【答案】()(211)a a +-【解析】22()22212()1)(1a a a a -=-=+-步骤一:先提公因式2得到:22(1)a -, 步骤二:再利用平方差公式因式分解得到结果:()(211)a a +-. 【考点】因式分解 15.【答案】4【解析】解:因为众数为3和5,所以 5x =,所以中位数为:()3524+÷=. 【考点】中位数. 16.【答案】【解析】∵俯角是45,∴ 45BDA ∠=,∴ 120m AB AD ==,又∵30CAD ∠= ∴在Rt △ADC中tan tan30CD CDA AD ∠==∴CD =m ) 【考点】三角函数 17.【答案】3【解析】∵ 031=,133=,239=,3327=,4381=∴个位数4个数一循环, ∴2018104()453+÷=余, ∴1+3+913=, ∴22081103+3+3++3的个位数字是3.【考点】循环规律 18.【答案】9【解析】根据题意,设点C 的坐标为1,k a a ⎛⎫⎪⎝⎭,∵矩形ABCD 关于y 轴对称, ∴12k OB OA a AB a AD BC a=====,,, ∴点F 的纵坐标为1k a ,将其代入2k y x =,得点F 的横坐标为21akk ,即点F 的坐标为211,ak k k a ⎛⎫ ⎪⎝⎭,点E 的坐标为2,k a a ⎛⎫-- ⎪⎝⎭,8∵1230k k +=, ∴11=22k S ak a=矩形,()121211112223BCF k ak S a k k k a k ∆⎛⎫=-=-= ⎪⎝⎭,()1222121111121229DEF k k ak k S a k k k a a k k ∆⎛⎫⎛⎫⎡⎤⎛⎫=--+=++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭, 2111223ABE k S a k a ∆⎛⎫=-= ⎪⎝⎭, ∴1111221-27393BEF BCF DEF ABE S S S S S k k k k ∆∆∆∆=--=---=矩形,即1779k =,解得19k =. 【考点】反比例函数的图象与性质,矩形的性质,三角形的面积. 三、解答题 19.【答案】23+ 【解析】解:43323223=+--=+原式【考点】实数的综合运算. 20.【答案】32x =【解析】解:方程左右两边同乘3(1)x -, 得31)3(2x x x --=,3332x x x -+=,32x =, 检验:当32x =时,3()10x -≠, 所以,原分式方程的解为32x =. 【考点】解分式方程.21.【答案】(1)如图所示,111A B C △即为所求; (2)如图所示,222A B C △即为所求; (3)三角形的形状为等腰直角三角形. 【解析】(1)如图所示,111A B C △即为所求; (2)如图所示,222A B C △即为所求;(3)三角形的形状为等腰直角三角形.【考点】平面直角坐标系中的作图变换—平移与旋转.22.【答案】(1)5130(2)“C等级”对应圆心角的度数为108°(3)恰好选中是1男和1女的概率是1 2 .【解析】(1)m=0.51⨯100 =51看扇形可知D的百分数为15%,则其频率为0.15,则人数为0.15⨯100 =15;总人数为100,则C的人数=总人数-(A、B、D)人数,即n =100-4-51-15 =30(2)圆周角为360,根据频数之和为1,求出C的频率为0.3,则“C等级”对应圆心角的度数为0.3360108⨯=(3)将1名男生和3名女生标记为A1、A2、A3、A4 ,用树状图表示如下:由树状图可知随机挑选2名学生的情况总共有12种,其中恰好选中1男和1女的情况有6种,概率=61 122=【考点】统计表,扇形统计图,概率统计.23.【答案】证明(1)∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵BE=DF,∴△AEB≌△AFD(ASA).∴AB=AD,∴四边形ABCD是菱形.(2)如图,连接BD交AC于点O∵由(1)知四边形ABCD是菱形,AC = 6.9/ 18∴AC⊥BD,1632AO OC AC===⨯=,∵AB=5,AO=3,在Rt△AOB中,2222534BO AB AO=-=-=∴BD=2BO=8,∴168242S ABCD AC BD=⋅=⨯⨯=【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵BE=DF,∴△AEB≌△AFD(ASA).∴AB=AD,∴四边形ABCD是菱形.(2)如图,连接BD交AC于点O∵由(1)知四边形ABCD是菱形,AC = 6.