高考数学(文科)1轮复习练习:第2章 基本初等函数、导数的应用 10 第10讲分层演练直击高考 含解析

合集下载

高考数学(理)一轮复习课时训练:第二章 基本初等函数、导数及其应用 2-10 Word版含解析

高考数学(理)一轮复习课时训练:第二章 基本初等函数、导数及其应用 2-10 Word版含解析

课时规范训练A组基础演练1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于()A.-1B.-2C.2 D.0解析:选B.f′(x)=4ax3+2bx,∵f′(x)为奇函数且f′(1)=2,∴f′(-1)=-2.2.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为() A.4x-y-3=0 B.x+4y-5=0C.4x-y+3=0 D.x+4y+3=0解析:选A.切线l的斜率k=4,设y=x4的切点的坐标为(x0,y0),则k=4x30=4,∴x0=1,∴切点为(1,1),即y-1=4(x-1),整理得l的方程为4x-y-3=0.3.直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b的值为()A.2 B.ln 2+1 C.ln 2-1 D.ln 2解析:选C.∵y=ln x的导数为y′=1x,∴1x=12,解得x=2,∴切点为(2,ln 2).将其代入直线y=12x+b,得b=ln 2-1.4.曲线y=3ln x+x+2在点P0处的切线方程为4x-y-1=0,则点P0的坐标是() A.(0,1) B.(1,-1)C.(1,3) D.(1,0)解析:选C.y′=3x+1,令y′=4,解得x=1,此时4×1-y-1=0,解得y=3,∴点P0的坐标是(1,3).5.直线y=kx+b与曲线y=ax2+2+ln x相切于点P(1,4),则b的值为() A.3 B.1C.-1 D.-3解析:选C.由点P (1,4)在曲线上可得a ×12+2+ln 1=4,解得a =2,故y =2x 2+2+ln x ,所以y ′=4x +1x ,所以曲线在点P 处切线的斜率=1=4×1+11=5. 所以直线的方程为y =5x +b .由点P 在直线上得4=5×1+b ,解得b =-1,故选C.6.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C.y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为=2.7.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.8.在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是( )A .0B .1C .2D .3解析:选A.依题意得,y ′=3x 2-9,令0≤y ′<1得3≤x 2<103,显然满足该不等式的整数x 不存在,因此在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A.9.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)=()A.26B.29C.212D.215解析:选C.依题意,记g(x)=(x-a1)(x-a2)…(x-a8),则f(x)=xg(x),f′(x)=g(x)+xg′(x),f′(0)=g(0)=a1a2…a8=(a1a8)4=212,故选C.10.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2 019(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x解析:选A.∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x,∴f n(x)是以4为周期的函数,∴f2 019(x)=f3(x)=-sin x-cos x,故选A.B组能力突破1.已知函数f(x)在R上满足f(2-x)=2x2-7x+6,则曲线y=f(x)在(1,f(1))处的切线方程是()A.y=2x-1 B.y=xC.y=3x-2 D.y=-2x+3解析:选C.法一:令x=1得f(1)=1,令2-x=t,可得x=2-t,代入f(2-x)=2x2-7x+6得f(t)=2(2-t)2-7(2-t)+6,化简整理得f(t)=2t2-t,即f(x)=2x2-x,∴f′(x)=4x-1,∴f′(1)=3.∴所求切线方程为y-1=3(x-1),即y=3x-2.法二:令x=1得f(1)=1, 由f(2-x)=2x2-7x+6,两边求导可得f′(2-x)·(2-x)′=4x-7,令x=1可得-f′(1)=-3,即f′(1)=3.∴所求切线方程为y-1=3(x-1),即y=3x-2.2.已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),f′(x)为f(x)的导函数,则f(2 017)+f(-2 017)+f′(2 018)-f′(-2 018)=()A.0 B.2 017C.2 018 D.8解析:选D.设g(x)=a sin x+bx3,∴f(x)=g(x)+4,且g(-x)=-g(x),所以f(2 017)+f(-2 017)=g(2 017)+4+g(-2 017)+4=8,又因为f′(x)=a cos x+3bx2,所以f′(x)为R上的偶函数,则f′(2 018)-f′(-2 018)=0,所以f(2 017)+f(-2 017)+f′(2 018)-f′(-2 018)=8,故选D.3.已知函数y=f(x)及其导函数y=f′(x)的图象如图所示,则曲线y=f(x)在点P处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x-y-2=0.答案:x-y-2=04.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=________. 解析:对f(x)=3x2+2xf′(2)求导,得f′(x)=6x+2f′(2).令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=6.答案:65.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.解析:设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=1t+1,∴f′(1)=2.答案:26.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x.∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,x+1x-a=0,∴a=x+1x≥2.答案:2,+∞)。

高考一轮总复习高考数学(文科,新课标版)一轮总复习课件+训练手册+阶段测试卷:第2章+函数、导数及其

高考一轮总复习高考数学(文科,新课标版)一轮总复习课件+训练手册+阶段测试卷:第2章+函数、导数及其

A 组 基础达标(时间:30分钟 满分:50分)若时间有限,建议选讲4,6,9一、 选择题(每小题5分,共20分)1. 若点(a ,b )在y =lg x 图像上,a ≠1,则下列点也在此函数的图像上的是(D )A. ⎝ ⎛⎭⎪⎫1a ,b B. (10a ,1-b )C. ⎝ ⎛⎭⎪⎫10a ,b +1 D. (a 2,2b )2. 当x =a 2时,y =lg a 2=2lg a =2b ,∴点(a 2,2b )在函数 y =lg x 的图像上.下列函数中既不是奇函数,也不是偶函数的是(D )A. y =2|x|B. y =lg (x +x 2+1)C. y =2x +2-xD. y =lg 1x +13.依次根据函数奇偶性定义判断知,A ,C 选项对应函数为偶函数,B 选项对应函数为奇函数,只有D 选项对应函数定义域不关于原点对称,故为非奇非偶函数.设a =log 13 12,b =log 1323,c =log 3 34,则a ,b ,c 的大小关系是 (B ) A. a <b <c B. c <b <aC. b <a <cD. b <c <a∵a=log 13 12,b =log 13 23,f (x )=log 13x 单调递减,且12<23,∴a >b 且a >0,b >0,又c <0.故c <b <a.4.函数y =log 0.5⎝ ⎛⎭⎪⎫x +1x -1+1(x >1)的值域是(A ) A. (-∞,-2] B. [-2,+∞)C. (-∞,2]D. [2,+∞)∵x+1x -1+1=x -1+1x -1+2≥2(x -1)·1x -1+2=4.∴y ≤-2. 二、 填空题(每小题5分,共15分)5. 函数f (x )=ln ⎝ ⎛⎭⎪⎫1+1x -1的定义域是 (-∞,0)∪(1,+∞) . 要使f (x )有意义,应有1+1x -1>0,∴x x -1>0,∴x <0或x >1. 6. 函数f (x )=|log 3 x|在区间[a ,b]上的值域为[0,1],则b -a 的最小值为 23. 当f (x )=0时,x =1,当f (x )=1时,x =3或13,故要使值域为[0,1],b -a 的最小值为1-13=23. 7. 函数y =log 3 (x 2-2x )的单调递减区间是 (-∞,0) W.(等价转化法)令u =x 2-2x ,则y =log 3 u. ∵y =log 3 u 是增函数,u =x 2-2x >0的减区间是(-∞,0),∴y =log 3 (x 2-2x )的减区间是(-∞,0).三、 解答题(共15分)8.(7分)已知f (x )=lg (a x -b x )(a >1>b >0).(1)求f (x )的定义域;(2)是否存在实数a ,b ,使当x∈(1,+∞)时, f (x )的值域为(0,+∞),且f (2)=lg 2?若存在,求出a ,b 的值;若不存在,请说明理由.(1)由a x -b x >0及a >1>b >0,得⎝ ⎛⎭⎪⎫a b x >1,故x >0. ∴f (x )的定义域为(0,+∞).(4分)(2)令g (x )=a x -b x ,由a >1>b >0知,g (x )在(0,+∞)上为增函数.当x∈(1,+∞)时, f (x )取到一切正数等价于x∈(1,+∞)时,g (x )>1.故g (1)=1,得a -b =1. ①又f (2)=lg 2,故a 2-b 2=2. ②由①②解得a =32,b =12.(7分) 9.(8分)若f (x )=x 2-x +b ,且f (log 2 a )=b ,log 2 f (a )=2(a≠1).(1)求f (log 2 x )的最小值及相应的x 值;(2)x 取何值时, f (log 2 x )>f (1),且log 2 f (x )<f (1).(1)∵f(x )=x 2-x +b , ∴f (log 2 a )=(log 2 a )2-log 2 a +b ,由已知(log 2 a )2-log 2 a +b =b ,∴log 2 a (log 2 a -1)=0.∵a ≠1,∴log 2 a =1. ∴a=2.又log 2 f (a )=2,∴f (a )=4.∴a 2-a +b =4.∴b =4-a 2+a =2. 故f (x )=x 2-x +2.从而f (log 2 x )=(log 2 x )2-log 2 x +2=⎝⎛⎭⎪⎫log 2 x -122+74. ∴当log 2 x =12,即x =2时, f (log 2 x )有最小值74. (4分)(2)由题意得⎩⎪⎨⎪⎧(log 2 x )2-log 2 x +2>2,log 2(x 2-x +2)<2,解得⎩⎪⎨⎪⎧x >2或0<x <1,-1<x <2, 综上可得当x∈(0,1)时,满足题中条件.(8分)B 组 提优演练(时间:30分钟 满分:50分)若时间有限,建议选讲4,6,8一、 选择题(每小题5分,共20分)1.(2013·日照联考)设函数f (x )=log 2 x 与y =g (x ) 的图像关于直线y =x 对称,若g ⎝ ⎛⎭⎪⎫1a -1=14,则a 等于(C ) A. -2 B. -12C. 12D. 2 易知y =g (x )=2x ,由g ⎝ ⎛⎭⎪⎫1a -1=14,得21a -1=14. ∴1a -1=-2,a =12. 2. 已知函数f (x )=|lg x|.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是(C )A. (22,+∞)B. [22,+∞)C. (3,+∞)D. [3,+∞)由已知条件得0<a <1<b ,则-lg a =lg b ,则 lg a +lg b =0,ab =1,因此a +2b =a +2a,由对勾函数知y =x +2x在(0,1)上单调递减,得a +2b >3,即a +2b 的取值范围是(3,+∞). 3. 已知函数f (x )=a x +log a x (a >0,且a≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为(C )A. 12B. 14C. 2D. 4由题可知函数f (x )=a x +log a x 在[1,2]上是单调函数,∴其最大值与最小值之和为f (1)+f (2)=a +log a 1+a 2+log a 2=log a 2+6,整理可得a 2+a -6=0,解得a =2或a =-3(舍去),故 a =2.4. 已知lg a +lg b =0(a >0,b >0且a≠1,b ≠1),则函数 f (x )=a x 与函数g (x )=-log b x 的图像可能是(B )由lg a +lg b =0(a >0,b >0,且a≠1,b ≠1),得ab =1. 若a >1,则0<b <1,而y =-log b x =log a x 的图像与y =a x 的图像关于y =x 对称,故选B.二、 填空题(每小题5分,共15分)5. (2013·金华联考)已知函数f (x )=log 2(x 2-ax +a 2)的图像关于x =2对称,则a 的值为 4 W.由题意f (x )=f (4-x ),∴x 2-ax +a 2=(4-x )2-a (4-x )+a 2,整理得a =4.6. (2013·杭州月考)设f (x )=11+2lg x +11+4lg x +11+8lg x ,则 f (x )+f ⎝ ⎛⎭⎪⎫1x = 3 W. f (x )+f ⎝ ⎛⎭⎪⎫1x =⎝ ⎛⎭⎪⎫11+2lg x +11+4lg x +11+8lg x +⎝ ⎛⎭⎪⎫2lg x 1+2lg x +4lg x 1+4lg x +8lg x 1+8lg x =3. 7.(2013·湖南联考)已知f (x )是定义在R 上的奇函数,且 f (x -2)+f (x )=0,当x∈[0,1]时, f (x )=2x -1,则f (log 18 125)= 14W. ∵f(x )是定义在R 上的奇函数,且f (x -2)+f (x )=0, ∴f (log 18125)=f (-log 2 5)=-f (log 2 5)=f (log 2 5-2)=2log 2 5-2-1=54-1=14. 三、 解答题 (共15分)8.(2013·辽宁测试)已知函数f (x )=log 4(4x +1)+kx (k∈R)为偶函数.(1)求k 的值;(2)若方程f (x )=log 4(a·2x -a )有且仅有一个根,求实数a 的取值范围.(1)∵f(x )为偶函数,∴f (-x )=f (x ).即log 4(4-x +1)-kx =log 4(4x +1)+kx ,∴log 44x +14x -log 4(4x +1)=2kx , ∴(2k +1)x =0,∴k =-12.(5分) (2)依题意知log 4(4x +1)-12x =log 4(a·2x -a ). ∴⎩⎪⎨⎪⎧4x +1=(a·2x -a )·2x ,a ·2x -a >0,(7分) 令t =2x ,则只需(1-a )t 2+at +1=0有一正根.①若a =1,则t =-1,不合题意;(9分)②若有一个正根和一个负根,则⎩⎪⎨⎪⎧Δ=a 2-4(1-a )>0,t 1t 2=11-a <0,∴a >1,经验证满足a·2x-a >0.(12分)③若有两个相等的根,则Δ=0,∴a =±22-2,又a·2x -a >0,∴a =-2-2 2.(14分)综上知a的取值范围为{a|a=-2-22或a>1}.(15分)。

