显卡供电电路和工作原理(借鉴实操)
图解cpu,内存,显示卡供电图文教程

CPU 内存显卡供电CPU、内存、显卡这三大配件直接决定了整机的性能表现,我们所购买的主板是否能够为这三大配件提供充足稳定的供电环境,也就成为了一个相当重要的因素。
CPU的供电电路通常是由电容、电感线圈、场效应管(MOSFET管)这三大部分所组成。
除了能够为CPU提供更加纯净稳定的电流之外,还起到了降压限流的作用,以此来保证CPU的正常工作。
现在最常见的组合方案是由“N颗电容+1个电感线圈+N个场效应管”组成一个相对独立的单相供电电路(图1),这样的组成通常会在CPU供电部分出现2~4次,也就因此出现了两相供电、三相供电甚至是四相供电。
CPU供电图分解由于现在主流CPU的功耗过高,所以CPU供电电路采用多相供电是降低主板内阻及发热量的有效途径,少数主板甚至在场效应管上安装散热片,也是为了保证CPU供电电路的稳定运行。
虽然三相或两相电源并不完全决定CPU供电电路的好坏(比如说华硕主板很多都采用了两相电源),但对于大多数二三线主板厂商的产品来说,三相确实要比两相电源优秀了许多。
此主题相关图片如下:单相供电电路组成部分中国IT芯片级维修联盟 更多资料中国IT 芯片级维修联盟 更多资料在单相供电电路中,电容和电感线圈的规格越高以及场效应管的数量越多,就代表了供电电路的品质越好。
一般情况下,日系的SANY(三洋)、Rubycon(红宝石)、KZG 电容比较优秀(图2),台系的TAIC ON 、OST 、TEAPO 、CAPXON 等品牌的电容也可以考虑。
少数高端的超频版主板还会采用化学稳定性极好的固态电容(图3),彻底杜绝了电容爆浆现象的发生此主题相关图片如下:日系电容和固态电容至于电感线圈的辨别也颇为困难,有些主板采用的线圈线径很细,绕组很多的电感线圈。
有些则采用了绕线圈数较少,线径很粗的线圈(图4)。
线径很粗的线圈采用的是高导磁率、不易饱和的新型磁芯,所以不需要很多的绕线圈数就可以得到足够的磁通量,因此也被越来越多的主板生产商所采用。
显卡结构及工作原理详细解读

什么是显卡?显卡的工作非常复杂,但其原理和部件很容易理解。
在本文中,我们先来了解显卡的基本部件和它们的作用。
此外,我们还将考察那些共同发挥作用以使显卡能够快速、高效工作的因素。
显示卡(videocard)是系统必备的装置,它负责将CPU送来的影像资料(data)处理成显示器(monitor)可以了解的格式,再送到显示屏(screen)上形成影像。
它是我们从电脑获取资讯最重要的管道。
因此显示卡及显示器是电脑最重要的部份之一。
我们在监视器上看到的图像是由很多个小点组成的,这些小点称为“像素”。
在最常用的分辨率设置下,屏幕显示一百多万个像素,电脑必须决定如何处理每个像素,以便生成图像。
为此,它需要一位“翻译”,负责从CPU获得二进制数据,然后将这些数据转换成人眼可以看到的图像。
除非电脑的主板内置了图形功能,否则这一转换是在显卡上进行的。
我们都知道,计算机是二进制的,也就是0和1,但是总不见的直接在显示器上输出0和1,所以就有了显卡,将这些0和1转换成图像显示出来。
显卡的基本原理显卡的主要部件是:主板连接设备、监视器连接设备、处理器和内存。
不同显卡的工作原理基本相同CPU与软件应用程序协同工作,以便将有关图像的信息发送到显卡。
显卡决定如何使用屏幕上的像素来生成图像。
之后,它通过线缆将这些信息发送到监视器。
显卡的演变自从IBM于1981年推出第一块显卡以来,显卡已经有了很大改进。
第一块显卡称为单色显示适配器(MDA),只能在黑色屏幕上显示绿色或白色文本。
而现在,新型显卡的最低标准是视频图形阵列(VGA),它能显示256种颜色。