∴AC⊥BD,1632AO OC AC===⨯=,∵AB=5,AO=3,在Rt△AOB中,2222534BO AB AO=-=-=∴BD=2BO=8,∴168242S ABCD AC BD=⋅=⨯⨯=【考点】平行四边形的性质;全等三角形的性质与判定;勾股定理;菱形的判定与性质、面积计算.24.【答案】(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,根据题意得:450(140%)30(160%). x yy x +=⎧⎨--=-⎩,解得:240210. xy=⎧⎨=⎩,答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m吨原料到工厂,则从乙仓库运300m-吨原料到工厂1011 / 18总运费120100300()()(20000)30W a m m a m =-+-=-+即()2030000W a m =-+.(3)①当1020a ≤<, 200a ->,由一次函数的性质可知,W 随着m 的增大而增大②当20a =时, 200a -=,W 随着m 的增大没有变化③当2030a <≤, 200a -<,W 随着m 的增大而减小.【解析】(1)设甲仓库存放原料x 吨,乙仓库存放原料y 吨,根据题意得:450(140%)30(160%).x y y x +=⎧⎨--=-⎩, 解得:240210.x y =⎧⎨=⎩, 答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m 吨原料到工厂,则从乙仓库运300m -吨原料到工厂总运费120100300()()(20000)30W a m m a m =-+-=-+即()2030000W a m =-+.(3)①当1020a ≤<, 200a ->,由一次函数的性质可知,W 随着m 的增大而增大②当20a =时, 200a -=,W 随着m 的增大没有变化③当2030a <≤, 200a -<,W 随着m 的增大而减小.【考点】二元一次方程组;一次函数的性质及应用25.【答案】解 :(1)证明:如图1,连接OB ,则OB OD =∴BDC DBO ∠=∠∵BC BC =∴A BDC ∠=∠∴A BDC ∠=∠又∵CBG A ∠=∠∴CBG DBO ∠=∠CD 是⊙O 直径∴90DBO OBC ∠+∠=︒∴90CBG OBC ∠+∠=︒∴90OBG ∠=︒点B 在圆上,∴ PG 与⊙O 相切.(2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC ∠=∠=∠1212AM AC =∵AC AC = ∴12ABC AOC ∠=∠又∵ 90EFB OGA ∠=∠=︒∴BEF OAM △∽△∴BEF OAM △∽△12EFAC OA OC AM =⋅= ∴12EF BEOC AC= 又∵58EF AC = ∴552284BEEFOC AC =⨯=⨯=方法二:∵CD 是⊙O 直径∴ 90DBC ∠=又∵DCB ECF ∠=∠∴DCB ECF =△△∴DCB ECF ∽△△ ∴EF ECDB DC =又∵BDE EAC ∠=∠DBE AEC ∠=∠ ∴DB BEAC EC =①⨯②得:EFDB EC BEDB AC DC EC⨯=⨯13 / 18即∵EF BE AC DC = 58BE DC = 又 ∵2DC OC =∴528BEOC =∴54BEOC =(3)∵ PD OD =, 90PDO ∠=︒∴8BD OD ==在 Rt DBC ∆中,8BC =又OD OB =∴DOB △是等边三角形∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC ∠=∠+∠=∴30OCB ∠=︒12EF FCCE EF =⋅∴可设,2,3EF x EC x FC x ===∴83BF x =-在Rt BEF ∆中,222BE EF BF =+222210(43)213EH BE BH =-=-= 22100(83)x x =+-∴2134OE EH OH =-=-.【解析】解 :(1)证明:如图1,连接OB ,则OB OD =∴BDC DBO ∠=∠∵BC BC =∴A BDC ∠=∠∴A BDC ∠=∠14又∵CBG A ∠=∠∴CBG DBO ∠=∠CD 是⊙O 直径∴90DBO OBC ∠+∠=︒∴90CBG OBC ∠+∠=︒∴90OBG ∠=︒点B 在圆上,∴PG 与⊙O 相切.