高考一轮总复习高考数学(文科,新课标版)一轮总复习课件+训练手册+阶段测试卷:第2章+函数、导数及其

高考一轮总复习高考数学(文科,新课标版)一轮总复习课件+训练手册+阶段测试卷:第2章+函数、导数及其

第二章 函数、导数及其应用 (时间:120分钟 满分:150分)一、 选择题(每小题5分,共60分)1. (2014·潍坊质检)函数f(x)=lg(x -1)的定义域是(B) A. (2,+∞) B. (1,+∞) C. [1,+∞) D. [2,+∞) 由对数的定义知x -1>0,故x >1.2. (2013·珠海模拟)函数f(x)=log 2(3x +1)的值域为(A) A. (0,+∞) B. [0,+∞) C. (1,+∞) D. [1,+∞) ∵3x +1>1,∴log 2(3x +1)>0.3. (2013·北京东城模拟)f(x)=⎩⎪⎨⎪⎧-2x ,x <0,3+log 2x ,x >0,则 f(f(-1))等于(D)A. -2B. 2C. -4D. 4 f(-1)=-2-1=2,∴f(f(-1))=3+log 2 2=3+1=4.4. (2013·烟台诊断)函数f(x)=-cos x lg |x|的部分图像是(A)∵函数为偶函数,∴图像关于y 轴对称,∴排除B ,D.当 x →0时,f(x)>0,排除C.5. (2013·山东师大附中模拟)函数f(x)=x +sin x(x∈R)(D) A. 是偶函数,且在(-∞,+∞)上是减函数 B. 是偶函数,且在(-∞,+∞)上是增函数 C. 是奇函数,且在(-∞,+∞)上是减函数 D. 是奇函数,且在(-∞,+∞)上是增函数∵f(-x)=-x -sin x =-f(x),且定义域关于原点对称,∴函数为奇函数.函数的导数 f ′(x)=1+cos x≥0,∴函数在(-∞,+∞)上是增函数.6. (2013·北京东城模拟)根据表格中的数据,可以断定函数 f(x)=ln x -3x 的零点所在的区间是(C)A. (1,2) C. (e ,3) D. (3,5)∵f(e)=ln e -3e =1-1.10=-0.1<0, f(3)=ln 3-33=1.10-1=0.1>0,∴可以断定函数f(x)=ln x -3x的零点所在的区间是(e ,3),选C.7. (2013·北京房山模拟)为了得到函数y =lg x10的图像,只需把函数y =lg x 的图像上(B)A. 所有点向右平移1个单位长度B. 所有点向下平移1个单位长度C. 所有点的横坐标缩短到原来的110(纵坐标不变) D. 所有点的纵坐标缩短到原来的110(横坐标不变) ∵y=lgx10=lg x -lg 10=lg x -1,∴只需把函数y =lg x 的图像上所有点向下平移1个单位长度.8. (2013·乐陵一中月考)定义在R 上的函数f(x)在(-∞,2)上是增函数,且f(x +2)的图像关于y 轴对称,则(A)A. f(-1)<f(3)B. f(0)>f(3)C. f(-1)=f(3)D. f(0)=f(3)∵函数f(x +2)的图像关于y 轴对称,∴f(x)关于直线x =2对称,∵函数f(x)在(-∞,2)上是增函数,∴在(2,+∞)上是减函数,∴f(-1)=f(5)<f(0)=f(4)<f(3).9. 若函数f(x)=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12,+∞是增函数,则a 的取值范围是(D)A. [-1,0]B. [-1,+∞)C. [0,3]D. [3,+∞)由条件知f′(x)=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎪⎫12,+∞上恒成立,即 a ≥1x 2-2x 在⎝ ⎛⎭⎪⎪⎫12,+∞上恒成立,函数y =1x 2-2x 在⎝ ⎛⎭⎪⎪⎫12,+∞上为减函数,y max <1⎝ ⎛⎭⎪⎪⎫122-2×12=3⇒a ≥3.10. 已知函数f(x)是R 上的奇函数,若对于x≥0,都有f(x +2)=f(x),当x∈[0,2)时,f(x)=log 2(x +1),则f(-2 013)+f(2 012)的值为(B)A. -2B. -1C. 1D. 2由f(x +2)=f(x)知,函数f(x)的周期为2,∴f(-2 013)+f(2 012)=-f(2 013)+f (1 006×2)=-f(1 006×2+1)+f(0)=-f(1)+f(0)=-1.11. (2013·乐陵一中月考)设奇函数f(x)在(0,+∞)上是增函数,且f(1)=0,则不等式x[f(x)-f(-x)]<0的解集为(D)A. {x|-1<x <0或x >1}B. {x|x <-1或0<x <1}C. {x|x <-1或x >1}D. {x|-1<x <0或0<x <1}∵奇函数f(x)在(0,+∞)上是增函数,f(-x)=-f(x),x[f(x)-f(-x)]<0,∴xf(x)<0,又f(1)=0,∴f(-1)=0,从而有函数f(x)的图像如图,则不等式 x[f(x)-f(-x)]<0的解集为{x|-1<x <0或0<x <1}.12. (2013·北京朝阳模拟)已知函数f(x)=a·2|x|+1(a≠0),定义函数F(x)=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0.给出下列命题: ①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a <0时,若mn <0,m +n >0,总有F(m)+F(n)<0成立.其中所有正确命题的序号是(C) A. ② B. ①③ C. ②③ D. ①②①∵|f(x)|=⎩⎪⎨⎪⎧f (x ),f (x )≥0,-f (x ),f (x )<0, 而F(x)=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0.∴F(x)=|f(x)|不成立;②∵f(x)是偶函数.若x >0,则-x <0,∴F(-x)=-f(-x)=-f(x)=-F(x).若x<0,则-x >0,∴F(-x)=f(-x)=f(x)=-F(x),∴函数F(x)是奇函数,∴②正确;③a <0时,函数F(x)=f(x)在(0,+∞)上是减函数,若mn <0,m +n >0,则m >-n >0或n >-m >0,∴F(m)<F(-n)=-F(n)或F(n)<F(-m)=-F(m),即F(m)+F(n)<0,∴③正确.∴正确的是②③.二、 填空题(每小题5分,共20分)13. (2013·北京东城模拟)若函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎢⎡⎦⎥⎥⎤-254,-4,则m 的取值范围是__⎣⎢⎦⎥⎥⎤32,3__. y =⎝⎛⎭⎪⎪⎫x -322-254.结合图像,当x =32时,y =-254;当 x =0或x =3时,y =-4.由x∈[0,m]时,y ∈⎣⎢⎢⎡⎦⎥⎥⎤-254,-4,知m∈⎣⎢⎢⎡⎦⎥⎥⎤32,3.14. (2013·北京丰台模拟)若函数f(x)=a x (a >0,a ≠1)在[-2,1]上的最大值为4,最小值为m ,则m 的值是__12或116__.若a >1,则有f(1)=a =4,f(-2)=a -2=m ,解得m =1a 2=116.若0<a <1,则有f(1)=a =m ,f(-2)=a -2=4,解得m =a =12.∴m =12或m =116.15. 设点P 在曲线y =12e x 上,点Q在曲线y =ln(2x)上,则PQ 的最小值为-ln_2)__.∵y=12e x与y =ln(2x)的图像关于直线y =x 对称,∴可转化为y =12e x 图像上的点P ⎝⎛⎭⎪⎪⎫x ,12e x 到直线y =x 距离d =⎪⎪⎪⎪⎪⎪⎪⎪12e x -x 2的最小值.设g(x)=12e x -x ,则g ′(x)=12e x -1.∴g(x)min =1-ln 2,d min =1-ln 22,∴PQ min =2×1-ln 22=2(1-ln 2).16. (2013·潍坊联考)已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y =f′(x)的图像如图所示.下列关于函数f(x)①函数f(x)的值域为[1,2]; ②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f(x)-a 最多有4个零点. 其中正确命题的序号是__①②④__.由导数图像可知,当-1<x <0或2<x <4时,f ′(x)>0,函数单调递增,当0<x <2或4<x <5,f ′(x)<0,函数单调递减,当x =0和x =4时,函数取得极大值f(0)=2,f(4)=2,当x =2时,函数取得极小值f(2),又f(-1)=f(5)=1, ∴函数的最大值为2,最小值为1,值域为[1,2],①正确;②正确;∵在当x =0和x =4,函数取得极大值f(0)=2, f(4)=2,要使当x∈[-1,t]时,函数f(x)的最大值是2,则0≤t≤5,∴t 的最大值为5,∴③不正确;由f(x)=a 知,∵极小值f(2)=1.5,极大值为f(0)=f(4)=2,∴当1<a <2时,y =f(x)-a 最多有4个零点,∴④正确,∴正确命题的序号为①②④.三、 解答题(共70分)17. (10分)(2014·铜陵模拟)函数f(x)是R 上的偶函数,且当x >0时,函数的解析式为f(x)=2x-1.(1)用定义证明f(x)在(0,+∞)上是减函数; (2)求当x <0时,函数的解析式.(1)设0<x 1<x 2,则f(x 1)-f(x 2)=⎝ ⎛⎭⎪⎪⎫2x 1-1-⎝ ⎛⎭⎪⎪⎫2x 2-1=2(x 2-x 1)x 1x 2,∵0<x 1<x 2,∴x 1x 2>0,x 2-x 1>0,∴f(x 1)-f(x 2)>0,即 f(x 1)>f(x 2),∴f(x)在(0,+∞)上是减函数.(4分)(2)设x <0,则-x >0,∴f(-x)=-2x -1,(6分)又f(x)为偶函数,∴f(-x)=f(x)=-2x-1,(8分)即f(x)=-2x-1(x <0).(10分)18. (10分)(2013·诸城一中模拟)已知f(x)=2+log 3 x ,x ∈[1,9],求函数y =[f(x)]2+f(x 2)的值域.∵f(x)=2+log 3 x ,x ∈[1,9],∴y =[f(x)]2+f(x 2)的定义域满足⎩⎪⎨⎪⎧1≤x≤9,1≤x 2≤9,解得1≤x≤3,即定义域为[1,3].(4分)∴0≤log 3 x ≤1.∵y =[f(x)]2+f(x 2)=(log 3 x +2)2+log 3 x 2+2=(log 3 x)2+6log 3 x +6=(log 3 x +3)2-3,(6分)又0≤log 3 x ≤1,∴当log 3 x =0,即x =1时,y min =9-3=6,当log 3 x =1,即x =3时,y max =42-3=13.∴y 的值域为[6,13].(10分)19. (12分)(2014·潍坊一中模拟)已知函数 f(x)=log 4(4x +1)+kx(x∈R)是偶函数.(1)求k 的值;(2)若方程f(x)-m =0有解,求m 的取值范围. (1)由函数f(x)是偶函数,可知f(x)=f(-x). ∴log 4(4x +1)+kx =log 4(4-x +1)-kx. (2分)即log 44x +14-x +1=-2kx ,log 44x =-2kx ,∴x =-2kx 对一切x∈R 恒成立.(4分)∴k =-12.(6分)(2)∵m=f(x)=log 4(4x +1)-12x , ∴m =log 44x +12x =log 4⎝ ⎛⎭⎪⎪⎫2x +12x . (8分)∵2x +12x ≥2, ∴m ≥12.(10分)故要使方程f(x)-m =0有解,m 的取值范围为⎣⎢⎢⎡⎭⎪⎪⎫12,+∞. (12分)20. (12分)(2014·长春模拟)已知函数f(x)=1-2a -2ax +2x 2(-1≤x ≤1)的最小值为f(a).(1)求f(a)的表达式;(2)若a∈[-2,0],求f(a)的值域.(1)函数f(x)=1-2a -2ax +2x 2=2⎝ ⎛⎭⎪⎪⎫x -a 22-a 22-2a +1,其对称轴为直线x =a 2.(2分)①当a2<-1,即a <-2时, f(x)的最小值为f(-1)=3;②当-1≤a2≤1,即-2≤a≤2时, f(x)的最小值为 f ⎝ ⎛⎭⎪⎪⎫a 2=-a 22-2a +1;③当a 2>1,即a >2时, f(x)的最小值为f(1)=3-4a. 综上所述,f(a)=⎩⎪⎨⎪⎧3,a ∈(-∞,-2),-a22-2a +1,a ∈[-2,2],3-4a ,a ∈(2,+∞).(8分)(2)当a∈[-2,0]时, f(a)=-a 22-2a +1=-12(a +2)2+3,其对称轴为直线a =-2,∴f(a)在[-2,0]上单调递减.∴f(a)max =f(-2)=3, f(a)min =f(0)=1.∴f(a)∈[1,3].(12分)21. (12分)(2014·吉林模拟)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f(x)的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? (1)当0<x≤100时,p =60;当100<x≤600时,p =60-(x -100)×0.02=62-0.02x.∴p=⎩⎪⎨⎪⎧60,0<x≤100,62-0.02x ,100<x≤600.(4分)(2)设利润为y 元,则当0<x≤100时,y =60x -40x =20x ;当100<x≤600时,y =(62-0.02x)x -40x =22x -0.02x 2.∴y =⎩⎪⎨⎪⎧20x ,0<x≤100,22x -0.02x 2,100<x≤600.(8分)当0<x≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时 y =20×100=2 000;当100<x≤600时,y=22x-0.02x2=-0.02(x-550)2+6 050,∴当x=550时,y最大,此时y=6 050.显然6 050>2 000.∴当一次订购550件时,利润最大,最大利润为6 050元.(12分)22. (14分)(2014·淄博模拟)已知f(x)=ax-ln x,a∈R.(1)当a=2时,求曲线f(x)在点(1,f(1))处的切线方程;(2)若f(x)在x=1处有极值,求f(x)的单调递增区间;(3)是否存在实数a,使f(x)在区间(0,e]的最小值是3?若存在,求出a的值;若不存在,请说明理由.(1)由已知得f(x)的定义域为(0,+∞),∵f(x)=ax-ln x,∴f′(x)=a-1 x ,当a=2时,f(x)=2x-ln x,∴f(1)=2,∵f′(x)=2-1x,∴f′(1)=2-11=1 .(2分)∴曲线f(x)在点(1,f(1))处的切线方程为y-2=f′(1)(x-1),即x-y+1=0.(4分)(2)∵f(x)在x=1处有极值,∴f′(1)=0,由(1)知f′(1)=a-1,∴a=1,经检验,a =1时f(x)在x=1处有极值.(6分)∴f(x)=x-ln x,令f′(x)=1-1x>0,解得x>1或x<0; ∵f(x)的定义域为(0,+∞),∴f′(x)>0的解集为(1,+∞),即f(x)的单调递增区间为(1,+∞).(8分)(3)假设存在实数a,使f(x)=ax-ln x(x∈(0,e])有最小值3,①当a≤0时,∵x∈(0,e],∴f′(x)<0,∴f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3,解得a=4e(舍去).(10分)②当0<1a<e时,f(x)在⎝⎛⎭⎪⎪⎫0,1a上单调递减,在⎝⎛⎦⎥⎥⎤1a,e上单调递增,f(x)min=f⎝⎛⎭⎪⎪⎫1a=1+ln a=3,解得a=e2,满足条件.(12分)③当1a≥e时,∵x∈(0,e],∴f′(x)<0,∴f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3,解得a=4e(舍去).综上,存在实数a=e2,使得当x∈(0,e]时,f(x)有最小值3.(14分)。

近年高考数学一轮总复习第二章函数与基本初等函数题组训练10对数函数理(2021年整理)

近年高考数学一轮总复习第二章函数与基本初等函数题组训练10对数函数理(2021年整理)

2019版高考数学一轮总复习第二章函数与基本初等函数题组训练10 对数函数理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮总复习第二章函数与基本初等函数题组训练10 对数函数理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮总复习第二章函数与基本初等函数题组训练10 对数函数理的全部内容。

题组训练10 对数函数1.(log29)·(log34)的值为( )A.14 B.12C.2 D.4答案D解析原式=(log232)·(log322)=4(log23)·(log32)=4·错误!·错误!=4.2.(2018·河北保定模拟)已知a=log23+log2错误!,b=log29-log2错误!,c =log32,则a,b,c的大小关系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c答案B解析a=log23+log2错误!=log23错误!,b=log29-log2错误!=log23错误!,因此a=b,而log23错误!>log22=1,log32<log33=1,所以a=b>c,故选B.3.若log a错误!<1(a〉0且a≠1),则实数a的取值范围是()A.(0,错误!)B.(1,+∞)C.(0,错误!)∪(1,+∞)D.(错误!,1)答案C解析当0<a<1时,log a错误!〈log a a=1,∴0<a<错误!;当a>1时,log a错误!〈log a a=1,∴a>1。