通过像量子扩展图矩阵(QuantumExtendedGraphicsArray,QXGA)这样的高性能标准,显卡可以在最高达2040x1536像素的分辨率下显示数百万种颜色。
根据二进制数据生成图像是一个很费力的过程。
为了生成三维图像,显卡首先要用直线创建一个线框。
然后,它对图像进行光栅化处理(填充剩余的像素)。
显卡工作原理

显卡工作原理认识显卡!浅析显卡及显卡工作原理纵观计算机诞生到如今所度过的60年时间我们不难发现计算机的发展速度是非常惊人的,很多网友会发现自己在一两年之前买的电脑到此时可能已经到了面临过时的境地。
伴随着计算机高速发展所带给我们的是计算机硬件制造工艺地不断提升、性能的突飞猛进和更加节能环保的设计。
但是不论计算机技术如何发展都离不开构成计算机所必须的几大硬件,就拿显卡来说,经过多年的发展显卡已经越来越受到人们的关注,而直接关系到显卡性能的显示核心GPU也第一次到达和CPU同样重要的位置。
目前AMD和NV分别发布了自己最高端的HD4870X2和GTX295显卡,这两张卡虽然代表了目前显卡的最高水平,但是无论它们如何高端,其工作原理和发展基础都是在显卡的基本原理上发展而来的。
显卡技术虽然在不断地发展,但是了解显卡的基本知识与工作原理相信无论是对于我们对显卡的清晰认识还是对今后购买显卡都有一定的帮助,为此我们PConline就为大家准备了一篇有关显卡与显卡工作原理有关的文章供大家参考。
什么是显卡显卡的工作非常复杂,但其原理和部件很容易理解。
在本文中,我们先来了解显卡的基本部件和它们的作用。
此外,我们还将考察那些共同发挥作用以使显卡能够快速、高效工作的因素。
显示卡(videocard)是系统必备的装置,它负责将CPU送来的影像资料(data)处理成显示器(monitor)可以了解的格式,再送到显示屏(screen)上形成影像。
它是我们从电脑获取资讯最重要的管道。
因此显示卡及显示器是电脑最重要的部份之一。
我们在监视器上看到的图像是由很多个小点组成的,这些小点称为“像素”。
在最常用的分辨率设置下,屏幕显示一百多万个像素,电脑必须决定如何处理每个像素,以便生成图像。
为此,它需要一位“翻译”,负责从CPU获得二进制数据,然后将这些数据转换成人眼可以看到的图像。
除非电脑的主板内置了图形功能,否则这一转换是在显卡上进行的。
显卡结构及工作原理详细解读

显卡的工作非常复杂,但其原理和部件很容易理解。
在本文中,我们先来了解显卡的基本部件和它们的作用。
此外,我们还将考察那些共同发挥作用以使显卡能够快速、高效工作的因素。
显示卡(videocard)是系统必备的装置,它负责将CPU送来的影像资料(data)处理成显示器(monitor)可以了解的格式,再送到显示屏(screen)上形成影像。
它是我们从电脑获取资讯最重要的管道。
因此显示卡及显示器是电脑最重要的部份之一。
我们在监视器上看到的图像是由很多个小点组成的,这些小点称为“像素”。
在最常用的分辨率设置下,屏幕显示一百多万个像素,电脑必须决定如何处理每个像素,以便生成图像。
为此,它需要一位“翻译”,负责从CPU 获得二进制数据,然后将这些数据转换成人眼可以看到的图像。
除非电脑的主板内置了图形功能,否则这一转换是在显卡上进行的。
我们都知道,计算机是二进制的,也就是0和1,但是总不见的直接在显示器上输出0和1,所以就有了显卡,将这些0和1转换成图像显示出来。
显卡的基本原理显卡的主要部件是:主板连接设备、监视器连接设备、处理器和内存。
不同显卡的工作原理基本相同CPU与软件应用程序协同工作,以便将有关图像的信息发送到显卡。
显卡决定如何使用屏幕上的像素来生成图像。
之后,它通过线缆将这些信息发送到监视器。
显卡的演变自从IBM于1981年推出第一块显卡以来,显卡已经有了很大改进。