(2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC ∠=∠=∠ 12AM AC = ∵AC AC =∴12ABC AOC ∠=∠ 又∵ 90EFB OGA ∠=∠=︒∴BEF OAM △∽△∴BEF OAM △∽△12EF AC OA OC AM =⋅= ∴12EF BE OC AC = 又∵58EF AC = ∴552284BE EF OC AC =⨯=⨯= 方法二:∵CD 是⊙O 直径∴ 90DBC ∠=又∵DCB ECF ∠=∠∴DCB ECF =△△15 / 18∴DCB ECF ∽△△ ∴EF EC DB DC = 又∵BDE EAC ∠=∠ DBE AEC ∠=∠∴DB BEAC EC =①⨯②得:EF DB EC BEDB AC DC EC ⨯=⨯即∵EFBEAC DC =58BEDC =又 ∵2DC OC =∴528BE OC =∴54BE OC =(3)∵ PD OD =, 90PDO ∠=︒∴8BD OD ==在 Rt DBC ∆中,8BC =又OD OB =∴DOB △是等边三角形∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC∠=∠+∠= ∴30OCB ∠=︒12EF FCCE EF =⋅∴可设,2,3EF x EC x FC x ===∴83BF x =-在Rt BEF △中,222BE EF BF =+16 222210(43)213EH BE BH =-=-= 22100(83)x x =+-∴2134OE EH OH =-=-.【考点】切线的性质和判断,相似三角形.26.【答案】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+可得1,4,6a c =-= ∴抛物线的解析式为215466y x x =-++ ∵AC BC =, ∴ABC △是等腰三角形.又点B 在x 轴上,∴()3,0B又∵BD x ⊥轴,D 在抛物线上,∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a∵CM BN =∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+①当90CMN ∠=︒时,CMN COB △∽△由CM CN CO CB =得41+45a a -=解得:169a = 16(0,)9M ②当∠CNM=90°时,CNM COB △∽△由CM CN CB CO =得41+54a a -=解得:119a = 11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M (3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN ∠=∠∵OCB ACM ∠=∠17 / 18∴ ACM DBN ∠=∠又∵,CM BN AC BD ==∴( )CAM BDN SAS ≅△△∴AM DN =∴AM AN DN AN +=+当A 、N 、D 三点共线时,DN AN AD +=即AM AN +的最小值为AD∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得, 2222+6+561AD AB BD === ∴AM AN +的最小值为61.【解析】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+可得1,4,6a c =-= ∴抛物线的解析式为215466y x x =-++ ∵AC BC =, ∴ABC △是等腰三角形.又点B 在x 轴上,∴()3,0B又∵BD x ⊥轴,D 在抛物线上,∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a∵CM BN =∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+①当90CMN ∠=︒时,CMN COB △∽△由CM CN CO CB =得41+45a a -=解得:169a = 16(0,)9M ②当90CNM ∠=︒时,CNM COB △∽△由CM CN CB CO =得41+54a a -=解得:119a =18 11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M (3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN ∠=∠∵OCB ACM ∠=∠∴ ACM DBN ∠=∠又∵,CM BN AC BD ==∴( )CAM BDN SAS ≅△△∴AM DN =∴AM AN DN AN +=+当A 、N 、D 三点共线时,DN AN AD +=即AM AN +的最小值为AD∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得,2222+6+561AD AB BD ===∴AM AN +的最小值为61.【考点】用待定系数法求解析式,动点形成相似三角形的运用,全等三角形的证明,动点中线段和最值问题的转化。