2024年高考数学总复习第二章《函数与基本初等函数》模考卷及答案解析

2024年高考数学总复习第二章《函数与基本初等函数》模考卷及答案解析

2024年高考数学总复习第二章《函数与基本初等函数》模考卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =ln x +1-x 的定义域是()A .(0,1)B .[0,1)C .(0,1]D .[0,1]答案C解析>0,-x ≥0,解得0<x ≤1,所以函数f (x )的定义域为(0,1].故选C.2.下列函数中,既是奇函数,又在区间(0,1)上递减的函数是()A .y =cos xB .y |C .y =tan xD .y =x-3答案D解析由于y =cos x 是偶函数,故A 不是正确选项.由于y |是偶函数,故B 不是正确选项.由于y =tan x 在(0,1)上为增函数,故C 不是正确选项.D 选项中y =x -3既是奇函数,又在(0,1)上递减,符合题意.故选D.3.设函数y =log 3x 与y =3-x 的图象的交点为(x 0,y 0),则x 0所在的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析因为方程log 3x =-x +3的解,就是m (x )=log 3x +x -3的零点,因为m (x )=log 3x +x -3单调递增且连续,m (x )=log 3x +x -3在(1,2)上满足m (1)m (2)>0,m (x )=log 3x +x -3在(2,3)上满足m (2)m (3)<0,所以m (x )=log 3x +x -3的零点在(2,3)内,可得方程log 3x +x -3=0的解所在的区间是(2,3),即则x 0所在的区间是(2,3),故选C.4.若a =π82=1πlog b ,c =log ()A .b >c >aB .a >b >cC .c >a >bD .b >a >c答案B解析a =π82>20=1,∵0<1π<1,1πlog b >0,∴0<b <1,c =log log 232<log 21=0,∴a >b >c .故选B.5.(2019·山师大附中模拟)函数f (x )-2a )x +3a (x <1),x (x ≥1)的值域为R ,则实数a 的取值范围是()A .(-∞,-1) B.12,1C.-1答案C解析因为函数f (x )-2a )x +3a (x <1)x (x ≥1),的值域为R -2a >0,1-2a )+3a ≥0,解得-1≤a <12,故选C.6.函数y =2xln|x |的图象大致为()答案B解析采用排除法,函数定义域为{x |x ≠0且x ≠±1},排除A ;当x >1时,ln|x |>0,y =2xln|x |>0,排除D ;当x <-1时,ln|x |>0,y =2x ln|x |<0,排除C ,故选B.7.(2019·山师大附中模拟)函数f (x )是R 上的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上单调递减,则函数f (x )在[3,5]上是()A.增函数B.减函数C.先增后减的函数D.先减后增的函数答案D解析已知f(x+1)=-f(x),则函数周期T=2,因为函数f(x)是R上的偶函数,在[-1,0]上单调递减,所以函数f(x)在[0,1]上单调递增,即函数在[3,5]上是先减后增的函数.故选D.8.(2019·新乡模拟)设函数f(x)=e-x-e x-5x,则不等式f(x2)+f(-x-6)<0的解集为() A.(-3,2)B.(-∞,-3)∪(2,+∞)C.(-2,3)D.(-∞,-2)∪(3,+∞)答案D解析由f(x)=e-x-e x-5x,得f(-x)=e x-e-x+5x=-f(x),则f(x)是奇函数,故f(x2)+f(-x-6)<0⇔f(x2)<-f(-x-6)=f(x+6).又f(x)是减函数,所以f(x2)<f(x+6)⇔x2>x+6,解得x<-2或x>3,故不等式f(x2)+f(-x-6)<0的解集为(-∞,-2)∪(3,+∞),故选D.9.(2019·广东六校模拟)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(2019)等于()A.-2018B.2C.0D.50答案C解析f(x)是定义域为(-∞,+∞)的奇函数,可得f(-x)=-f(x),f(1-x)=f(1+x)即有f(x+2)=f(-x),即f(x+2)=-f(x),进而得到f(x+4)=-f(x+2)=f(x),f(x)为周期为4的函数,若f(1)=2,可得f(3)=f(-1)=-f(1)=-2,f(2)=f(0)=0,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,可得f(1)+f(2)+f(3)+…+f(2019)=504×0+2+0-2=0.故选C.10.(2019·衡水中学摸底)已知函数f(x)e x,x≤0,x,x>0(e为自然对数的底数),若关于x 的方程f(x)+a=0有两个不相等的实根,则a的取值范围是()A .a >-1B .-1<a <1C .0<a ≤1D .a <1答案C解析画出函数f (x )的图象如图所示,若关于x 的方程f (x )+a =0有两个不相等的实根,则函数f (x )与直线y =-a 有两个不同交点,由图可知-1≤-a <0,所以0<a ≤1.故选C.11.(2019·新疆昌吉教育共同体月考)若关于x 的不等式1+a cos x ≥23sin 2R 上恒成立,则实数a 的最大值为()A .-13 B.13C.23D .1答案B解析1+a cos x ≥23sin 2=23cos 2x =23(2cos 2x -1),令cos x =t ∈[-1,1],并代入不等式,则问题转化为不等式4t 2-3at -5≤0在t ∈[-1,1]+3a -5≤0,-3a -5≤0,所以-13≤a ≤13.所以实数a 的最大值为13.12.(2019·沈阳东北育才学校模拟)设函数f (x )+1|,x ≤0,4x |,x >0,若关于x 的方程f (x )=a 有四个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+1x 23x 4的取值范围是()1,721C .(-1,+∞)-∞,72答案A解析画出函数f (x )的图象如图所示,根据对称性可知,x 1和x 2关于x =-1对称,故x 1+x 2=-2.由于|log 4x |=|log 41x |,故1x 3=x 4,x 3·x 4=1.令log 41x =1,解得x =14,所以x 3∈14,x 3(x 1+x 2)+1x 23x 4=-2x 3+1x 3,由于函数y =-2x +1x 在区间14,减函数,故-2x 3+1x 3∈1,72,故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.函数f (x )=ln x -2的定义域为________.答案[e 2,+∞)解析∵函数f (x )=ln x -2,∴ln x -2≥0,即ln x ≥ln e 2,∴x ≥e 2,∴函数f (x )=ln x -2的定义域为[e 2,+∞).14.(2019·浏阳六校联考)f (x )是定义在R 上的周期为3的奇函数,当0<x <1时,f (x )=4x ,则f (6)=________.答案-2解析由题意得-72+=-124=-2,又f (6)=f (0)=0,∴f (6)=-2.15.(2019·青岛调研)已知函数f (x )3(x +1),x >0,-x ,x ≤0,f (m )>1,则m 的取值范围是____________.答案(-∞,0)∪(2,+∞)解析若f (m )>1>0,3(1+m )>log 33≤0,-m >1,>0,+1>3≤0,m >0,解得m >2或m <0.16.已知函数f (x )2+3a ,x <0,a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰好有两个不相等的实数解,则a 的取值范围是________.答案13,23∪解析画出函数y =|f (x )|的图象如图,由函数y =f (x )是单调递减函数可知,0+3a ≥log a (0+1)+1,即a ≥13,由log a (x 0+1)+1=0得,x 0=1a -1≤2,所以当x ≥0时,y =2-x 与y =|f (x )|图象有且仅且一个交点.所以当2≥3a ,即13≤a ≤23时,函数y =|f (x )|与函数y =2-x 图象恰有两个不同的交点,即方程|f (x )|=2-x 恰好有两个不相等的实数解,结合图象可知当直线y =2-x 与函数y =x 2+3a 相切时,得x 2+x +3a -2=0.由Δ=1-4(3a -2)=0,解得a =34,此时也满足题意.综上,所求实数a 的取值范围是13,23∪三、解答题(本大题共70分)17.(10分)(2019·酒泉敦煌中学诊断)求下列函数的解析式:(1)已知2f (x -1)-f (1-x )=2x 2-1,求二次函数f (x )的解析式;(2)已知f (x -1)=x ,求f (x )的解析式.解(1)设f (x )=ax 2+bx +c (a ≠0),则f (x -1)=a (x -1)2+b (x -1)+c ,f (1-x )=a (1-x )2+b (1-x )+c ,所以2f (x -1)-f (1-x )=2ax 2-4ax +2a +2bx -2b +2c -(ax 2-2ax +a +b -bx +c )=ax 2-(2a -3b )x +a -3b +c =2x2-1,=2,a -3b =0,-3b +c =-1,=2,=43,=1,所以f (x )=2x 2+43x +1.(2)令t =x -1,t ≥-1,则x =(t +1)2,∴f (t )=(t +1)2(t ≥-1).∴f (x )的解析式为f (x )=(x +1)2,x ≥-1.18.(12分)(2019·廊坊省级示范高中联考)已知函数f (x )=log 3(ax 2-x +3).(1)若函数f (x )的定义域为R ,求a 的取值范围;(2)已知集合M =[1,3],方程f (x )=2的解集为N ,若M ∩N ≠∅,求a 的取值范围.解(1)因为函数的定义域为R ,所以ax 2-x +3>0恒成立,当a =0时,-x +3>0不恒成立,不符合题意;当a ≠0>0,=1-12a <0,解得a >112.综上所述a >112.(2)由题意可知,ax 2-x +3=9在[1,3]上有解.即a =6x 2+1x 在[1,3]上有解,设t =1x,t ∈13,1,则a =6t 2+t ,因为y =6t 2+t 在13,1上单调递增,所以y ∈[1,7].所以a ∈[1,7].19.(12分)函数f (x )对任意的a ,b ∈R 都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)判断函数f (x )是否为奇函数;(2)证明:f (x )在R 上是增函数;(3)解不等式f (3m 2-m -2)<1.(1)解当a =b =0时,解得f (0)=1,显然函数不可能是奇函数.(2)证明任取x 1,x 2∈R ,且x 1<x 2,则f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1,∵x 2-x 1>0,∴f (x 2-x 1)>1,∴f (x 2)-f (x 1)>0,∴f (x )在R 上是增函数.(3)∵f (0)=1,∴f (3m 2-m -2)<1=f (0),又f (x )在R 上递增,所以3m 2-m -2<0,解得-23<m <1,∴-23,20.(12分)已知定义在R 上的函数f (x )是偶函数,当x ≥0时,f (x )=x 2-4x +1.(1)求函数f (x )在R 上的解析式;(2)若方程m =f (x )有4个根x 1,x 2,x 3,x 4,求m 的取值范围及x 1+x 2+x 3+x 4的值.解(1)设x <0⇒-x >0⇒f (-x )=(-x )2-4(-x )+1=x 2+4x +1,由函数f (x )是偶函数,则f (x )=f (-x )=x 2+4x +1,综上f (x )2-4x +1,x ≥0,2+4x +1,x <0或f (x )=x 2-4|x |+1.(2)作出函数f (x )的图象如图所示,由图可知,当-3<m <1时,方程m =f (x )有4个根.令x 1<x 2<x 3<x 4,由x 1+x 22=-2,x 3+x 42=2,得x 1+x 2=-4,x 3+x 4=4,则x 1+x 2+x 3+x 4=0.21.(12分)(2019·荆州质检)为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产x 万件,需另投入流动成本为C (x )万元,且C (x )=2+4x ,0<x <8,x +49x -35,x ≥8,每件产品售价为10元.经市场分析,生产的产品当年能全部售完.(1)写出年利润P (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?解(1)因为每件产品售价为10元,则x 万件产品销售收入为10x 万元,依题意得,当0<x <8时,P (x )=10x 2+45=-12x 2+6x -5,当x ≥8时,P (x )=10x x +49x -5=30所以P (x )-12x 2+6x -5,0<x <8,x ≥8.(2)当0<x <8时,P (x )=-12(x -6)2+13,当x =6时,P (x )取得最大值P (6)=13,当x ≥8时,P ′(x )=-1+49x 2<0,所以P (x )为减函数,当x =8时,P (x )取得最大值P (8)=1278,因为13<1278,故当年产量为8万件时,小李在这一产品的生产中所获利润最大,最大利润为1278万元.22.(12分)(2019·佛山禅城区调研)已知f (x )是定义在(-1,1)上的奇函数,当x ∈(0,1)时,f (x )=2x 4x +1.(1)求f (x )在(-1,1)上的解析式;(2)若g (x )是周期为2的函数,且x ∈(-1,1)时g (x )=f (x ),求x ∈(2n ,2n +1),n ∈N 时函数g (x )的解析式.解(1)当x ∈(-1,0)时,-x ∈(0,1),因为函数f (x )为奇函数,所以f (x )=-f (-x )=-2-x4-x +1=-2x1+4x .因为f (x )是定义在(-1,1)上的奇函数,所以f (0)=0,故当x ∈(-1,1)时,f (x )的解析式为f (x )∈(0,1),x ∈(-1,0).(2)设x ∈(2n ,2n +1),则x -2n ∈(0,1),g (x -2n )=2x-2n4x -2n +1.因为g (x )周期为2,n ∈N ,所以2n 也是周期,g (x -2n )=g (x ),所以x ∈(2n,2n +1)时,g (x )=2x -2n 4x-2n+1.。

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

高考数学一轮总复习学案:第1讲函数及其表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A)对应f:A→B是一个映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论1.直线x =a (a 是常数)与函数y =f (x )的图象有0个或1个交点. 2.几个常用函数的定义域(1)分式型函数,分母不为零的实数集合. (2)偶次方根型函数,被开方式非负的实数集合.(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合. (4)若f (x )=x 0,则定义域为{x |x ≠0}.(5)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数f (x )=x 2-2x 与g (t )=t 2-2t 是相等函数.( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(3)若集合A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (4)分段函数是由两个或几个函数组成的.( )(5)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)对函数概念理解不透彻; (2)解分段函数不等式时忘记范围; (3)用换元法求解析式,反解时忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为________.解析:因为f (x )是分段函数,所以f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0,所以x ≤-2或0≤x <1;当x ≥1时,f (x )≥1⇒4-x -1≥1,即x -1≤3,所以1≤x ≤10.综上所述,x ≤-2或0≤x ≤10,即x ∈(-∞,-2]∪[0,10].答案:(-∞,-2]∪[0,10]3.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)函数的定义域(多维探究) 角度一 求函数的定义域(1)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A .[0,1]B .(0,1)C .[0,1)D .(0,1](2)(2020·高考北京卷)函数f (x )=1x +1+ln x 的定义域是________. 【解析】 (1)由函数f (x )的定义域为[-1,1],得-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1,又由1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .(2)函数f (x )=1x +1+ln x 的自变量满足⎩⎪⎨⎪⎧x +1≠0,x >0,所以x >0,即定义域为(0,+∞).【答案】 (1)B (2)(0,+∞)求解函数定义域的策略(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f [g (x )]的定义域;②若y =f [g (x )]的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得y =f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解. [提醒] (1)求函数定义域时,对函数解析式先不要化简. (2)求出定义域后,一定要将其写成集合或区间的形式. 角度二 已知函数的定义域求参数(1)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( )A .-2B .-1C .1D .2(2)若函数y =ax +1ax 2-4ax +2的定义域为R ,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,12B .⎝ ⎛⎭⎪⎫0,12C . ⎣⎢⎡⎦⎥⎤0,12 D .⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)因为-2x +a >0, 所以x <a2,所以a2=1,所以a =2.(2)由ax 2-4ax +2>0恒成立, 得a =0或⎩⎪⎨⎪⎧a >0,Δ=(-4a )2-4×a ×2<0,解得0≤a <12. 【答案】 (1)D (2)D已知函数定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( )A .(2,+∞)B .(1,2)C .(0,2)D .[1,2]解析:选B .要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0, 解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2).2.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2] 3.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.解析:因为函数y =mx -1mx 2+4mx +3的定义域为R ,所以mx 2+4mx +3≠0,所以m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34, 所以实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.答案:⎣⎢⎡⎭⎪⎫0,34求函数的解析式(师生共研)(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为________________.(2)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )的解析式为________________.(3)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________________.(4)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为______________. 【解析】 (1)(换元法)令2x+1=t ,由于x >0,所以t >1且x =2t -1, 所以f (t )=lg2t -1, 即f (x )的解析式是f (x )=lg2x -1(x >1). (2)(配凑法)因为f ⎝⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,所以f (x )=x 2-2,x ∈[2,+∞).(3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (4)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x . 【答案】 (1)f (x )=lg 2x -1(x >1) (2)f (x )=x 2-2,x ∈[2,+∞) (3)f (x )=x 2-x +3 (4)f (x )=2x求函数解析式的4种方法(1)配凑法:由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),得f (x )的表达式.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 求解析式时要注意新元的取值范围.1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=_______. 解析:方法一(换元法):令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).方法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).方法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________________. 解析:因为2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,① 把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x(x ≠0)3.已知函数f (x +1)=x +2x ,则f (x )的解析式为________________. 解析:方法一(换元法):设t =x +1,则x =(t -1)2,t ≥1,代入原式得f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.方法二(配凑法):因为x +2x =(x )2+2x +1-1=(x +1)2-1, 所以f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1. 答案:f (x )=x 2-1(x ≥1)分段函数(多维探究) 角度一 分段函数求值(1)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x,x ≤0,f (x -3),x >0,则f (5)的值为( )A .-7B .-1C .0D .12(2)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f [f (-9)]=________.(3)(2021·广东省七校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(3-x ),x ≤02x -1,x >0,若f (a -1)=12,则实数a =________.【解析】 (1)f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D .(2)因为函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,所以f (-9)=lg 10=1,所以f [f (-9)]=f (1)=-2.(3)当a -1≤0,即a ≤1时,log 2(4-a )=12,4-a =212,故a =4-212,不满足a ≤1,舍去.当a -1>0,即a >1时,2a -1-1=12,2a -1=32,解得a =log 23,满足a >1.综上可得a =log 23.【答案】 (1)D (2)-2 (3)log 23分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f [f (a )]的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程(1)已知函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <0,3x ,x ≥0,若f [f (-1)]=9,则实数a =( )A .2B .4C .133D .4或133(2)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0,若实数a 满足f (a )=f (a -1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8【解析】 (1)因为-1<0,所以f (-1)=a -2, 所以f (a -2)=9. 当a -2≥0,即a ≥2时, 3a -2=9,解得a =4.当a -2<0,即a <2时,2(a -2)+a =9,解得a =133(舍去).综上可知a =4.故选B . (2)由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a ,解得a =14,则f ⎝ ⎛⎭⎪⎫1a =f (4)=8.当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),不成立.故选D .【答案】 (1)B (2)D(1)若分段函数中含有参数,则直接根据条件选择相应区间上的解析式代入求参; (2)若是求自变量的值,则需要结合分段区间的范围对自变量进行分类讨论,再求值. 角度三 分段函数与不等式(一题多解)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 方法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.所以不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即为1<2-2x ,解得x <0.所以不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D .方法二:因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,只有当⎩⎪⎨⎪⎧2x <0,x +1≥0或2x <x +1<0时,满足f (x +1)<f (2x ),故x <0,所以不等式f (x +1)<f (2x )的解集为(-∞,0).【答案】 D涉及与分段函数有关的不等式问题,主要表现为解不等式,当自变量取值不确定时,往往要分类讨论求解;当自变量取值确定,但分段函数中含有参数时,只需依据自变量的情况,直接代入相应解析式求解.1.(2021·长沙市统一模拟考试)已知函数f (x )=⎩⎪⎨⎪⎧log 3 x ,x >0,x 2,x ≤0,则f [f (-3)]=( )A .-2B .2C .-1D .1解析:选D .f (-3)=3,则f [f (-3)]=f (3)=log 33=1.故选D .2.设f (x )=⎩⎪⎨⎪⎧3-x+a ,x ≤2,f (x -1),x >2,若f (3)=-89,则实数a =( )A .1B .-1C .19D .0解析:选B .f (3)=f (3-1)=f (2)=3-2+a =-89,解得a =-1.3.(2021·六校联盟第二次联考)已知函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值范围是( )A .(-1,+∞)B .(-∞,-1)C .(-1,4)D .(-∞,1)解析:选C .函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0在(-∞,0]上是减函数,在(0,+∞)上函数值保持不变,若f (x -4)>f (2x -3),则⎩⎪⎨⎪⎧x -4<0,2x -3≥0或x -4<2x -3≤0,解得x ∈(-1,4).故选C .4.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:由题可知,1-a 与1+a 异号,当a >0时,1-a <1,1+a >1, 所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去).当a <0时,1-a >1,1+a <1, 所以-1+a -2a =2+2a +a , 解得a =-34.答案:-34核心素养系列2 数学抽象——函数的新定义问题定义函数问题是指给出阅读材料,设计一个陌生的数学情境,定义一个新函数,并给出新函数所满足的条件或具备的性质;或者给出函数,再定义一个新概念(如不动点),把数学知识与方法迁移到这段阅读材料,考生需捕捉相关信息,通过归纳、探索,发现解题方法,然后解决问题.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.给出下列四个函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos (πx ).其中是“1的饱和函数”的所有函数的序号为( ) A .①③ B .②④ C .①②D .③④【解析】 对于①,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则1x 0+1=1x 0+1,所以x 20+x 0+1=0(x 0≠0,且x 0≠-1),显然该方程无实根,所以①不是“1的饱和函数”;对于②,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则2x 0+1=2x 0+2,解得x 0=1,所以②是“1的饱和函数”;对于③,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则lg[(x 0+1)2+2]=lg(x 20+2)+lg(12+2),化简得2x 20-2x 0+3=0,显然该方程无实根,所以③不是“1的饱和函数”;对于④,注意到f ⎝ ⎛⎭⎪⎫13+1=cos 4π3=-12,f ⎝ ⎛⎭⎪⎫13+f (1)=cos π3+cos π=-12,即f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫13+f (1),所以④是“1的饱和函数”.综上可知,其中是“1的饱和函数”的所有函数的序号是②④.【答案】 B处理新定义函数问题的常用方法(1)联想背景:有些题目给出的新函数是以熟知的初等函数(如一次函数、二次函数、指数函数、对数函数、三角函数等)为背景定义的,可以通过阅读材料,分析有关信息,联想背景函数及其性质,进行类比,捕捉解题灵感,然后解决问题.(2)紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.(3)巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x ,y 取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.(4)构造函数:有些定义型函数可看成是由两个已知函数构造而成的.1.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos (x +1)解析:选D .由题意可得准偶函数的图象关于直线x =a (a ≠0)对称,即准偶函数的图象存在不是y 轴的对称轴.选项A ,C 中函数的图象不存在对称轴,选项B 中函数的图象的对称轴为y 轴,只有选项D 中的函数满足题意.2.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3;③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x .其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④解析:选C .对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B .故选C .。