第一块显卡称为单色显示适配器(MDA),只能在黑色屏幕上显示绿色或白色文本。
而现在,新型显卡的最低标准是视频图形阵列(VGA),它能显示256种颜色。
通过像量子扩展图矩阵(QuantumExtendedGraphicsArray,QXGA)这样的高性能标准,显卡可以在最高达2040x1536像素的分辨率下显示数百万种颜色。
根据二进制数据生成图像是一个很费力的过程。
为了生成三维图像,显卡首先要用直线创建一个线框。
然后,它对图像进行光栅化处理(填充剩余的像素)。
显卡供电系统的构成和原理

显卡供电系统的构成和原理显卡供电系统的构成和原理引导语:显卡接在电脑主板上,它将电脑的数字信号转换成模拟信号让显示器显示出来,同时显卡还是有图像处理能力,可协助CPU 工作,提高整体的运行速度。
以下是店铺整理的显卡供电系统的构成和原理,欢迎参考阅读!显卡如何给GPU供电——显卡供电系统说白了,显卡GPU运行所需要的就是合适的电压和电流,而显卡的供电系统的主要作用就是通过调压、稳压以及滤波等工作,让GPU 获得稳定、纯净及大小适中的电压和电流。
接下来看看,供电部分都是哪些元件起到完成相关工作的作用。
首先我们需要对供电系统有个全局性的了解:显卡上应用的供电系统分为三种,分别是三端稳压电路、场效应管稳压电路及开关电路,这三种电路的工作模式都是采取降压工作模式,即输出电压总是低于输入电压。
1、场效应管稳压电路场效应管稳压电路也是一种很早便出现在显卡上的供电系统,这种供电系统主要由信号驱动芯片以及MosFET组成。
该电路系统有着反应速度快、输出纹波小、工作噪声低等优点,并且成本较低,但场效应管稳压电路的转换效率较低而且发热量巨大,不利于产品的功耗和温度控制,因此其多用在显存的供电电路上,而且主要是低端显卡产品所采用,随着科技的进步,这种供电系统已经淡出大家视野了。
2、三端稳压供电芯片三端稳压电路同样历史悠久,也是一种比较简单的显卡供电系统。
该电路仅需要一个集成稳压器即可工作,但可提供的电流很小,不适合用在大负载设备上,像GPU这种对电流电压要求较高的元件无法被其所带动,因此在现在的显卡上主要用途是对DAC电路或者接口进行供电。
3、开关电路系统开关电路系统也是目前应用最广泛的显卡供电系统。
对于GPU来说,前两种供电系统显然满足不了它的高负载需求,所以显卡制造商们采用的是更为先进的开关电路。
开关电路是控制开关管开通和关断的时间和比率,维持稳定输出电压的一种供电系统,主要由电容、电感线圈、MosFET场效应管以及PWM脉冲宽度调制IC组成。
详解显卡供电原理

详解显卡供电原理测试6800U SLI系统,平台采用某国内知名大厂生产的480W服务器电源。
开机、自检、进入桌面、运行软件都没有任何问题,但在3D测试过程中突然黑屏,系统自动重启之后连进入BIOS都花屏,最后发现SLI系统中一块主显卡已经烧毁。
或许您认为笔者是危言耸听, 480W的功率应付两块6800U显卡应该没啥问题,但它确实是因电源而烧毁,这究竟是什么原因呢?无论CPU还是显示芯片,为了获得更高的性能必须付出相应的代价,那就是功耗。
如果显卡供电不足,那么在3D渲染时功耗过大导致电源不堪重负,轻则显卡的性能受制、超频能力受限,重则死机、黑屏、断电甚至烧毁显卡和电源。
要了解这些内容,必须从当今主流显卡的供电方案谈起……AGP供电特点分析——力不从心AGP(Accelerated Graphics Port)加速图形端口是在PCI图形接口的基础上发展而来的,自1997年问世以来就伴随着显卡进入高速发展阶段,多年来经历了数次版本更新,虽然新一代的接班人PCIE 接口无论从哪个方面来说都具有很大的优势,但是经典的AGP接口依然宝刀未老,即便是顶级显卡也丝毫不敢马虎,为了考虑兼容性“脚踏两条船”的现象非常普遍。