2018年广西钦州中考数学试卷和答案(word打印版)

2018年广西钦州中考数学试卷和答案(word打印版)

2018年广西北部湾经济区六市同城初中毕业升学统一考试(六市: 南宁、北海、钦州、防城港、崇左和来宾市)数学(考试时间: 120分钟满分: 120分)一、选择题(本大题共12小题, 每小题3分, 共36分。

在每小题给出的四个选项中只有一项是符合要求的)1. -3的倒数...................................... ... )A. -.........B. .........C........D..2.下列美丽的壮锦图案是中心对称图形的.............................. )A B C D3. 2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行, 该球场可容纳81000名观众, 其中数据81000用科学记数法表示................................ ... )A.81×10...........B.8.1×10......C.8.1×10.......D.0.81×10.4.某球员参加一场篮球比赛, 比赛分4节进行, 该球员每节得分如折线统计图所示, 则该球员平均每节得.A.7.........B.8............................... ... )C.9.........D.10...........................5.下列运算正确的.................................... ... )A.a(a+1..a2+....B.(a2)..a......C.3a2+a=4a.....D.a5÷a..a36.如图, ∠ACD是△ABC的外角, CE平分∠ACD, 若∠A=60°, ∠B=40°, 则∠ECD等....... ... )A. 40...........B. 45............C. 50...........D. 55...........................................7.若m>n, 则下列不等式正确的................................. )A.m-2<n-.......B........C.6m<6.......D.-8m>-8n8.从-2, -1.2这三个数中任取两个不同的数相乘, 积为正数的概率............... ... )A.........B........C........D.9.将抛物线向左平移2个单位后, 得到新抛物线的解析式........... ... )A....B...C.....D..10.如图, 分别以等边三角形ABC的三个顶点为圆点, 以边长为半径画弧, 得到封闭图形是莱洛三角形。

广西北部湾经济区四市同城2018届数学中考模拟试卷(6月份)

广西北部湾经济区四市同城2018届数学中考模拟试卷(6月份)一、单1.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A、α+β=180°B、α+β=90°C、β=3αD、α﹣β=90°+2.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A、6→3B、7→16C、7→8D、6→15+3.我市今年参加中考人数约为42000人,将42000用科学记数法表示为()A、4.2×104B、0.42×105C、4.2×103D、42×103+4.下列运算中不正确的是()A、a3+a2=a5B、a3?a2=a5C、a3÷a2=aD、(a3)2=a6+5.下列调查中,适宜采用普查方式的是()A、调查电视台节目的收视率B、调查市民对皮影表演艺术的喜爱程度C、调查炮弹的杀伤力的情况D、调查宇宙飞船的零部件质量+6.在△ABC中,点D,E分别是边AB,BC的中点.若DE=6,则AC=()A、8B、10C、12D、14+7.一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球;随机从中摸出一球,不再放回,充分搅均后再随机摸出一球。

则两次都摸到红球的概率是()A、B、C、D、+8.若一元二次方程x2+2x+m=0中的b2﹣4ac=0,则这个方程的两根为()A、x1=1,x2=﹣1B、x1=x2=1C、x1=x2=﹣1D、不确定+9.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有(??)A 、1个B 、2个C 、3个D 、4个 +10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五 寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳 子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木 长为x 尺,绳子长为y 尺,则下列符合题意的方程组 是()A 、+ B 、 C 、 D 、11.如图,点A ,B ,C ,D ,E ,F ,G ,H 为⊙O 的八等分点,AD 与BH 的交点为I ,若⊙ O 的半径为1,则HI 的长 等于()A 、2﹣B 、2+C 、2D 、 + 12.如图,将直线y=x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y= (k >0,x >0)的图象相交于点A ,与x 轴相交于点B ,则OA 2﹣OB 2=10,则k 的 值 是()A、5B、10C、15D、20+二、填空题13.若有意义,则x的取值范围为.+14.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.Array+.15.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=+16.如图,在⊙O中,圆周角∠ACB=150°,弦AB=4,则扇形OAB的面积是.+17.如图①,②,③,④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第8个“广”字中的棋子个数是.+18.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是°.+三、解答题19.计算:(﹣1)2+3tan30°﹣(﹣2)(+2)+2sin60°.+20.解不等式,并在数轴上表示不等式组的解.+21.如图,在平行四边形ABCD中,AB<BC.(1)、利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)、若BC=7,CD=5,求CE的长.+22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)3第二组(15≤x<30)6第三组(30≤x<45)7第四组(45≤x<60)b 0.15 a 0.35 0.20(1)、频数分布表中a= , b= ,并将统计图补充完整;(2)、如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)、已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?+23.如图,一艘船在A处望见灯塔E在北偏东60°方向上,此船沿正东方向航行60 海里后到达B处,在B处测得灯塔E在北偏东15°方向上.(Ⅰ)求∠AEB的度数;(Ⅱ)①求A处到灯塔E的距离AE;②已知灯塔E周围40海里内有暗礁,问:此船继续向东方向航行,有无触礁危险?(参考数据:≈1.414,≈1.732)+24.某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.(1)、求每辆A,B两种自行车的进价分别是多少?(2)、现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.+25.如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.(1)、求证:BC是⊙O的切线;(2)、⊙O的半径为5,tanA=,求FD的长.+26.如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)、求顶点D的坐标(用含a的代数式表示);(2)、若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转18 0°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.+。