2019届高考数学(文科)江苏版1轮复习:第2章 基本初等函数、导数的应用 10 第10讲分层演练直击高考含解析

1.函数f (x )=(x +2a )(x -a )2的导数为________. [解析] f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2). [答案] 3(x 2-a 2)2.(2018·南通市高三第一次调研测试)已知两曲线f (x )=2sin x ,g (x )=a cos x ,x ∈⎝⎛⎭⎫0,π2相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为________.解析:设点P 的横坐标为x 0,则2sin x 0=a cos x 0,(2cos x 0)(-a sin x 0)=-1,所以4sin 2x 0=1.因为x 0∈⎝ ⎛⎭⎪⎫0,π2,所以sin x 0=12,cos x 0=32,所以a =233.答案:2333.已知f (x )=x (2 015+ln x ),f ′(x 0)=2 016,则x 0=________.[解析] 由题意可知f ′(x )=2 015+ln x +x ·1x =2 016+ln x .由f ′(x 0)=2 016,得ln x 0=0,解得x 0=1.[答案] 14.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y=f (x )在点P 处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0. 答案:x -y -2=05.已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析:因为f ′(x )=2x +2f ′(1), 所以f ′(1)=2+2f ′(1),即f ′(1)=-2. 所以f ′(x )=2x -4.所以f ′(0)=-4. 答案:-46.若以曲线y =13x 3+bx 2+4x +c (c 为常数)上任意一点为切点的切线的斜率恒为非负数,则实数b 的取值范围为________.解析:y ′=x 2+2bx +4,因为y ′≥0恒成立,所以Δ=4b 2-16≤0,所以-2≤b ≤2. 答案:[-2,2]7.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝⎛⎭⎫π2sin x +cos x ,则f ′⎝⎛⎭⎫π4=________.解析:因为f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,所以f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2,即f ′⎝ ⎛⎭⎪⎫π2=-1,所以f ′(x )=-sin x -cos x , 故f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.答案:- 28.若直线l 与幂函数y =x n 的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,所以2n =8,所以n =3,所以y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).所以y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=09.(2018·江苏省四星级学校联考)已知函数f (x )=e x +ae x (a ∈R ,e 为自然对数的底数)的导函数f ′(x )是奇函数,若曲线y =f (x )在(x 0,f (x 0))处的切线与直线2x +y +1=0垂直,则x 0=________.解析:由题意知f ′(x )=e x -a ·e -x ,因为f ′(x )为奇函数,所以f ′(0)=1-a =0,所以a =1,故f ′(x )=e x -e -x .因为曲线y =f (x )在(x 0,f (x 0))处的切线与直线2x +y +1=0垂直,所以f ′(x 0)=e x 0-e -x 0=22,解得e x 0=2,所以x 0=ln 2=ln 22. 答案:ln 2210.求下列函数的导数. (1)y =(2x 2+3)(3x -2);(2)y =(1-x )⎝⎛⎭⎫1+1x ; (3)y =3x e x -2x +e.解:(1)因为y =6x 3-4x 2+9x -6,所以y ′=18x 2-8x +9. (2)因为y =(1-x )⎝⎛⎭⎫1+1x =1x -x =x -12-x 12,所以y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2=(ln 3+1)·(3e)x-2x ln 2.11.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l . (1)求使直线l 和y =f (x )相切且以P 为切点的直线方程; (2)求使直线l 和y =f (x )相切且切点异于P 的直线方程.解:(1)由f (x )=x 3-3x ,得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,所以所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0), 则f ′(x 0)=3x 20-3.又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,又x 30-3x 0+2x 0-1=3x 20-3,即x 30-3x 0+2=3(x 20-1)(x 0-1),解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3×⎝⎛⎭⎫14-1=-94, 所以y -(-2)=-94(x -1),即9x +4y -1=0.1.已知函数f (x )=x (x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________.解析:f ′(x )=(x -1)(x -2)(x -3)(x -4)(x -5)+x [(x -1)(x -2)(x -3)(x -4)(x -5)]′, 所以f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120. 答案:-1202.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为________.解析:因为f ′(x )=1x,所以直线l 的斜率为k =f ′(1)=1, 又f (1)=0,所以切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 答案:-23.设P 是函数y =x (x +1)图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是________.解析:因为y ′=12x -12 (x +1)+x =3x 2+12x ≥234=3,设点P (x ,y )(x >0), 则在点P 处的切线的斜率k ≥3, 所以tan θ≥3,又θ∈[0,π),故θ∈⎣⎢⎡⎭⎪⎫π3,π2.答案:⎣⎡⎭⎫π3,π24.记定义在R 上的函数y =f (x )的导函数为f ′(x ).如果存在x 0∈[a ,b ],使得f (b )-f (a )=f ′(x 0)(b -a )成立,则称x 0为函数f (x )在区间[a ,b ]上的“中值点”,那么函数f (x )=x 3-3x 在区间[-2,2]上“中值点”的个数为________.解析:f (2)=2,f (-2)=-2,f (2)-f (-2)2-(-2)=1,由f ′(x )=3x 2-3=1,得x =±233∈[-2,2],故有2个.答案:25.(2018·临沂模拟)已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k 的值,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)f ′(x )=3ax 2+6x -6a ,f ′(-1)=0, 即3a -6-6a =0, 所以a =-2.(2)存在.因为直线m 恒过定点(0,9),直线m 是曲线y =g (x )的切线,设切点为(x 0,3x 20+6x 0+12),因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将点(0,9)代入,得x 0=±1,当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9.由f′(x)=0,得-6x2+6x+12=0,即有x=-1或x=2,当x=-1时,y=f(x)的切线方程为y=-18;当x=2时,y=f(x)的切线方程为y=9.所以公切线是y=9.又令f′(x)=12,得-6x2+6x+12=12,所以x=0或x=1.当x=0时,y=f(x)的切线方程为y=12x-11;当x=1时,y=f(x)的切线方程为y=12x-10,所以公切线不是y=12x+9.综上所述,公切线是y=9,此时k=0.。