主板AGP8X插槽显卡AGP8X接口AGP显卡的供电其实和内存/PCI扩展卡相同,都是从金手指的部分针脚处取电。
早期的显卡以及目前的中低端显卡都是按照预先设计好的供电方案,通过针脚上的几种输入电压来选择。
按照下图所示的最新AGP 3.0标准,简单将几者相加就知道AGP接口所能提供的最高功率为46W。
但46W这只是理论上的极限值,实际AGP所能提供的最大功率远达不到,AGP3.0(AGP8X)标准当中对几路供电针脚最大输入电流的做了严格的定义,下面逐一进行介绍:AGP接口各路输入详解:Vddq为显卡的输入输出接口供电,电压1.5V,这也就是通常所说的AGP电压,也可以称之为AGP总线的供电电压。
以超频为卖点的主板BIOS当中能够对AGP加压。
显卡的结构及工作原理

显卡的结构及工作原理显卡的结构和工作原理显卡是目前大家最为关注的电脑配件之一了,他的性能好坏直接关系到显示性能的好坏及图像表现力的优劣等等。
然而许多初学者对显卡这个东西并不是十分了解的,下面笔者搜集了一批资料并以图解的形式对显卡结构做一简单的介绍,希望你看后能对显卡有一定的了解。
显卡的基本结构显卡的主要部件包括:显示芯片,显示内存,RAMDAC等。
显示芯片:一般来说显卡上最大的芯片就是显示芯片,显示芯片的质量高低直接决定了显示卡的优劣,作为处理数据的核心部件,显示芯片可以说是显示卡上的CPU,一般的显示卡大多采用单芯片设计,而专业显卡则往往采用多个显示芯片。
由于3D浪潮席卷全球,很多厂家已经开始在非专业显卡上采用多芯片的制造技术,以求全面提高显卡速度和档次。
显示内存:与系统主内存一样,显示内存同样也是用来进行数据存放的,不过储存的只是图像数据而已,我们都知道主内存容量越大,存储数据速度就越快,整机性能就越高。
同样道理,显存的大小也直接决定了显卡的整体性能,显存容量越大,分辨率就越高。
一:结构--全面了解显示卡(一)一.图解显示卡。
1.线路板。
显卡的线路板是显卡的母体,显卡上的所有元器件必须以此为生。
目前显卡的线路板一般采用的是6层PCB线路板或4层PCB线路板,如果再薄,那么这款显卡的性能及稳定性将大打折扣。
另外,大家可看见显卡的下面有一组“金手指”(显示卡接口),它有ISA/PCI/AGP等规范,它是用来将显卡插入主板上的显卡插槽内的。
当然,为了让显卡和主机更好的固定,显卡上需要有一块固定片;为了让显卡和显示器及电视等输入输出设备相连,各种信号输出输入接口也是必不可少的。
2.显卡上常见的元器件。
现在的显卡随着技术上的进步,其采用的元器件是越来越少越来越小巧。
下面我们给大家介绍几种显卡上常见的元器件。
a.主芯片:主芯片是显示卡的灵魂。
可以说采用何种主显示芯片便决定了这款显示卡性能上的高低。
目前常见的显卡主芯片主要有nVidia系列及ATI系列等等,如Geforce2 GTS,Geforce2 MX,Geforce3,ATI Radeon等。
简单制作显卡供电线

简单制作显卡供电线
对于显卡的没有供电的卡,我想大家都比较烦恼,本人制作了一个简单的小工具,可以解决此问题。
其实很简单,根据PCI-E 插槽的定义,只有前面一段是供电
拆个废主板的电源插槽,把绿线和黑线短接起来,把12V 、3V 、接地,3根线分别焊接导线引出来,注意绝缘。
中
国主板维修基地
月饼原创
另一端拆一个废板的PCIE 1X 的槽,把右边割个缺口,不然无法插入PCIE 卡。
防呆口右边部分的弹片也去掉。
按照PCIE 定义图,把12V ,3V,地线,分别小心的连接到电源头,并且用铁丝等硬物捆绑,胶带缠绕固定,这样比较牢固。
最好是把PCIE 1X 槽的脚位部分用热熔胶固定,更结实!