2018年广西南宁市中考数学试卷(附答案)

2018年广西北部湾经济区六市同城初中毕业升学统一考试(南宁、北海、钦州、防城港、崇左和来宾市)数 学一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的) 1. -3的倒数是 ( ) A. -3 B. 3 C. 31-D. 31 2. 下列美丽的壮锦图案是中心对称图形的是 ( ) A B C D3. 2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为 ( ) A. 81×103 B. 8.1×103 C. 8.1×104 D. 0.81×1054. 某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分 A. 7分 B. 8分 ( ) C. 9分 D. 10分5. 下列运算正确的是 ( ) A. a(a+1) = a 2+1 B. (a 2)3 = a 5 C. 3a 2+a=4a 3 D. a 5÷a 2 = a 36. 如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于 ( ) A. 40° B. 45°C. 50°D. 55°7. 若m>n ,则下列不等式正确的是 ( ) A. m-2<n-2 B.4n4m > C. 6m<6n D. -8m>-8n 8. 从-2,-1, 2这三个数中任取两个不同的数相乘,积为正数的概率是 ( ) A.32B.21 C. 31 D.419. 将抛物线216x 2x 21y +-=向左平移2个单位后,得到新抛物线的解析式为 ( )A. +528)-(x 21=yB. +524)-(x 21=yC.328)(x 21y +-=D. 324)(x 21y +-=10. 如图,分别以等边三角形ABC 的三个顶点为圆点,以边长为半径画弧,得到封闭图形是莱洛三角形。