2019年全品一轮复习文科数学第2单元 函数、导数及其应用 作业答案

课时作业(四)1. B [解析] 由题意,得-x 2+2x+3≥0,解得-1≤x ≤3,所以函数f (x )的定义域为[-1,3],故选B .2. B [解析] f (1e 2)=ln 1e 2+3=ln e -2+3=-2+3=1,f (-1)=2-1=12,所以f (1e 2)+f (-1)=32.故选B . 3. A [解析] f (2x+3)=12(2x+3)+72,所以f (x )=12x+72.由f (t )=6,得12t+72=6,解得t=5.故选A . 4. 2 [解析] f (3)=f (2)=f (1)=21=2,所以f [f (3)]=f (2)=f (1)=21=2.5. -4 [解析] 由f (a )=a+1a -1=2,得a+1a =3,所以f (-a )=-a-1a -1=-(a +1a)-1=-3-1=-4.6. B [解析] 设g (x )=ax 2+bx+c (a ≠0),因为g (1)=1,g (-1)=5,且图像过原点,所以{a +b +c =1,a -b +c =5,c =0,解得{a =3,b =-2,c =0,所以g (x )=3x 2-2x. 7. A [解析] 令x=1,得2f (1)-f (-1)=4①,令x=-1,得2f (-1)-f (1)=-2②,联立①②得f (1)=2.8. A [解析] f (23)=83+a.若83+a<1,即a<-53,则f [f (23)]=4(83+a)+a=4,解得a=-43>-53,不合题意;若83+a ≥1,即a ≥-53,则f [f (23)]=283+a =4,得83+a=2,所以a=-23,符合题意.故选A . 9. -13[解析] 令t=1-x1+x(t ≠-1),则x=1-t 1+t ,所以f (t )=1-t 1+t ,即f (x )=1-x 1+x ,所以f (2)=1-21+2=-13.10. [-1,2] [解析] 因为y=f (x 2-1)的定义域为[-√3,√3],所以x 2-1∈[-1,2],所以y=f (x )的定义域为[-1,2]. 11. 解:(1)由已知,g (2)=1,f (2)=3,因此f [g (2)]=f (1)=0,g [f (2)]=g (3)=2. (2)当x ≥0时,g (x )=x-1,故f [g (x )]=(x-1)2-1=x 2-2x ; 当x<0时,g (x )=2-x ,故f [g (x )]=(2-x )2-1=x 2-4x+3. 所以f [g (x )]={x 2-2x,x ≥0,x 2-4x +3,x <0.当x ≥1或x ≤-1时,f (x )≥0,故g [f (x )]=(x 2-1)-1=x 2-2; 当-1<x<1时,f (x )<0,故g [f (x )]=2-(x 2-1)=3-x 2. 所以g [f (x )]={x 2-2,x ≥1或x ≤-1,3-x 2,-1<x <1.12. 解:(1)令t=log 2x ,则x=2t ,所以g (t )=2t +1, 所以f (x )=log 2(2x +1)+(k-1)x ,因为函数f (x )是偶函数,所以f (-x )=f (x ), 所以log 2(2x +1)+(k-1)x=log 2(2-x +1)-(k-1)x , 即log 22x +12-x +1=-2(k-1)x ,即log 22x =-2(k-1)x ,所以x=-2(k-1)x 对一切x ∈R 恒成立,所以2(k-1)=-1,得k=12. (2)当k=1时,f (x )=log 2[ax 2+(a+1)x+a ], 当a=0时,f (x )=log 2x ,则f (x )的值域为R . 当a ≠0时,要使函数的值域为R ,则{a >0,Δ≥0,即{a >0,(a +1)2-4a 2≥0,解得0<a ≤1.所以a 的取值范围是[0,1].13. (-∞,-12)∪(12,+∞) [解析] 易知a=0不合题意.当a>0时,必有ax 2+x+a>0在R 上恒成立,即1-4a 2<0,解得a>12; 当a<0时,必有ax 2+x+a<0在R 上恒成立,即1-4a 2<0,解得a<-12. 所以实数a 的取值范围是(-∞,-12)∪(12,+∞).14. [log 373,1] [解析] 因为t ∈(0,1],所以f (t )=3t ∈(1,3],所以f [f (t )]=92-32·3t . 因为f [f (t )]∈[0,1],所以0≤92-32·3t ≤1, 解得log 373≤t ≤1,又t ∈(0,1], 所以实数t 的取值范围为[log 373,1].课时作业(五)1. B [解析] 选项A 中,函数在(1,+∞)上为减函数;选项C 中,函数在(1,+∞)上为减函数;选项D 中,函数在(1,+∞)上为减函数.故选B .2. C [解析] 要使y=log 2(ax-1)在(1,2)上单调递增,则a>0且a-1≥0,即a ≥1.3. A [解析] f (x )=|x-2|x={x 2-2x,x ≥2,-x 2+2x,x <2,结合图像可知函数f (x )的单调递减区间是[1,2].4. (-∞,2) [解析] 当x ≥1时,f (x )=lo g 12x 是单调递减的,此时,函数的值域为(-∞,0];当x<1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).5. 4 [解析] 由于y=(15)x 在[-1,1]上单调递减,y=log 5(x+6)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=4.6. B [解析] 由y=ax 在(0,+∞)上是减函数,知a<0;由y=-b x在(0,+∞)上是减函数,知b<0.所以抛物线y=ax 2+bx 的对称轴的方程为x=-b2a <0,又因为抛物线y=ax 2+bx 的开口向下,所以y=ax 2+bx 在(0,+∞)上是减函数.故选B .7. B [解析] 由已知可得{a >1,4-a 2>0,a ≥(4-a2)+2,解得4≤a<8.故选B .8. D [解析] 当a=0时,f (x )=-12x+5在(-∞,3)上是减函数;当a ≠0时,有{a >0,-4(a -3)4a≥3,得0<a ≤34.综上,a 的取值范围是0≤a ≤34.9. D [解析] 因为函数f (x )在区间(-2,+∞)上是增函数,所以{1-2a 2<0,-2+2a ≥0,即{2a 2-1>0,a ≥1,得a ≥1.因此g (x )=(a+1)x 在R 上是增函数.由g (1x )<g (x ),得1x <x ,解得x>1或-1<x<0.所以实数x 的取值范围为(-1,0)∪(1,+∞).10. C [解析] 根据新运算“”的定义,得f (x )={x -2,-2≤x ≤1,x 3-2,1<x ≤2,又y=x-2,y=x 3-2在其定义域内均为增函数,当-2≤x ≤1时,f (x )≤f (1)=1-2=-1,当1<x ≤2时,f (x )≤f (2)=23-2=6.因此函数f (x )的最大值为6.故选C .11. -2 [解析] 因为f (x )=x 2-2x+m=(x-1)2+m-1在[3,+∞)上为增函数,且f (x )在[3,+∞)上的最小值为1,所以f (3)=1,即22+m-1=1,故m=-2. 12. (-9,0)∪(0,3) [解析] f (x )={3x 2-2ax +a 2,x ≥a,x 2+2ax -a 2,x <a.当a>0时,-a>-3,所以0<a<3;当a=0时,f (x )={3x 2,x ≥0,x 2,x <0,f (x )在[-3,0]上显然单调;当a<0时,a 3>-3,所以-9<a<0.综上,-9<a<0或0<a<3. 13. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增. (2)任设1<x 3<x 4,则f (x 3)-f (x 4)=x 3x 3-a -x 4x 4-a =a(x 4-x 3)(x 3-a)(x 4-a),因为a>0,x 4-x 3>0,所以要使f (x 3)-f (x 4)>0, 只需(x 3-a )(x 4-a )>0在(1,+∞)上恒成立,所以a ≤1. 综上所述,实数a 的取值范围是(0,1]. 14. 解:(1)证明:设x 1,x 2∈[-1,1],且x 1<x 2, 在f(a)+f(b)a+b>0 中,令a=x 1,b=-x 2,有f(x 1)+f(-x 2)x 1-x 2>0.因为f (x )是奇函数,所以f (-x 2)=-f (x 2), 所以f(x 1)-f(x 2)x 1-x 2>0,因为x 1<x 2,所以x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在[-1,1]上为增函数. (2)因为f (x )在[-1,1]上为增函数,所以{-1≤x +12≤1,-1≤1x -1≤1,x +12<1x -1,由此解得{x|-32≤x <-1}.15. B [解析] 由条件③,令x=0,可得f (1)=1.由条件②,令x=1,可得f (13)=12f (1)=12.令x=13,可得f (19)=12f (13)=14.由条件③结合f (13)=12,可知f (23)=12.令x=23,可得f (29)=12f (23)=14.因为19<18<29,且函数f (x )在[0,1]上为非减函数,所以f (18)=14,所以f (13)+f (18)=34.16. (-∞,-2) [解析] 二次函数y=x 2-4x+3的图像的对称轴是直线x=2,所以该函数在(-∞,0]上单调递减,所以当x ≤0时,x 2-4x+3≥3.同理可知,函数y=-x 2-2x+3在(0,+∞)上单调递减,所以当x>0时,-x 2-2x+3<3,所以f (x )在R 上单调递减.由f (x+a )>f (2a-x ),得x+a<2a-x ,即2x<a ,所以2x<a 在[a ,a+1]上恒成立,所以2(a+1)<a ,所以a<-2,所以实数a 的取值范围是(-∞,-2).课时作业(六)1. C [解析] f (-x )=(-x )3-cos (-x )=-x 3-cos x ,所以f (-x )≠-f (x ),f (-x )≠f (x ),所以f (x )既不是奇函数,也不是偶函数.故选C .2. D [解析] f (-14)+f (-2)+f (-3)=-f (14)+f (1)+f (0)=-log 214+log 21+0=2.故选D .3. C [解析] 函数y=tan x 在区间(-1,1)上单调递增;y=x -1在x=0处无意义;对于选项C ,y=ln 2-x2+x的定义域为(-2,2),且为奇函数,令g (x )=2-x2+x,则g (x )=-1+4x+2在区间(-2,2)上单调递减,所以函数y=ln 2-x2+x 在区间(-1,1)上单调递减,符合题意;对于选项D ,y=13(3x -3-x )是奇函数,在定义域内单调递增.故选C .4. D [解析] 因为函数f (x )是定义在R 上的奇函数,所以f (-1)=-f (1)=-(21-1)=-1,所以f [f (-1)]=f (-1)=-1.5. 32[解析] 依题意得b-1=0,解得b=1,又3a=-(a-2),所以a=12,所以a+b=32.6. B [解析] 由f (x )-x 2=g (x ),得f (x )=g (x )+x 2,当g (x )=cos x 时,f (x )=cos x+x 2,f (-x )=cos (-x )+(-x )2=f (x ),且定义域为R ,故f (x )为偶函数,故选B .7. B [解析] 当y=f (x )的图像关于原点对称时,y=f (x )为奇函数,所以f (-x )=-f (x ),所以|f (-x )|=|f (x )|,所以y=|f (x )|是偶函数;反过来,当y=|f (x )|是偶函数时,不能推出y=f (x )的图像关于原点对称,如y=|cos x|,则y=cos x 是偶函数,图像不关于原点对称.故选B . 8. A [解析] 因为f (x )=a 2-32x +1是R 上的奇函数,所以f (0)=0,即a 2-320+1=0,解得a=3,所以f (a )=32-323+1=76.故选A .9. B [解析] 由已知可知函数f (x )是周期为2的周期函数,当x ∈(0,1)时,有x+2∈(2,3),故f (x )=f (x+2)=x+2.同理,当x ∈[-2,-1]时,有f (x )=f (x+4)=x+4.又f (x )是偶函数,当x ∈(-1,0)时,有-x ∈(0,1),所以f (x )=f (-x )=2-x.故当x ∈(-2,0)时,f (x )=3-|x+1|.故选B .10. B [解析] 由于函数f (x )是奇函数,因此原不等式可化为f (x )(2x -1)<0,即{f(x)<0,2x -1>0或{f(x)>0,2x -1<0.因为f (1)=0,所以{f(x)<f(1),x >0或{f(x)>f(-1),x <0,故x<-1或x>1.故选B .11. D [解析] 易知f (x )是R 上的增函数且为奇函数,因为当0≤θ≤π2时,f (m sin θ)+f (1-m )>0恒成立,即f (m sin θ)>-f (1-m )=f (m-1)恒成立,所以当0≤θ≤π2时,m sin θ>m -1恒成立.当sin θ=1时,m ∈R ;当0≤sin θ<1时,m<11-sinθ,因为0≤sin θ<1,所以11-sinθ的最小值为1,故m 的取值范围是m<1.故选D .12.516[解析] 由题易知f (294)+f (416)=f (-34)+f (-76)=-f (34)-f (76)=-316+12=516.13. 1 [解析] 因为f (x )为偶函数,所以f (-x )-f (x )=0恒成立,所以-x lg (√a +x 2+x )-x lg (√a +x 2-x )=0恒成立,所以x lg a=0恒成立,所以lg a=0,故a=1. 14. 43[解析] f (x )=x 2+x+1x 2+1=1+xx 2+1,令g (x )=xx 2+1,则g (x )是奇函数,故f (-a )=1+g (-a )=1-g (a )=2-[1+g (a )]=2-f (a )=2-23=43. 15. A [解析] f (x )=2x1+|x|(x ∈R )是奇函数且在R 上单调递增,所以f (x )在区间[a ,b ]上的值域是N=[2a 1+|a|,2b1+|b|].令M=N ,则有{f(a)=a,f(b)=b,得{2a1+|a|=a,2b 1+|b|=b,知a ,b 是方程2x 1+|x|=x 的两根,得{a =0,b =1或{a =-1,b =0或{a =-1,b =1.故选A . 16. (-∞,15]∪[1,+∞) [解析] 当a ≥13时,3a-1≥0,a ≥0,f (x )在[0,+∞)上为增函数,由f (3a-1)≥8f (a )得(3a-1)3≥(2a )3,得a ≥1;当0≤a<13时,3a-1<0,a ≥0,因为f (x )为R 上的偶函数,所以由f (3a-1)≥8f (a ),得(1-3a )3≥(2a )3,解得0≤a ≤15;当a<0时,3a-1<0,由-(3a-1)3≥-(2a )3,解得a<1,但a<0,所以a<0.综上知,实数a 的取值范围为(-∞,15]∪[1,+∞).加练一课(一) 函数性质的综合应用1. A [解析] 因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m=0,解得m=-1,则f (-2)=-f (2)=-(22-1)=-3.故选A .2. A [解析] 函数f (x )=e x -e -x3满足f (-x )=-f (x ),所以函数f (x )为奇函数,且f (x )为增函数.验证可知y=ln (x+√1+x 2)是奇函数,且为增函数,y=x 2是偶函数,y=tan x 在R 上不单调,y=e x 是非奇非偶函数,故选A .3. C [解析] 当x<0时,-x>0,f (-x )=(-x )3+ln (1-x ),因为f (x )是R 上的奇函数,所以f (x )=-f (-x )=-[(-x )3+ln (1-x )],所以当x<0时,f (x )=x 3-ln (1-x ).故选C .4. B [解析] 由题设知f (x )=-f (x-2)=f (2-x ).因为函数f (x )是奇函数,所以f (x )的图像关于坐标原点对称,由于函数f (x )在[0,1]上是增函数,故f (x )在[-1,0)上也是增函数,所以函数f (x )在[-1,1]上是增函数.又f (32)=f (2-32)=f (12),所以f (-14)<f (14)<f (12)=f (32).故选B .5. C [解析] 因为f (x )是奇函数,所以y=|f (x )|是偶函数,于是y=|f (x )|和g (x )都是偶函数,它们的图像都关于y 轴对称,所以y=|f (x-1)|和y=g (x-1)的图像都关于直线x=1对称,即h (x )=|f (x-1)|+g (x-1)的图像关于直线x=1对称.故选C .6. B [解析] 因为f (x )是R 上的偶函数,在(-∞,0]上是减函数,所以f (x )在(0,+∞)上是增函数,所以f (log 2x )>2=f (1),即f (|log 2x|)>f (1),所以log 2x>1或log 2x<-1,解得x>2或0<x<12.故选B .7. A [解析] 当a=0时,f (x )=lg 1=0,定义域为R ,g (x )=ln (x 2-x-1),值域为R ,符合题意.当a ≠0时,依题意,有{a >0,a 2-4a(1-a)<0,且(a-1)2-4(a 2-1)≥0,解得0<a<45.故选A . 8. D [解析] 由已知,得f (x )是周期为2的函数,由f (x+1)是奇函数,得f (-x+1)=-f (x+1),即f (x )=-f (2-x ),故f (-32)=f (12)=-f (32)=-f (-12).当-1≤x ≤0时,f (x )=-2x (x+1),所以f (-12)=-2×(-12)×(-12+1)=12,所以f (-32)=-12.故选D .9. B [解析] 因为f (x )是偶函数,f (2x )=f (x+1x+4),所以f (|2x|)=f (|x+1x+4|).又因为f (x )在(0,+∞)上为单调函数,所以|2x|=|x+1x+4|,即2x=x+1x+4或2x=-x+1x+4,整理得2x 2+7x-1=0或2x 2+9x+1=0.设方程2x 2+7x-1=0的两根为x 1,x 2,方程2x 2+9x+1=0的两根为x 3,x 4,则(x 1+x 2)+(x 3+x 4)=-72+(-92)=-8. 