连接好后,记得要测试一下是否接错,是否短路等。
接下来就可以把显卡插上了
最后插上电源,打开电源的开关,就可以直接给显卡通电,方便的测量供电电路了~~~
中
国主板维修基地
月饼原创
电路接线原理图来了
欣赏更多山寨货。
哈哈 睡觉掉下床 的:
AGP 的我也做好了,加了个指示灯。
做法和PCIE 类似,只要找准了供电12V,5V,3.3V ,接
中
国主板维修基地
月饼原创
地。
VDDQ 不需要哦~~
\
中
国主板维修基地
月饼原创
论坛帖子参参见:/thread-142590-1-1.html
中
国主板维修基地
月饼原创。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
虽然显卡的工作原理非常复杂,但是它的原理和部件倒是很容易理解。
数据离开CPU,必须经过4个步骤,才会到达显示屏上。
1.从PCI bus进入GPU——将CPU送来的数据送到GPU里面进行处理。
2.从GPU进入显存——将芯片处理完的数据送到显存。
3.从显存进入DAC——由显存读取出数据再送到RAMDAC(随机读写存储数模转换器),RAMDAC的作用是将数字信号转换成模拟信号。
4.从DAC进入显示器——将转换完的模拟信号送到显示屏。
下面扯显卡的供电电路。
绝大多数显卡是由主板上的AGP/pcie插槽供电的,没有电池来供应所需的工作电能,而是由显卡上的金手指通过主板的插槽和电源的+12V 6pin接口等来获得所需的电量。
原本打算把AGP插槽的供电定义发上来,但考虑到已经不合实际情况,故作罢。
PCIE插槽的定义:靠近CPU的那一组触点为A组,对面为B组,由主板的I/O 芯片往南桥方向数,每一边各有82个触点。
+12V供电:A2,A3,B1,B2,B3
+3.3V:A9,A10,B8
+3.3Vaux:B10
PCIE显卡没有+5V供电。
显卡的供电无论是通过主板进入,还会是直接外接电源进入,都不可能正好符合显卡各种芯片正常工作的电压值。
超过频的都知道,GPU的核心供电是
0.9~1.6V,显存供电是1.5~3.3V,接口部分有的需要3.3v,有的需要+5V,各不相同,于是这就涉及到显卡上直流电源模块设计的问题。
直流电源模块的基本工作原理:无论输入端的电压怎么变化,它都能输出一个相对稳定的预先设计的较为平滑的电压值,并可以带动一定的负载。
显卡上的直流电源供电模块主要有三大类:三端稳压;场效应管线性降压和开关电源稳压方式。
他们的工作模式都是采取降压工作模式,即输出电压总是低于输入电压。
1.三端稳压供电方式
这是显卡中相对较简单的一种供电方式,采用的集成电路主要有1117,7805等。
这种方式虽然较简单,但是提供的电流很小。
一般DAC电路和接口部分的电路供
电采用这种方式。
图上这玩意儿就是7805,1脚输入,2脚接地,3脚输出的电压即为5V。
箭头方向从右往左分别为1,2,3脚。
2.场效应管线性降压方式
一般低端显卡的显存供电采用MOS管线性降压供电方式。
N沟道MOS管特性:G 极电压越高,D——S导通程度越强。
不同MOS管的具体引脚数据可以通过型号
查阅相关PDF得到。
最右边的芯片APW7067N发出信号驱动两个MOS管的G极,使电压降到可以给显存供电。
3.开关电源方式
显卡的核心供电和高端显卡的显存供电采用开关电源方式。
对于GPU来说,由于耗电量和性能不断提升,使得前面介绍的两种供电方法已经满足不了饥渴的GPU 了,如果采用前两种方式供电,GPU必然会死机。
开关电源是利用现代电子技术,控制开关管开通和关断的时间和比率,维持稳定输出电压的一种电源。
开关电源一般由脉冲宽度调制(PWM)IC和场效应管构成。
传统的PWM+MOS+电感+电容组成的开关电源供电图:
找张图来冒充一下,实际原理一样。
看下面那张图:芯片ICS5301为PWM主控芯片,Q1,Q3,Q5我们管它叫上桥,Q2,Q4,Q6我们管它叫下桥,当PWM芯片工作条件满足之后,控制上桥下桥轮流工作为C17~24,C25~32充电,当电容充满电之后暂停对电容的供电,由电容Vcore向GPU供电,电压一有下降,立马打开 MOS管,继续对电容供电,充满电之后继续关断由电容对GPU供电……对说简单点,就是把电容当做电池向GPU
供电,因为“电池”的工作电压相对较稳定。
注意!这个过程相当相当快,这也就是为什么许多显卡喜欢采用固态电容甚至钽电容的原因。
不是因为它们容量大,也不是因为它们不会爆炸,而是因为它们的高频特性好,至少——短时间充放电几万次不成问题。
同时这也是为什么有的显卡的供电也要加散热的原因。