广西北部湾经济区四市同城2018届数学中考模拟试卷

广西北部湾经济区四市同城2018届数学中考模拟试卷一、选择题(每小题3分;共36分)1.如图,把等腰直角三角尺的直角顶点放在直尺的一边上,则∠1+∠2的度数为()A. 60°B. 90°C. 120°D. 135°2.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.3.据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A. 0.332×106B. 3.32×105C. 3.32×104D. 33.2×1044.下列计算结果正确的是()A. (mn)6÷(mn)3=mn3B. (x+y)6÷(x+y)2·(x+y)3=x+yC. x10÷x10=0D. (m-2n)3÷(-m+2n)3=-15.下列说法中正确的是()A. “打开电视,正在播放《新闻联播》”是必然事件;B. 某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖;C. 数据1,1,2,2,3的众数是3;D. 想了解无锡市城镇居民人均年收入水平,宜采用抽样调查6.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE 的周长是()A. 3B. 4C. 5D. 67.某电视台体育直播节目从接到的5000条短信(每人只许发一条短信)中,抽取10名“幸运观众”.小明给此直播节目发了一条短信,他成为“幸运观众”的概率是()A. B. C. D.8.若关于x的一元二次方程kx2 - 6x + 9 = 0有两个不相等的实数根,则k的取值范围是()A. k<1B. k<1且k≠0C. k≠0D. k>19.已知y=ax2+k的图象上有三点A(﹣3,y1),B(1,y2),C(2,y3),且y2<y3<y1,则a的取值范围是()A. a>0B. a<0C. a≥0D. a≤010.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A. B. C. D.11.如图,一个半径为r(r<1)的圆形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A. πr2B.C. r2D. r212.如图,在Rt△ABC中,∠C=90°,AC= ,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E 处,如果AD⊥ED,那么△ABE的面积是()A. 1B.C.D.二、填空题(每小题3分;共18分)13.求代数式a()2-+c+1的值是________.14.为了解居民用水情况,小明在某小区随机抽查了20户家庭的月用水量,结果如下表:月用水量(m3)45689户数46541(1)则这20户家庭的月用水量的众数是________m3,中位数是________m3.15.分解因式:ma2﹣4ma+4m=________.16.扇形的圆心角为120°,弧长为6πcm,那么这个扇形的面积为________ cm2.17.如下图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是________ .18.如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A按逆时针旋转90°后得到△AO1B1,则点B1的坐标是________.三、解答题(每小题3分;共46分)19.计算:(﹣)﹣2﹣|﹣2|+(π﹣2016)0﹣﹣tan60°.20.解不等式组:,并把它的解集在数轴上表示出来.21.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)22.松山区种子培育基地用A,B,C三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C型号种子的发芽率为80%,根据试验数据绘制了下面两个不完整的统计图:(1)求C型号种子的发芽数;(2)通过计算说明,应选哪种型号的种子进行推广?(3)如果将所有已发芽的种子放在一起,从中随机取出一粒,求取到C型号发芽种子的概率.23.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)24.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮助算算,用哪种方式购票更省钱?25.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是________.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.26.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.参考答案一、选择题1. D2. D3. B4. D5. D6. C7. B8.B9.A 10. D 11. C 12. A二、填空题13.1 14.(1)5;5.5 15.m(a﹣2)216.27π17.n2+2n 18.(﹣1,﹣3)三、解答题19.解:原式=4﹣2++1﹣4﹣v=﹣120.【解答】解:由①得,x≤2,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤2.在数轴上表示为:21. 解:如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.22.(1)解:读图可知:C型号种子占1﹣30%﹣30%=40%,即1500×40%=600粒;因为其发芽率为80%,故其发芽数是600×80%=480粒(2)解:A型号种子数为1500×30%=450,发芽率为:×100%≈93%;B型号种子数为1500×30%=450,发芽率为:×100%≈82%;C型号种子的发芽率为80%,所以应选A型号的种子进行推广(3)解:在已发芽的种子中;有A型号的420粒,B型号的370粒,C型号的480粒;故从中随机取出一粒,求取到C型号发芽种子的概率为=23. (1)解:延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,如图所示.∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,∴∠ECB=30°,∠ACF=60°,∴∠BCA=90°,∵BC=12,AB=36× =24,∴AB=2BC,∴∠BAC=30°,∠ABC=60°,∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC=12,∴时间t= = 小时=20分钟,∴轮船照此速度与航向航向,上午11::00到达海岸线(2)∵BD=BC,BE⊥CD,∴DE=EC,在RT△BEC中,∵BC=12,∠BCE=30°,∴BE=6,EC=6 ≈10.2,∴CD=20.4,∵20<20.4<21.5,∴轮船不改变航向,轮船可以停靠在码头.24.(1)解:设去了x个成人,则去了(12﹣x)个学生,依题意得40x+20(12﹣x)=400,解得:x=8,12﹣x=4;答:他们一共去了8个成人,4个学生(2)解:若按团体票购票:16×40×0.6=384∵384<400,∴按团体票购票更省钱25.(1)50°(2)解:如图:①∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm;②当点P与点M重合时,PB+CP的值最小,最小值是8cm.26.(1)解:∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:,解得:,∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,所以点G的坐标为(1,4)(2)解:设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=B′D=m,则点B′的坐标为(m+1,0),点G′的坐标为(1,m),将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),,∴k=1(3)解:设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均为钝角,∴△AOQ≌△PQN,如图2,延长PQ交直线y=﹣1于点H,则∠QHN=∠OMQ=90°,又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x= (负值舍去),当x= 时,HN=QM=﹣x2+2x+2= ,点M(,0),∴点N坐标为(+ ,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1)。

45广西北部湾经济区2018年初中学业水平统一考试含答案.doc

2018年广西北部湾经济区初中学业水平统一考试语文试卷(考试时间:150分钟满分:120分)注意:本试卷分为试题卷和答题卡两部分,答案一律填写在答题卡上,在试卷上作答无效,考试结来后,将本试卷和答题卡一并交回。

第I卷(选择题共30分)本卷共15小题,每小题2分,共30分。

每小题都给出A、B、C、D四个选项,其中只有一个正确。

请考生用2B铅笔在答题卡上将选定的答案标号涂黑。

一、积累与运用(每小题2分,共16分)1.下列却点字的注音有误的一项是()A.鉴赏(jiàn)监督(d)豁然开朗(huò)B.簇拥(cù)着落(zho)不屑一顾(xuè)C.懊恼(ào)玲珑(lón)隐天蔽日(bì)D.攀登(pn)心绪(xù)一代天骄(jio)2.下列词语中没有错别字的一项是()A.赋闲斟酌奇山异水B.争辫奇迹别具匠心C.恳求摇篮珠光宝器D.应酬婉惜三顾茅芦3.下列加点成语运用有误的一项是()A.科技引领发展,倘若人工智能技术得以广泛应用我国走进人工智能时代计日可待。