10. B [解析] f (x )是以6为周期的周期函数,f (1)=1,f (2)=2,f (3)=f (-6+3)=f (-3)=-(-3+2)2=-1,f (4)=f (-6+4)=f (-2)=-(-2+2)2=0,f (5)=f (-6+5)=f (-1)=-1,f (6)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=1,所以f (1)+f (2)+f (3)+…+f (2012)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2011)+f (2012)=335×1+f (1)+f (2)=335+1+2=338.故选B .11. 4 [解析] 令t=√x ,则t ≥0,所以y=4t-t 2=-(t-2)2+4,所以当t=2,即x=4时,函数取得最大值4. 12. [√10,+∞) [解析] 令t=lg x ,则y=t2-t=(t -12)2-14的单调递增区间为[12,+∞),由lg x ≥12,得lg x ≥lg √10,所以函数的单调递增区间为[√10,+∞).13. (-3,-1)∪(3,+∞) [解析] 由已知可得{a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a<-1或a>3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).14. 7 [解析] 由f (12+x)+f (12-x)=2,得f (18)+f (78)=2,f (28)+f (68)=2,f (38)+f (58)=2,又f (48)=12[f (48)+f (48)]=12×2=1,所以f (18)+f (28)+…+f (78)=7.15. 14[解析] 函数g (x )在[0,+∞)上为增函数,则1-4m>0,即m<14.若a>1,则函数f (x )在[-1,2]上的最小值为1a=m ,最大值为a 2=4,解得a=2,12=m ,与m<14矛盾;当0<a<1时,函数f (x )在[-1,2]上的最小值为a 2=m ,最大值为a -1=4,解得a=14,m=116.所以a=14.16. [94,+∞) [解析] 易知f (x )是[0,1]上的增函数,其最大值f (x )max =12.若x ∈[1,2],则当a ≤32时,g (x )max =g (2)=8-4a ,当a>32时,g (x )max =g (1)=5-2a.若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则g (x )max ≤f (x )max ,所以,当a ≤32时,有8-4a ≤12,得a ≥158,不满足a ≤32,舍去;当a>32时,有5-2a ≤12,得a ≥94.所以实数a 的取值范围是[94,+∞).课时作业(七)1. B [解析] 由题意知函数f (x )图像的对称轴方程为x=m 4=-2,所以m=-8,所以f (1)=2+8+3=13,故选B . 2. B [解析] 因为f (x )=(m 2-m-1)x m 是幂函数,所以m 2-m-1=1,解得m=-1或m=2.又f (x )在(0,+∞)上是增函数,所以m=2.故选B .3. C [解析] 因为f (x )图像的对称轴为直线x=-12,f (0)=a>0,所以f (x )的大致图像如图所示.由f (m )<0,得-1<m<0,所以m+1>0,所以f (m+1)>f (0)>0.4. 12[解析] 设f (x )=x α(α∈R ),因为f (12)=(12)α=√22,所以α=12,所以f (2)=√2,所以log 2f (2)=12.5. 10 [解析] x 1+x 2=-ba,所以f (x 1+x 2)=f (-b a)=a (-b a)2+b (-b a)+10=10.6. A [解析] 因为f (0)=f (4)>f (1),所以函数f (x )的图像是开口向上的抛物线,即a>0,且其对称轴为直线x=2,即-b2a =2,所以4a+b=0.故选A .7. C [解析] 若a>0,则一次函数y=ax+b 为增函数,二次函数y=ax 2+bx+c 的图像开口向上,故可排除A .若a<0,同理可排除D .对于选项B ,由直线可知a>0,b>0,从而-b 2a<0,而二次函数的图像的对称轴在y 轴的右侧,故应排除B .故选C .8. A [解析] 不等式x 2-4x-2-a>0在区间(1,4)内有解等价于a<(x 2-4x-2)max ,x ∈(1,4).令f (x )=x 2-4x-2,x ∈(1,4),所以f (x )<f (4)=-2,所以a<-2.故选A . 9. A [解析] 由题意知{Δ=16m 2-4(m +3)(2m -1)>0,x 1+x 2=4mm+3<0,x 1x 2=2m -1m+3<0,得-3<m<0,故选A .10. D [解析] 据题意只需转化为当x ≤0时,ax 2-(3-a )x+1>0恒成立即可.结合f (x )=ax 2-(3-a )x+1的图像,当a=0时,验证知符合条件.当a ≠0时,必有a>0,当x=3-a 2a≥0时,函数f (x )在(-∞,0)上单调递减,故要使原不等式恒成立,只需f (0)>0即可,可得0<a ≤3;当x=3-a 2a <0时,只需f (3-a 2a)>0即可,可得3<a<9.综上所述,可得实数a 的取值范围是0≤a<9.11. a>c>b [解析] a=2-32=(√22)3,根据函数y=x3是R 上的增函数,且√22>12>25,得(√22)3>(12)3>(25)3,即a>c>b.12. [2,+∞) [解析] 令√x -1=t (t ≥0),则f (t )=2(t 2+1)+t=2(t +14)2+158,因为t ≥0,所以当t=0,即x=1时,f (x )取得最小值2,所以函数f (x )的值域为[2,+∞).13. 解:(1)当a=-2时,f (x )=x 2-4x+3=(x-2)2-1,x ∈[-4,6], 所以f (x )在[-4,2]上单调递减,在[2,6]上单调递增, 所以f (x )的最小值是f (2)=-1, 又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)由于函数f (x )的图像开口向上,对称轴是直线x=-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4,故a 的取值范围是(-∞,-6]∪[4,+∞).(3)f (|x|)=x 2-2|x|+3={x 2+2x +3,-4≤x ≤0,x 2-2x +3,0<x ≤6,即f (|x|)={(x +1)2+2,-4≤x ≤0,(x -1)2+2,0<x ≤6,所以f (|x|)的单调减区间为[-4,-1)和[0,1),单调增区间为[-1,0)和[1,6]. 14. 解:(1)由Δ=16-4(a+3)≥0,得a ≤1.(2)f (x )=x 2-4x+a+3=(x-2)2+a-1.当a+1<2,即a<1时,f (x )max =f (a )=a 2-4a+a+3=3,得a=0. 当a ≤2≤a+1,即1≤a ≤2时,f (a )=a 2-3a+3,f (a+1)=a 2-a ,当f (a )=3时,无解; 当f (a+1)=3时,无解.当a>2时,f (x )max =f (a+1)=a 2-a=3,得a=1+√132. 综上,a=1+√132或a=0.15. D [解析] f (x )={3-x -1=(13)x-1(x ≤0),x 12=√x(x >0),作出函数f (x )的图像,如图所示,因为函数f (x )在[-1,m ]上的最大值为2,又f (-1)=f (4)=2,所以-1<m ≤4,即m ∈(-1,4].16. (-12,4) [解析] 因为f (x )=x 2+2(a-2)x+4的图像的对称轴为直线x=-(a-2),当x ∈[-3,1]时,f (x )>0恒成立,所以{-(a -2)<-3,f(-3)>0或{-3≤-(a -2)≤1,f(2-a)>0或{-(a -2)>1,f(1)>0,解得a ∈⌀或1≤a<4或-12<a<1,所以a 的取值范围为(-12,4).课时作业(八)1. A [解析] 45x =9x ×5x =(3x )2×5x =a 2b ,故选A .2. D [解析] 因为f (x )=(12)|x -1|={(12)x -1,x ≥1,2x -1,x <1,结合图像可知选项D 正确.3. D [解析] 由指数函数y=(35)x 的性质及-13<-14,可得a=(35)-13>b=(35)-14>1.由指数函数y=(32)x的性质及-34<0,可得c=(32)-34<1,所以c<b<a.故选D .4. a 2-1a 2+1[解析] 原式=(a -a -1)2(a+a -1)(a -a -1)=a -a -1a+a -1=a 2-1a 2+1.5. {x|-1<x<4} [解析] 不等式3-x 2+2x>(13)x+4化为(13)x 2-2x >(13)x+4,因为y=(13)x是减函数,所以x 2-2x<x+4,即x 2-3x-4<0,解得-1<x<4.6. D [解析] 验证可知,指数函数f (x )=4x ,f (x )=(12)x 满足f (x-y )=f (x )÷f (y ),因为f (x )=4x 是增函数,f (x )=(12)x 是减函数,所以选D .7. B [解析] 当a<1时,41-a =21,所以a=12;当a>1时,4a-1=22a-1,无解.故选B .8. A [解析] 因为以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,所以x 1+x 2=0.又因为f (x )=a x ,所以f (x 1)·f (x 2)=a x 1·a x 2=a x 1+x 2=a 0=1. 9. D [解析] 函数y=2-x2+ax+1是由函数y=2t 和t=-x 2+ax+1复合而成的.因为函数t=-x 2+ax+1在区间(-∞,a2]上单调递增,在区间[a 2,+∞)上单调递减,且函数y=2t 在R 上单调递增,所以函数y=2-x2+ax+1在区间(-∞,a 2]上单调递增,在区间[a 2,+∞)上单调递减.又因为函数y=2-x 2+ax+1在区间(-∞,3)上单调递增,所以3≤a 2,即a ≥6.故选D .10. A [解析] 原不等式变形为m 2-m<(12)x,因为函数y=(12)x 在(-∞,-1]上是减函数,所以(12)x ≥(12)-1=2,当x ∈(-∞,-1]时,m 2-m<(12)x 恒成立等价于m 2-m<2,解得-1<m<2.故选A . 11. D[解析] f (2x )=e 2x +e -2x 2,2[g (x )]2+1=2×(e x -e -x2)2+1=e 2x +e -2x2,即f (2x )=2[g (x )]2+1,A 中等式正确;[f (x )]2-[g (x )]2=1,B 中等式正确;[f (x )]2+[g (x )]2=e 2x +e -2x2=f (2x ),C 中等式正确;f (x )f (y )-g (x )g (y )=e x +e -x 2×e y +e -y 2-e x -e -x 2×e y -e -y 2=e x e -y +e -x e y 2=e x -y +e y -x 2,f (x+y )=e x+y +e -x -y2,显然不相等,所以D 中等式不正确.故选D .12. 3 [解析] 当2x-4=0,即x=2时,y=1+n ,即函数图像恒过点(2,1+n ),又函数图像恒过定点P (m ,2),所以m=2,1+n=2,即m=2,n=1,所以m+n=3.13. e [解析] f (x )={e x ,x ≥1,e |x -2|,x <1,当x ≥1时,f (x )=e x ≥e (当x=1时,取等号);当x<1时,f (x )=e |x-2|=e 2-x >e .因此f (x )的最小值为f (1)=e . 14. 2√2+2016 [解析] f (-20152)=f (-20132)+2=f (-20112)+4=…=f (12)+2016=232+2016=2√2+2016.15. B [解析] 因为y=2x ,y=2-x 在R 上分别为增函数、减函数,所以f (x )=2x -2-x 为增函数.因为f (-x )=2-x -2x =-f (x ),所以f (x )为R 上的奇函数.因为f (x 2-ax+a )+f (3)>0,所以f (x 2-ax+a )>-f (3)=f (-3),得x 2-ax+a>-3,所以x 2-ax+a+3>0恒成立,所以(-a )2-4×1×(a+3)<0,所以a 2-4a-12<0,解得-2<a<6. 16. (1,√2] [解析] 当x ≤2时,f (x )≥(12)2-3=2,此时函数的值域为[2,+∞);当x>2且a>1时,f (x )>log a 2,此时函数值域为(log a 2,+∞),由(log a 2,+∞)⊆[2,+∞),得log a 2≥2,解得1<a ≤√2;当x>2且0<a<1时,f (x )<log a 2,不合题意.所以实数a 的取值范围是(1,√2].课时作业(九)1. D [解析] 由f (x )=lg(2x -1)√3x -2求得其定义域为M={x|x >23},而N={x|0<x<1},所以M ∩N=x23<x<1.故选D .2. A [解析] 因为3x +1>1,所以f (x )=log 2(3x +1)>0,所以函数f (x )的值域为(0,+∞),故选A .3. A [解析] 因为a=log 0.34<log 0.31=0,0<b=log 43<log 44=1,c=0.3-2=(310)-2=(103)2>1,所以a<b<c.故选A .4. -20 [解析] (lg 14-lg25)÷100-12=lg1100÷10-1=-20.5. 5 [解析] 由题意可知f (1)=log 21=0,所以f [f (1)]=f (0)=30+1=2,又f (log 312)=3-log 312+1=3log 32+1=2+1=3,所以f [f (1)]+f (log 312)=5.6. A [解析] 因为y=lg |x-1|={lg(x -1),x >1,lg(1-x),x <1,当x=1时,函数无意义,故排除B ,D .又当x=0时,y=0,所以排除C .故选A .7. C [解析] 由题意得0<a<1,故必有a 2+1>2a ,且2a>1,所以1>a>12.故选C .8. A [解析] 令M=x 2+32x ,当x ∈(12,+∞)时,M ∈(1,+∞),f (x )>0,所以a>1,所以函数y=log a x 为增函数,又M=(x +34)2-916,所以M 的单调递增区间为(-34,+∞),又x 2+32x>0,所以x>0或x<-32,所以函数f (x )的单调递增区间为(0,+∞).故选A .9. B [解析] 函数y=a x 与y=log a x 在[1,2]上的单调性相同,因此函数f (x )=a x +log a x 在[1,2]上的最大值与最小值之和为f (1)+f (2)=(a+log a 1)+(a 2+log a 2)=a+a 2+log a 2=log a 2+6,故a+a 2=6,解得a=2或a=-3(舍去).故选B .10. C [解析] 设2+log 2a=3+log 3b=log 6(a+b )=k ,可得a=2k-2,b=3k-3,a+b=6k ,所以1a +1b=a+bab=6k 2k -23k -3=108.所以选C .11. C [解析] 由题意可知A (m ,log a m ),B (m ,log b m ),C (m ,0),因为|AB|=2|BC|,所以log a m=3log b m 或log a m=-log b m ,所以log m b=3log m a 或log m a=-log m b ,所以b=a 3或a=b -1.故选C . 12. (-1,0) [解析] 由f (x )是奇函数可得a=-1,所以f (x )=lg 1+x1-x,定义域为(-1,1).由f (x )<0,可得0<1+x1-x <1,所以-1<x<0.13. 32[解析] 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32. 14. (1,2] [解析] 当x ≤2时,f (x )≥4.又函数f (x )的值域为[4,+∞),所以{a >1,3+log a 2≥4,解得1<a ≤2,所以实数a 的取值范围为(1,2].15. C [解析] 由已知得2x =5-2x ,2log 2(x-1)=5-2x ,即2x-1=52-x ,log 2(x-1)=52-x ,作出y=2x-1,y=52-x ,y=log 2(x-1)的图像(图略),由图可知y=2x-1与y=log 2(x-1)的图像关于直线y=x-1对称,它们分别与直线y=52-x 的交点A ,B 的中点就是直线y=52-x 与直线y=x-1的交点C ,x C =x 1+x 22=74,所以x 1+x 2=72,故选C .16. (-∞,4] [解析] 令t (x )=x 2-ax+a ,则由函数f (x )在区间(2,+∞)上是减函数,可得函数t (x )在区间(2,+∞)上是增函数,且t (2)≥0,所以{a2≤2,t(2)=4-a ≥0,解得a ≤4,所以实数a 的取值范围是(-∞,4].课时作业(十)1. C [解析] g (x )=log 22x=log 22+log 2x=1+log 2x ,所以,只需将函数f (x )=log 2x 的图像向上平移1个单位.故选C .2. A [解析] 由函数图像可知,函数f (x )为奇函数,应排除B ,C .若函数为f (x )=x-1x,则x →+∞时,f (x )→+∞,排除D ,故选A .3. D [解析] 因为f (14)>f (3)>f (2),所以函数f (x )不单调,不选A ,B .又选项C 中,f (14)<f (0)=1,f (3)>f (0),即f (14)<f (3),所以不选C ,故选D .4. (4,4) [解析] 函数y=f (x )的图像是由y=f (x+3)的图像向右平移3个单位长度而得到的.故y=f (x )的图像经过点(4,4).5. (-∞,-1)∪(1,+∞) [解析] 在同一直角坐标系中,作出函数y=f (x )的图像和直线y=1,如图所示,它们相交于(-1,1)和(1,1)两点,由f (x 0)>1,得x 0<-1或x 0>1.6. C [解析] 图②中的图像是在图①的基础上,去掉函数y=f (x )的图像在y 轴右侧的部分,然后将y 轴左侧图像翻折到y 轴右侧,y 轴左侧图像不变得来的,所以图②中的图像对应的函数可能是y=f (-|x|).故选C .7. C [解析] 因为f (2x+1)是偶函数,所以其图像关于y 轴对称,即关于直线x=0对称,而f (2x+1)=f [2(x +12)],所以f (2x )的图像可由f (2x+1)的图像向右平移12个单位得到,即f (2x )的图像的对称轴方程是x=12.8. C [解析] (特殊值法)因为f (e )=ln e 1+e =11+e ,f (-e )=ln[-(-e)]1-(-e)=11+e,所以f (e )=f (-e ),所以排除选项B ,D ,又当x ∈(0,1)时,ln x<0,1+x>0,所以f (x )<0.