B.介绍广西风物、故事妙趣横生的《广西逸事》丛书,是献给自治区成立六十周年的厚礼。

C.原是当年最高建筑的电视塔,如今隐没在鳞次栉比的高楼大厦中,已无一技之长。

D.这天风和日丽,南湖沿岸紫荆怒放,游人如织,让大不禁感叹:“人间最美四月天。

”4.下列句子没有语病的一项是( D )A.众多球迷汇集到世界杯举办地,谁都不能否认这不会给当地经济带来新的发展机遇。

B.为改善城市生活环境,当地政府加大投入建设了多个休困公园,成为市民娱乐的新去处。

e.上海合作组织青岛峰会的召开,增进了各国人民的相互了解和友谊的桥梁,令人瞩目。

D.经典之所以成为经典,不仅在于它独到的艺术表现形式,更在于深刻的思想内涵。

5.下列句子语言表达得体的一项是()A.“真是献丑了。

”小云拿自己的书法作品向长辈请教,“初学不久,技艺不精,敬请雅正”B.送考仪式上校长热情致辞:“一将功成万骨枯!衷心祝愿同学们得偿所愿,中考大捷!”C.“广播已说要放包安检,你没带耳朵啊?”车站工作人员批评直接背包过安检的小林。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018 年广西省北部湾经济区中考数学试卷
试卷满分: 120 分教材版本:人教版
一、选择题:本大题共12 小题,每小题 3 分,共 30 分.
1.- 3 的倒数是()
A. -3
B.3
1 1
C. D.
3 3
2.下列美丽的壮锦图案是中心对称图形的是()
A B C D
3. 2018 年俄罗斯世界杯开幕式于 6 月 14 日在莫斯科卡日尼基球场举行,该球场可容纳81000 名观众,其中数据 81000 用科学记数法表示为()
A.81× 103
B.8.1× 104
C. 8.1× 105
D.0.81× 105
4.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图表示,则该球员平均每节得分为()
A.7 分
B.8 分
C.9 分
D.10 分
5.下列运算正确的是()
A.a( a+ 1)= a2+ 1
B.( a2)3= a5
C.3a2+ a= 4a3
D.a 5÷ a2= a3
6.如图,∠ ACD是△ ABC的外角, CE平分∠ ACD,若∠ A= 60°,∠ B= 40°,则∠ ECD等于
()
A.40°
B.45°
C.50°
D.55°
7.若 m> n,则下列不等式正确的是()
A. m-2< n- 2
B.m

n
C.6m<6n
D. - 8m>- 8n
4 4
8.从- 2,- 1,2 这三个数中任取两个不同的数相乘,积为正数的概率是()
211 1
A. B. C. D.
323 4
1
9.将抛物线y=
2
x2- 6x+ 21 向左平移 2 个单位后,得到新抛物线的解析式为()
A. y=1
( x- 8)2+ 5 B. y=
1
( x- 4)2+ 5 C. y=
1
( x- 8)2+ 3 D. y=
1
( x- 4)2 2 2 2 2
+ 3
10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形 .若 AB= 2,则莱洛三角形的面积(即阴影部分面积)为()
A. π+3
B. π-3
C. 2π-3
D. 2π- 2 3
11.某种植基地2016 年蔬菜产量为80 吨,预计2018 年蔬菜产量达到100 吨,求蔬菜产量的年平均增长率 .设蔬菜产量的年平均增长率为x,则可列方程为()
A.80(1+ x) 2= 100
B. 100( 1+ x) 2= 80
C. 80( 1+ 2x)= 100
D. 80( 1+ x2)= 100
12.如图,矩形纸片ABCD,AB= 4,BC= 3,点 P 在 BC 边上,将△ CDP沿 DP 折叠,点 C 落在点 E 处,PE, DE分别交 A 于点 O, F,且 OP= OF,则 cos∠ ADF 的值为()
11131517
A. B. C. D.
13151719
二、填空题:本大题共 6 小题,每小题 3 分,共 18 分.
13.要使二次根式x 5 在实数范围内有意义,则实数x 的取值范围是.
14.因式分解: 2a2- 2=.
15.已知一组数据6, x, 3, 3, 5, 1 的众数是 3 和 5,则这组数据的中位数是. 16.如图,从甲楼底部 A 处测得乙楼顶部 C 处的仰角是30°,从甲楼顶部 B 处测得乙楼底部 D 处的俯角是45°,已知甲楼的高AB 是 120m,则乙楼的高CD 是m.
17.观察下列等式:30= 1, 31= 3,3 2= 9,33=27, 34= 81, 35= 243,,根据其中规律可得30 + 31+ 32+ 33++ 32018的结果的个位数字是.
18.如图,矩形 ABCD的顶点 A,B 在 x 轴上,且关于y 轴对称,反比例函数y=k
1(x> 0)的图象x
经过点 C,反比例函数y=k2 ( x< 0)的图象分别与 AD,CD 交于点 E,F,若 S BEF= 7,k1 + 3 k2
x

三、解答题(本大题共9 小题,满分102 分,解答应写出文字说明、证明过程或演算步骤)
19.计算: 4 +3tan 60°-12 -(1
)1. 2
20.解分式方程:
x 2x
- 1=. x 1 3x 3
21.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1)B( 4,1) C(3 ,3) .
(1)将△ ABC 向下平移 5 个单位后得到△ A1B1C1,请画出△ A1B1C1;
(2)将△ ABC 绕原点 O 逆时针旋转 90°后得到△ A2B2C2,请画出△ A2B2C2;
(3)判断以 O, A1, B1为顶点的三角形的形状 .(无须说明理由)
22.某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100 名参加选拔赛的同学的成绩按ABCD四个等级进行统计,绘制成如下不完整的统计表和扇形统计图.
( 1)求 m=,n=;
(2)在扇形统计图中,求“ C等级”所对应圆心角的度数;
(3)成绩等级为 A 的 4 名同学中有 1 名男生和 3 名女生,现从中随机挑选 2 名同学代表学校参加全市比赛,请用树状图或列表法求出恰好选中“1男 1女”的概率 .
23.如图,在□ABCD中, AE⊥ BC, AF⊥ CD,垂足分别是EF,且 BE= DF.
(1)求证:□ABCD是菱形;
(2)若 AB= 5, AC= 6,求□ABCD的面积 .
24.某公司在甲、乙两仓库共存放某种原料450 吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的 40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30 吨,
( 1)求甲、乙两仓库各存放原料多少吨?
( 2)现公司需将300 吨原料运往工厂,从甲乙两仓库到工厂的运价分别是120 元 / 吨和 100 元 / 吨,经协商,从甲仓库到工厂的运价可优惠 a 元 / 吨,( 10≤ a≤ 30),从乙仓库到工厂的运价不变,设从甲仓库运m 吨原料到工厂,请求出总运费w 关于 m 的函数解析式(不要求写出m 的取值范围);
( 3)在( 2)的条件下,请根据函数的性质说明,随着m 的增大, w 的变化情况 .
25.如图,△ ABC内接于⊙ O,∠ CBG=∠ A, CD 为直径, OC与 AB 相交于点 E,过点 E 作 EF⊥ BC,垂足为 F,延长 CD 交 GB 的延长线于点 P,连接 BD,
( 1)求证: PG与⊙ O 相切;
(2)若EF 5
,求
BE
的值. AC 8OC
(3)在( 2)的条件下,若⊙ O 的半径为 8, PD= OD,求 OE 的长 .

26.如图,抛物线 y= ax2- 5ax+ c 与坐标轴分别交于A,C, E 三点,其中 A(- 3, 0),C(0, 4),点 B 在 x 轴上, AC=BC,过点 B 作 BD⊥ x 轴交抛物线于点 D,点 M, N 分别是线段 CO, BC 上的动点,且 CM= BN,连接 MN ,AM , AN.
( 1)求抛物线的解析式及点 D 的坐标;
( 2)当△ CMN 是直角三角形时,求点M 的坐标;
( 3)试求出 AM+ AN 的最小值 .。

相关文档
最新文档