故选C .9. B [解析] 由于函数y=(x 3-x )2|x|为奇函数,因此它的图像关于原点对称.当0<x<1时,y<0;当x>1时,y>0,故选B .10. A [解析] 在同一坐标系内作出y=log 2(-x ),y=x+1的图像,易知满足条件的x ∈(-1,0),故选A .11. D [解析] 作出函数y=f (x )与y=k 的图像,如图所示.由图可知k ∈(0,1],故选D .12. (2,8] [解析] 当f (x )>0时,函数g (x )=lo g √2f (x )有意义,由函数f (x )的图像知满足f (x )>0的x ∈(2,8]. 13. f (x )={x +1,-1≤x ≤0,14(x -2)2-1,x >0 [解析] 当-1≤x ≤0时,设解析式为y=kx+b (k ≠0),则{-k +b =0,b =1,解得{k =1,b =1,所以y=x+1.当x>0时,设解析式为y=a (x-2)2-1(a ≠0).因为图像过点(4,0),所以0=a (4-2)2-1,得a=14,所以y=14(x-2)2-1.14. 1b[解析] 易知b>0,函数y=log a (x+b )的图像是由y=log a x 的图像向左平移b 个单位得到的,由图知0<b<1,而h (x )=x 2-2x 在[0,3]上的最小值为h (1)=-1,所以g (x )的最大值为b -1=1b.15. C [解析] 要使方程f (x )-log a (x+1)=0(a>0且a ≠1)在区间[0,5]上恰有5个不同的根,只需y=f (x )与y=log a (x+1)的图像在区间[0,5]上恰有5个不同的交点,在同一坐标系内作出它们的图像如图所示,由图可知,y=f (x )与y=log a (x+1)的图像在区间[0,5]上恰有5个不同的交点,只需{log a 3<2,log a 5<4,解得a>√3.故选C .16. D [解析] 函数y=11-x =-1x -1和y=2sin πx 的图像有公共的对称中心点(1,0),画出二者图像如图所示,易知y=11-x与y=2sin πx (-2≤x ≤4)的图像共有8个交点,不妨设其横坐标为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,且x 1<x 2<x 3<x 4<x 5<x 6<x 7<x 8,由对称性得x 1+x 8=x 2+x 7=x 3+x 6=x 4+x 5=2,所以x 1+x 2+x 3+x 4+x 5+x 6+x 7+x 8=8,故选D .加练一课(二)函数图像的应用1. B[解析]作出函数y=ln|x|和y=-x2的图像(图略),可知,两图像有2个交点,所以函数f(x)有2个零点.故选B.2. D[解析]与曲线y=e x关于y轴对称的曲线为y=e-x,函数y=e-x的图像向左平移1个单位长度即可得到函数f(x)的图像,即f(x)=e-(x+1)=e-x-1.故选D.3. C[解析]作出g(x)=(12)x的图像与h(x)=cos x的图像如图所示,可以看到它们在[0,2π]上的交点个数为3,所以函数f(x)在[0,2π]上的零点个数为3,故选C.4. B[解析]当a>1时,如图①所示,使得两个函数图像有交点,需满足12×22≥a2,即1<a≤√2.①②当0<a<1时,如图②所示,需满足12×12≤a1,即12≤a<1.综上可知,a∈[12,1)∪(1,√2].5. B[解析]因为图像与x轴交于两点,所以b2-4ac>0,即b2>4ac,所以①中结论正确;图像对称轴方程为x=-1,即-b2a=-1,2a-b=0,所以②中结论错误;结合图像知,当x=-1时,y>0,即a-b+c>0,所以③中结论错误;由图像对称轴为直线x=-1知,b=2a,又函数图像开口向下,所以a<0,所以5a<2a,即5a<b,所以④中结论正确.故选B.6. C[解析]由当x<2 时,f(x)=|2x-1|,得递减区间为(-∞,0),递增区间为(0,2).因为y=f(x+2)是偶函数,所以其图像关于y轴对称,所以y=f(x)的图像关于直线x=2对称,又因为y=f(x)在x<2时的递增区间为(0,2),所以,当x>2时,y=f(x)的递减区间为(2,4).故选C.7. D[解析]设函数f(x)=2x sin(π2+6x)4x-1=2x cos6x4x-1,所以f(-x)=2-x cos(-6x)4-x-1=-2x cos6x4x-1=-f(x),所以f(x)为奇函数,所以其图像关于原点对称,故排除选项A.因为当x从右趋向于0时,f(x)趋向于+∞,当x趋向于+∞时,f(x)趋向于0,故排除选项B,C,故选D.8. C [解析] 注意到f (12)=ln √e2-ln (1-12)=12,计算知f (12+x)+f (12-x)=1,所以函数f (x )的图像关于点(12,12)对称,所以m=12.故选C .9. C [解析] 函数f (x )={2x -1,x ≥0,f(x +1),x <0的图像如图所示,作出直线l :y=a-x ,观察可得,若函数y=f (x )的图像与直线l :y=-x+a 的图像有两个交点,即方程f (x )=-x+a 有且只有两个不相等的实数根,则有a<1,故选C . 10. C [解析] 令f (x )=sin 2πx ,g (x )=22x -1,x ∈[-2,3],则方程sin 2πx-22x -1=0,x ∈[-2,3]的所有根之和转化为函数f (x )的图像与g (x )的图像的交点的横坐标之和.因为f (54)=sin (2π×54)=1,f (94)=sin (2π×94)=1,g (54)=22×54-1=43>f (54),g (94)=22×94-1=47<f (94),所以在(12,3]时,两函数图像有两个交点,如图所示.因为函数f (x )和g (x )的图像都关于点(12,0)成中心对称,所以在x ∈[-2,3]时,共有四个交点,设这四个交点的横坐标依次为x 1,x 2,x 3,x 4,根据中心对称可得x 1+x 4=2×12=1,x 3+x 2=2×12=1,所以x 1+x 2+x 3+x 4=2,即方程的所有根之和为2.故选C .11. -1<m<0 [解析] 作出偶函数f (x )的图像及直线y=m ,如图所示,若函数g (x )恰有4个零点,则-1<m<0.12. 2 [解析] 由于f (x )是定义在R 上的周期为3的函数,所以f (2015)+f (2016)=f (672×3-1)+f (672×3+0)=f (-1)+f (0),由图可知f (-1)=2,f (0)=0,所以f (2015)+f (2016)=2. 13. 2x +sin x [解析] 由图像可知,F (x )图像过定点(0,1),当x>0时,F (x )>1,为增函数;当x<0时,F (x )≤0和F (x )>0交替出现.y=2x 的图像经过点(0,1),且当x<0时,0<y<1,当x>0时,y>1,验证知F (x )=2x +sin x 的图像满足条件.14. (0,12] [解析] 分别作出函数y=f (x ),y=g (x )+1的图像,由-log 2x=1,得x=12,因此,正实数a 的取值范围为(0,12].15. ①②④ [解析] 因为f (x )是R 上的偶函数,所以f (-x )=f (x ),得f (-2)=f (2),在f (x+4)=f (x )+f (2)中,令x=-2,得f (2)=f (-2)+f (2),所以f (-2)=f (2)=0,所以f (x+4)=f (x ),于是函数f (x )是以4为周期的周期函数,又当x ∈[0,2]时,y=f (x )单调递减,结合函数f (x )的性质作出函数f (x )的简图(示意图),由图可知,②直线x=-4为函数y=f (x )图像的一条对称轴;③y=f (x )在[8,10]上单调递减;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8.所以,真命题的序号为①②④.16. (2,174] [解析] 作出函数f (x )的简图,如图所示,由图可知,当f (x )在(0,4]上任取一个值时,都有4个不同的x 与f (x )的值对应,因为[f (x )]2-bf (x )+1=0有8个不同的根,所以令t=f (x ),则方程t 2-bt+1=0在(0,4]上有2个不同的实数根,所以{0<b2<4,Δ=b 2-4>0,16-4b +1≥0,1>0,解得2<b ≤174.课时作业(十一)1. B [解析] 易知选项B 正确.2. B [解析] 令f (x )=(13)x -x 12,则f (x )的图像在[0,+∞)上是连续不断的,因为f (0)=1>0,f (13)=(13)13-(13)12>0,f (12)=(13)12-(12)12<0,所以函数f (x )的零点所在区间是(13,12).故选B .3. C [解析] 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4),故选C .4. (-∞,1) [解析] 设函数f (x )=x 2+mx-6,则根据条件有f (2)<0,即4+2m-6<0,解得m<1.5. 1 [解析] 作出f (x ),g (x )的大致图像,如图所示,可知有1个交点.6. B[解析]在同一坐标系中分别画出函数f(x),g(x)的图像如图所示,方程f(x)=g(x)有两个不相等的实根等价于两个函数的图像有两个不同的交点,结合图像可知,当直线y=kx的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y=x-1的斜率时符合题意,故12<k<1.故选B.7. C[解析]由已知可得f(x0)=-e x0,则e-x0f(x0)=-1,e-x0f(-x0)=1,故-x0一定是y=e x f(x)-1的零点.故选C.8. C[解析]因为函数f(x)=2x-2x -a在区间(1,2)上单调递增,函数f(x)=2x-2x-a的一个零点在区间(1,2)内,所以f(1)·f(2)<0,所以(-a)(4-1-a)<0,即a(a-3)<0,所以0<a<3.故选C.9. C[解析]由奇函数的性质可知f(0)=0,又当x>0时,f(x)为增函数,当x从右侧趋向于0时,函数值趋向于-∞,而f(1)=2019>0,则x>0时,函数f(x)的图像与x轴有唯一交点.由函数图像的对称性得方程f(x)=0的实根的个数为3,故选C.10. A[解析]g(x)=x2-2x=(x-1)2-1,当g(x)≥0时,得x≤0或x≥2;当g(x)<0时,得0<x<2.所以当x≤0或x ≥2时,f[g(x)]=2x2-2x-2-2=0,即x2-2x-2=1,解得x=-1或x=3;当0<x<2时,f[g(x)]=x2-2x+2=0,此方程无解.所以函数f[g(x)]的所有零点之和是-1+3=2,故选A.11. C[解析]因为函数f(x)有两个零点,所以当x>1时,f(x)=-x+a必有一个零点,则a>1.当a>1,x≤1时,若f(x)=2x-a有一个零点,则1<a≤2,所以“函数f(x)有两个零点”成立的充要条件是a∈(1,2],所以“函数f(x)有两个零点”成立的充分不必要条件是a∈(1,2).故选C.12. 2[解析]令f(x)=0,得①{x≤0,x2-1=0,解得x=-1.②{x>0,x-2+lnx=0,在同一个直角坐标系中画出y=2-x,x>0和y=ln x,x>0的图像,如图所示.函数y=2-x,x>0和y=ln x,x>0的图像在同一个直角坐标系中交点个数是1,所以f(x)的零点个数为2.13.[5,10)[解析]令函数f(x)=2x+3x-k,则f(x)在R上是增函数.当方程2x+3x=k的解在(1,2)内时,f(1)·f(2)<0,即(5-k)(10-k)<0,解得5<k<10.当f(1)=0时,k=5.所以k∈[5,10).14. (log 32,1) [解析] 由题意知方程log 3x+2x=a 在区间(1,2)上有解,由1<x<2得2<x+2x<3,所以log 32<log 3x+2x<1,所以a ∈(log 32,1).15. B [解析] 当b=0时,不满足题意,所以x=1不是函数的零点,问题转化为:对任意的实数a ,方程a=lnx+b x -1有两个不同的解,即y 1=a 的图像与y 2=ln x+bx -1的图像有两个不同交点.当b<0时,y 2在(0,1)和(1,+∞)上单调递增,且x →0+时,y 2→-∞,x →1-时,y 2→+∞,x →1+时,y 2→-∞,x →+∞时,y 2→+∞,所以b<0.故选B .16. {2} [解析] 依题意知,函数f (x )是偶函数,在x=0处存在唯一零点,所以唯一零点是0,于是02-m cos 0+m 2+3m-8=0,解得m=-4或m=2.若m=-4,则f (x )=x 2+4cos x-4,令f (x )=0,得x 2+4cos x-4=0,即4cosx=4-x 2,由y=4cos x 和y=4-x 2的图像知,两图像的交点不只有一个,所以m=-4不合题意.而m=2时,符合题意.所以m=2,即满足条件的实数m 组成的集合为{2}.课时作业(十二)1. A [解析] 设这个广场的长为x 米,则宽为40 000x米,所以其周长l=2(x +40 000x)≥800,当且仅当x=40 000x,即x=200时取等号.故选A .2. D [解析] 由图可知,张大爷离家后的一段时间匀速直线行走,中间一段时间离家距离不变,说明这段时间张大爷在以家为圆心的圆周上运动,最后匀速回家,故选D .3. B [解析] 因为每次都把油箱加满,第二次加了48升油,说明这段时间的总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故该车每行驶100千米的平均耗油量为48÷6=8(升).4. 4.24 [解析] 因为m=6.5,所以[m ]=6,则f (6.5)=1.06×(0.5×6+1)=4.24.5. 180 [解析] 依题意知20-x 20=y -824-8,即x=54(24-y ),所以阴影部分的面积S=xy=54(24-y )·y=54(-y 2+24y )=-54(y-12)2+180,所以当y=12时,S 有最大值180.6. B [解析] 单位时间的运输量逐步提高时,运输量的增长速度越来越快,即图像在某点的切线的斜率随着自变量的变大会越来越大,故函数图像应一直是下凹的.故选B .7. C [解析] 设每年人口的平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40lg (1+x )=lg 2,所以lg (1+x )=lg240≈0.007 5,所以100.007 5≈1+x ,得1+x ≈1.017,所以x ≈1.7%.8. B [解析] 因为103100-1=0.03,(51.450-1)×2=0.056,10097-1≈0.031,所以三种债券的收益为甲<丙<乙,故选B .9. B [解析] 设经销乙商品投入资金x 万元,由题意得20-x 4+a 2√x ≥5(0≤x ≤20),整理得-x 4+a2√x ≥0.显然,当x=0时,不等式恒成立;当0<x ≤20时,由-x 4+a2√x ≥0,得a ≥√x2恒成立,因为0<x ≤20,所以0<√x2≤√5,所以a ≥√5,即a 的最小值为√5.故选B .10. D [解析] 设该公司的年收入为x 万元,纳税额为y 万元,则由题意得y={x ×p%,x ≤280,280×p%+(x -280)×(p +2)%,x >280,依题意有280×p%+(x -280)×(p+2)%x=(p+0.25)%,解得x=320.故选D .11. C [解析] 设原污染物的数量为a ,则P 0=a.由题意有10%a=a e -5k ,所以5k=ln 10.设从过滤开始经过t h 后污染物的含量不超过1%,则有1%a ≥a e -tk ,所以tk ≥2ln 10,所以t ≥10.因此至少还需过滤10-5=5(h )才可以排放.故选C .12. 2500 m 2 [解析] 设矩形的长为x m ,则宽为200-x4m ,则S=x ·200-x 4=14(-x 2+200x ),则当x=100时,S max =2500 m 2. 13.1909[解析] 由题意知前10天y 与x 之间满足一次函数关系,设函数解析式为y=kx+b ,将点(1,10)和点(10,30)代入函数解析式得{10=k +b,30=10k +b,解得k=209,b=709,所以y=209x+709,则当x=6时,y=1909.14. 11.5 [解析] 设每桶水在进价的基础上上涨x 元时,利润为y 元,由表格中的数据可以得到,日销售的桶数为480-40(x-1)=520-40x ,由520-40x>0及x>0,得0<x<13,则利润y=(520-40x )x-200=-40x 2+520x-200=-40(x-6.5)2+1490,其中0<x<13,所以当x=6.5时,利润最大,即当每桶水的价格为11.5元时,利润取得最大值,为1490元.15. 16 [解析] 当0<x ≤20时,y=(33x-x 2)-x-100=-x 2+32x-100;当x>20时,y=260-100-x=160-x. 故y={-x 2+32x -100,0<x ≤20,160-x,x >20(x ∈N *),当0<x ≤20时,y=-x 2+32x-100=-(x-16)2+156,所以当x=16时,y max =156. 而当x>20时,160-x<140.故当x=16时能获得最大年利润.课时作业(十三)1. B [解析] 因为f'(x )=1-e x x -e x x 2=1-e x (x -1)x 2,所以f'(1)=1,又f (1)=1-e ,所以f'(1)-f (1)=e .2. C [解析] 因为f'(x )=1-lnxx 2,所以f'(1)=1,故该切线方程为y-(-2)=x-1,即x-y-3=0.3. A [解析] 由题意知,汽车行驶的速度v 关于时间t 的函数为v (t )=s'(t )=6t 2-gt ,则v'(t )=12t-g ,故当t=2 s 时,汽车的加速度是v'(2)=12×2-10=14(m/s 2).4. 2 [解析] 因为f'(x )=(2x+2)e x -(x 2+2x)e x (e x )2=2-x 2e x ,所以f'(0)=2.5. 2 [解析] 因为f'(x )=a ln x+ax ·1x=a (ln x+1),所以f'(1)=a (ln 1+1)=2,即a=2. 6. A [解析] 设x+1=t ,则x=t-1,所以f (t )=2t -1t =2-1t,故f (x )=2-1x ,又f'(x )=1x 2,所以曲线y=f (x )在点(1,f (1))处的切线的斜率k=f'(1)=1.7. B [解析] 设直线y=ax 与曲线y=2ln x+1的切点的横坐标为x 0,则对于y=2ln x+1,有y'|x=x 0=2x 0,于是有{a =2x 0,ax 0=2ln x 0+1,解得x 0=√e ,则a=2x 0=2e -12.。

2023年高考数学(文科)一轮复习——导数的概念及运算

第1节导数的概念及运算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)便是x的一个函数,称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln__a f (x )=ln xf ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.思考辨析(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( )(4)曲线y =f (x )在某点处的切线与曲线y =f (x )过某点的切线意义是相同的.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (距离单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( ) A.9.1米/秒 B.6.75米/秒 C.3.1米/秒D.2.75米/秒答案 C解析 h ′(t )=-9.8t +8, ∴h ′(0.5)=-9.8×0.5+8=3.1.3.(2022·银川质检)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≤0,-x 2+ax ,x >0为奇函数,则曲线f (x )在x =2处的切线斜率等于( ) A.6 B.-2C.-6D.-8答案 B解析 f (x )为奇函数,则f (-x )=-f (x ). 取x >0,得x 2-2x =-(-x 2+ax ),则a =2. 当x >0时,f ′(x )=-2x +2.∴f ′(2)=-2.4.(2020·全国Ⅲ卷)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1 解析 由f ′(x )=e x (x +a )-e x(x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.5.(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.答案 5x -y +2=0解析 y ′=⎝ ⎛⎭⎪⎪⎫2x -1x +2′=(2x -1)′(x +2)-(2x -1)(x +2)′(x +2)2=5(x +2)2, 所以k =y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.6.(易错题)设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.答案 - 2解析 由f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,得f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,则f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2·cos π2-sin π2,解得f ′⎝ ⎛⎭⎪⎫π2=-1,所以f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.考点一 导数的运算1.下列求导运算不正确的是( ) A.(sin a )′=cos a (a 为常数)B.(sin 2x )′=2cos 2xC.(x )′=12xD.(e x -ln x +2x 2)′=e x -1x +4x 答案 A解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B 、C 、D 正确.2.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.答案 1-1x -2x 2+2x 3解析 由已知f (x )=x -ln x +2x -1x 2.∴f ′(x )=1-1x -2x 2+2x 3.3.设f ′(x )是函数f (x )=cos xe x +x 的导函数,则f ′(0)的值为________. 答案 0 解析 因为f (x )=cos xe x+x , 所以f ′(x )=(cos x )′e x -(e x )′cos x (e x )2+1=-sin x -cos xe x +1, 所以f ′(0)=-1e 0+1=0.4.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x , ∴f ′(x )=2x +3f ′(2)+1x .令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94. ∴f (1)=1+3×1×⎝ ⎛⎭⎪⎫-94+0=-234.感悟提升 1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 考点二 导数的几何意义 角度1 求切线的方程例1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.答案 (1)3x -y =0 (2)x -y -1=0 解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 角度2 求曲线的切点坐标例2 (2022·皖豫名校联考)若曲线y =e x +2x 在其上一点(x 0,y 0)处的切线的斜率为4,则x 0=( ) A.2 B.ln 4 C.ln 2D.-ln 2答案 C解析 ∵y ′=e x +2,∴e x 0+2=4,∴e x 0=2,x 0=ln 2. 角度3 导数与函数图象问题例3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ), ∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.感悟提升 1.求曲线在点P (x 0,y 0)处的切线,则表明P 点是切点,只需求出函数在P 处的导数,然后利用点斜式写出切线方程,若在该点P 处的导数不存在,则切线垂直于x 轴,切线方程为x =x 0.2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.训练1 (1)(2022·沈阳模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A.y =0 B.y =2x C.y =xD.y =-2x(2)(2021·长沙检测)如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=f(x)x,h′(x)是h(x)的导函数,则h′(1)的值是()A.2B.1C.-1D.-3答案(1)B(2)D解析(1)∵f(x)=2e x sin x,∴f(0)=0,f′(x)=2e x(sin x+cos x),∴f′(0)=2,∴所求切线方程为y=2x.(2)由图象知,直线l经过点(1,2).则k+3=2,k=-1,从而f′(1)=-1,且f(1)=2,由h(x)=f(x)x,得h′(x)=xf′(x)-f(x)x2,所以h′(1)=f′(1)-f(1)=-1-2=-3.考点三导数几何意义的应用例4 (1)已知曲线f(x)=x ln x在点(e,f(e))处的切线与曲线y=x2+a相切,则实数a 的值为________.(2)(2022·河南名校联考)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,则实数a的取值范围是________.答案(1)1-e(2)[2,+∞)解析(1)因为f′(x)=ln x+1,所以曲线f(x)=x ln x在x=e处的切线斜率为k=2,又f(e)=e,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切,故可联立⎩⎪⎨⎪⎧y =x 2+a ,y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. (2)∵直线2x -y =0的斜率为k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0. 又4x +1x ≥24x ·1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞).感悟提升 1.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:(1)切点处的导数是切线的斜率;(2)切点在切线上;(3)切点在曲线上.2.利用导数的几何意义求参数范围时,注意化归与转化思想的应用.训练2 (1)(2021·洛阳检测)函数f (x )=ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =( ) A.-1 B.14 C.12D.1(2)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 (1)B (2)1解析 (1)∵f (x )=ln x -ax ,∴f ′(x )=1x -a .又曲线y =f (x )在x =2处切线的斜率k =f ′(2), 因此12-a =a ,∴a =14.(2)y =x 3+ax +b 的导数为y ′=3x 2+a , 可得在点(1,1)处切线的斜率为k =3+a ,又k +1=3,1+a +b =3,解得k =2,a =-1,b =3,即有2a +b =-2+3=1.公切线问题求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,其中直线与抛物线相切可用判别式法. 一、共切点的公切线问题例1 设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +2b (a >0)的图象的公共点,以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为( ) A.23e 34 B.32e 34 C.43e 23D.34e 23答案 D解析 设P (x 0,y 0),由于P 为公共点, 则12x 20+2ax 0=3a 2ln x 0+2b .又点P 处的切线相同,则f ′(x 0)=g ′(x 0), 即x 0+2a =3a 2x 0,即(x 0+3a )(x 0-a )=0.又a >0,x 0>0,则x 0=a ,于是2b =52a 2-3a 2ln a .设h (x )=52x 2-3x 2ln x ,x >0, 则h ′(x )=2x (1-3ln x ).可知:当x ∈(0,e 13)时,h (x )单调递增;当x ∈(e 13,+∞)时,h (x )单调递减. 故h (x )max =h (e 13)=32e 23, 于是b 的最大值为34e 23,选D. 二、切点不同的公切线问题例2 曲线y =-1x (x <0)与曲线y =ln x 的公切线的条数为________. 答案 1解析 设(x 1,y 1)是公切线和曲线y =-1x 的切点, 则切线斜率k 1=⎝ ⎛⎭⎪⎫-1x ′|x =x 1=1x 21,切线方程为y +1x 1=1x 21(x -x 1),整理得y =1x 21·x -2x 1.设(x 2,y 2)是公切线和曲线y =ln x 的切点, 则切线斜率k 2=(ln x )′|x =x 2=1x 2,切线方程为y -ln x 2=1x 2(x -x 2),整理得y =1x 2·x +ln x 2-1.令1x 21=1x 2,-2x 1=ln x 2-1,消去x 2得-2x 1=ln x 21-1.设t =-x 1>0,即2ln t -2t -1=0,只需探究此方程解的个数.易知函数f (x )=2ln x -2x -1在(0,+∞)上单调递增,f (1)=-3<0,f (e)=1-2e >0,于是f (x )=0有唯一解,于是两曲线的公切线的条数为1.1.函数f (x )=x 2+ln x +sin x +1的导函数f ′(x )=( ) A.2x +1x +cos x +1 B.2x -1x +cos x C.2x +1x -cos xD.2x +1x +cos x答案 D解析 由f (x )=x 2+ln x +sin x +1得f ′(x )=2x +1x +cos x . 2.曲线y =x +1x -1在点(3,2)处的切线的斜率是( )A.2B.-2C.12D.-12答案 D解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在点(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12. 3.(2021·安徽皖江名校联考)已知f (x )=x 3+2xf ′(0),则f ′(1)=( ) A.2 B.3C.4D.5答案 B解析 f ′(x )=3x 2+2f ′(0), ∴f ′(0)=2f ′(0),解得f ′(0)=0, ∴f ′(x )=3x 2,∴f ′(1)=3.4.(2022·豫北十校联考)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为( ) A.y =0 B.4x +y +4=0 C.4x -y +4=0 D.y =0或4x +y +4=0 答案 D解析 易知点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,x 20),由f (x )=x 2可得f ′(x )=2x ,∴切线的斜率k =f ′(x 0)=2x 0. ∵切线过点P (-1,0),∴k =x 20x 0+1=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0.5.(2022·昆明诊断)若直线y =ax 与曲线y =ln x -1相切,则a =( ) A.e B.1C.1eD.1e 2答案 D解析 由y =ln x -1,得y ′=1x ,设切点为(x 0,ln x 0-1),则⎩⎨⎧ax 0=ln x 0-1,a =1x 0,解得a =1e 2. 6.已知函数f (x )在R 上可导,其部分图象如图所示,设f (4)-f (2)4-2=a ,则下列不等式正确的是( )A.a <f ′(2)<f ′(4)B.f ′(2)<a <f ′(4)C.f ′(4)<f ′(2)<aD.f ′(2)<f ′(4)<a 答案 B解析 由函数f (x )的图象可知,在[0,+∞)上,函数值的增长越来越快,故该函数图象在[0,+∞)上的切线斜率也越来越大. 因为f (4)-f (2)4-2=a ,所以f ′(2)<a <f ′(4).7.函数f (x )=(2x -1)e x 的图象在点(0,f (0))处的切线的倾斜角为________. 答案 π4解析 由f (x )=(2x -1)e x , 得f ′(x )=(2x +1)e x ,∴f ′(0)=1,则切线的斜率k =1, 又切线倾斜角θ∈[0,π), 因此切线的倾斜角θ=π4.8.已知曲线f (x )=13x 3-x 2-ax +1存在两条斜率为3的切线,则实数a 的取值范围是________. 答案 (-4,+∞) 解析 f ′(x )=x 2-2x -a ,依题意知x 2-2x -a =3有两个实数解, 即a =x 2-2x -3=(x -1)2-4有两个实数解, ∴y =a 与y =(x -1)2-4的图象有两个交点, ∴a >-4.9.(2021·济南检测)曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=________.答案-2解析∵直线l过点(-2,0)和(0,-2),∴直线l的斜率f′(-1)=0+2-2-0=-1,直线l的方程为y=-x-2.则f(-1)=1-2=-1.故f′(-1)+f(-1)=-1-1=-2.10.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)因为f′(x)=3x2-8x+5,所以f′(2)=1,又f(2)=-2,所以曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y -4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),因为f′(x0)=3x20-8x0+5,所以切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),所以x30-4x20+5x0-2=(3x20-8x0+5)·(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,所以经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.11.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)根据题意,得f′(x)=3x2+1.所以曲线y=f(x)在点(2,-6)处的切线的斜率k=f′(2)=13,所以所求的切线方程为13x-y-32=0.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,所以直线l的方程为y=(3x20+1)(x-x0)+x30+x0-16.又直线l过点(0,0),则(3x20+1)(0-x0)+x30+x0-16=0,整理得x30=-8,解得x0=-2,所以y0=(-2)3+(-2)-16=-26,l的斜率k′=13,所以直线l的方程为y=13x,切点坐标为(-2,-26).12.若函数f(x)=a ln x(a∈R)与函数g(x)=x在公共点处有共同的切线,则实数a 的值为()A.4B.12 C.e2 D.e答案 C解析由已知得f′(x)=ax,g′(x)=12x,设切点横坐标为t,∴⎩⎨⎧a ln t=t,at=12t,解得t=e2,a=e2.13.曲线y=x2-ln x上的点到直线x-y-2=0的最短距离是________. 答案 2解析设曲线在点P(x0,y0)(x0>0)处的切线与直线x-y-2=0平行,则y′|x=x0=⎝⎛⎭⎪⎫2x-1x| x=x0=2x0-1x0=1.∴x0=1,y0=1,则P(1,1),则曲线y=x2-ln x上的点到直线x-y-2=0的最短距离d=|1-1-2|12+(-1)2= 2.14.(2021·宜昌质检)已知函数f(x)=1x+1+x+a-1的图象是以点(-1,-1)为对称中心的中心对称图形,g(x)=e x+ax2+bx,若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,求a+b的值.解由y=x+1x的图象关于点(0,0)对称,且y=f(x)的图象可由y=x+1x的图象平移得到,且函数f(x)=1x+1+x+a-1=1x+1+(x+1)+a-2的图象是以点(-1,-1)为对称中心的中心对称图形,得a-2=-1,即a=1,所以f(x)=1x+1+x.对f(x)求导,得f′(x)=1-1(x+1)2,则曲线y=f(x)在点(1,f(1))处的切线斜率k1=f′(1)=1-14=3 4.对g(x)求导,得g′(x)=e x+2x+b,则曲线y=g(x)在点(0,g(0))处的切线斜率k2=g′(0)=b+1.由两曲线的切线互相垂直,得(b+1)×34=-1,即b=-73,所以a+b=1-73=-43.。

最新-2021年高考数学文科一轮复习课件:第2章 函数、导数及其应用22 精品


图象法 先作出函数的图象,再观察其最高点、最低点,求出最值
基本不等 先对解析式变形,使之具备“一正二定三相等”的条件后用
式法
基本不等式求出最值
导数法
先求导,然后求出在给定区间上的极值,最后结合端点值, 求出最值
换元法
对比较复杂的函数可通过换元转化为熟悉的函数,再用相应 的方法求最值
(2)比较大小 比较函数值的大小,应将自变量转化到同一个单调区间内,然 后利用函数的单调性解决. (3)解不等式 在求解与抽象函数有关的不等式时,往往是利用函数的单调性 将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意 函数的定义域. (4)利用单调性求参数 视参数为已知数,依据函数的图象或单调性定义,确定函数的 单调区间,与已知单调区间比较求参数. [提醒] ①若函数在区间[a,b]上单调,则该函数在此区间的 任意子区间上也是单调的;②分段函数的单调性,除注意各段的单 调性外,还要注意衔接点的取值.
答案:2
4.已知函数 f(x)=x|2x-a|(a>0)在区间[2,4]上单调递减,则实 数 a 的值是________.
解析:f(x)=x|2x-a|=x-2xx-2xa-,ax,>a2x≤,a2
(a>0),作出函数图
象(图略)可得该函数的递减区间是a4,a2,所以a4a2≤ ≥24, ,
8. 答案:8
解法二:函数 f(x)=-x+1x的导数为 f′(x)=-1-x12,
易知 f′(x)<0,可得 f(x)在-2,-13上单调递减, 所以 f(x)max=2-12=32.故选 A. 答案:A
悟·技法
函数单调性应用问题的常见类型及解题策略
(1)求函数最值(五种常用方法)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.函数f (x )=(x +2a )(x -a )2的导数为________.[解析]f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).[答案]3(x 2-a 2)2.已知两曲线f (x )=2sin x ,g (x )=a cos x ,x ∈⎝⎛⎭⎫0,π2相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为________.解析:设点P 的横坐标为x 0,则2sin x 0=a cos x 0,(2cos x 0)(-a sin x 0)=-1,所以4sin 2x 0=1.因为x 0∈⎝ ⎛⎭⎪⎫0,π2,所以sin x 0=12,cos x 0=32,所以a =233. 答案:2333.已知f (x )=x (2015+ln x ),f ′(x 0)=2016,则x 0=________.[解析]由题意可知f ′(x )=2015+ln x +x ·1x=2016+ln x .由f ′(x 0)=2016,得ln x 0=0,解得x 0=1.[答案]14.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y=f (x )在点P 处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.答案:x -y -2=05.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.解析:因为f ′(x )=2x +2f ′(1),所以f ′(1)=2+2f ′(1),即f ′(1)=-2.所以f ′(x )=2x -4.所以f ′(0)=-4.答案:-46.若以曲线y =13x 3+bx 2+4x +c (c 为常数)上任意一点为切点的切线的斜率恒为非负数,则实数b 的取值范围为________.解析:y ′=x 2+2bx +4,因为y ′≥0恒成立,所以Δ=4b 2-16≤0,所以-2≤b ≤2. 答案:[-2,2]7.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝⎛⎭⎫π2sin x +cos x ,则f ′⎝⎛⎭⎫π4=________. 解析:因为f (x )=f ′⎝ ⎛⎪⎫π2sin x +cos x , 所以f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x , 所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2,即f ′⎝ ⎛⎭⎪⎫π2=-1, 所以f ′(x )=-sin x -cos x ,故f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2. 答案:- 28.若直线l 与幂函数y =x n 的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,所以2n =8,所以n =3,所以y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).所以y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=09.已知函数f (x )=e x +a e x (a ∈R ,e 为自然对数的底数)的导函数f ′(x )是奇函数,若曲线y =f (x )在(x 0,f (x 0))处的切线与直线2x +y +1=0垂直,则x 0=________.解析:由题意知f ′(x )=e x -a ·e -x ,因为f ′(x )为奇函数,所以f ′(0)=1-a =0,所以a =1,故f ′(x )=e x -e -x .因为曲线y =f (x )在(x 0,f (x 0))处的切线与直线2x +y +1=0垂直,所以f ′(x 0)=e x 0-e -x 0=22,解得e x 0=2,所以x 0=ln 2=ln 22. 答案:ln 2210.求下列函数的导数.(1)y =(2x 2+3)(3x -2);(2)y =(1-x )⎝⎛⎭⎫1+1x ; (3)y =3x e x -2x +e.解:(1)因为y =6x 3-4x 2+9x -6,所以y ′=18x 2-8x +9.(2)因为y =(1-x )⎝⎛⎭⎫1+1x =1x -x =x -12-x 12, 所以y ′=(x -12)′-(x 12)′=-12x -32-12x -12. (3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln3)·e x +3x e x -2x ln2=(ln3+1)·(3e)x -2x ln2.11.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于P 的直线方程.解:(1)由f (x )=x 3-3x ,得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,所以所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3.又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1, 又x 30-3x 0+2x 0-1=3x 20-3,即x 30-3x 0+2=3(x 20-1)(x 0-1),解得x 0=1(舍去)或x 0=-12, 故所求直线的斜率为k =3×⎝⎛⎭⎫14-1=-94, 所以y -(-2)=-94(x -1),即9x +4y -1=0.1.已知函数f (x )=x (x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________.解析:f ′(x )=(x -1)(x -2)(x -3)(x -4)(x -5)+x [(x -1)(x -2)(x -3)(x -4)(x -5)]′, 所以f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120.答案:-1202.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为________.解析:因为f ′(x )=1x, 所以直线l 的斜率为k =f ′(1)=1,又f (1)=0,所以切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 答案:-23.设P 是函数y =x (x +1)图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是________.解析:因为y ′=12x -12(x +1)+x =3x 2+12x ≥234=3,设点P (x ,y )(x >0), 则在点P 处的切线的斜率k ≥3,所以tan θ≥3, 又θ∈[0,π),故θ∈⎣⎢⎡⎭⎪⎫π3,π2. 答案:⎣⎡⎭⎫π3,π24.记定义在R 上的函数y =f (x )的导函数为f ′(x ).如果存在x 0∈[a ,b ],使得f (b )-f (a )=f ′(x 0)(b -a )成立,则称x 0为函数f (x )在区间[a ,b ]上的“中值点”,那么函数f (x )=x 3-3x 在区间[-2,2]上“中值点”的个数为________.解析:f (2)=2,f (-2)=-2,f (2)-f (-2)2-(-2)=1, 由f ′(x )=3x 2-3=1,得x =±233∈[-2,2],故有2个. 答案:25.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k 的值,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)f ′(x )=3ax 2+6x -6a ,f ′(-1)=0,即3a -6-6a =0,所以a =-2.(2)存在.因为直线m 恒过定点(0,9),直线m 是曲线y =g (x )的切线,设切点为(x 0,3x 20+6x 0+12),因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将点(0,9)代入,得x 0=±1,当x 0=-1时,切线方程为y =9;当x 0=1时,切线方程为y =12x +9.由f ′(x )=0,得-6x 2+6x +12=0,即有x =-1或x =2,当x =-1时,y =f (x )的切线方程为y =-18;当x=2时,y=f(x)的切线方程为y=9.所以公切线是y=9.又令f′(x)=12,得-6x2+6x+12=12,所以x=0或x=1.当x=0时,y=f(x)的切线方程为y=12x-11;当x=1时,y=f(x)的切线方程为y=12x-10,所以公切线不是y=12x+9.综上所述,公切线是y=9,此时k=0.。

相关文档
最新文档