实数知识点、典型例题及练习题单元复习
实数知识点及典型例题

实数知识点及典型例题一、实数知识点。
(一)实数的分类。
1. 有理数。
- 整数:正整数、0、负整数统称为整数。
例如:5,0,-3。
- 分数:正分数、负分数统称为分数。
分数都可以表示为有限小数或无限循环小数。
例如:(1)/(2)=0.5,(1)/(3)=0.333·s。
- 有理数:整数和分数统称为有理数。
2. 无理数。
- 无理数是无限不循环小数。
例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。
3. 实数。
- 有理数和无理数统称为实数。
(二)实数的相关概念。
1. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 实数与数轴上的点是一一对应的关系。
2. 相反数。
- 只有符号不同的两个数叫做互为相反数。
a的相反数是-a,0的相反数是0。
例如:3与-3互为相反数。
- 若a、b互为相反数,则a + b=0。
3. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。
例如:| 5| = 5,| -3|=3。
4. 倒数。
- 乘积为1的两个数互为倒数。
a(a≠0)的倒数是(1)/(a)。
例如:2的倒数是(1)/(2)。
(三)实数的运算。
1. 运算法则。
- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。
2. 运算律。
- 加法交换律:a + b=b + a。
- 加法结合律:(a + b)+c=a+(b + c)。
- 乘法交换律:ab = ba。
初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
实数知识点及例题

实数习题集【知识要点】1.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数0;1=ab 没有倒数.5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2±a . 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.实数易错题分类汇总典型例题一:计算1.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是【答案】-1 2. ()()212321-+-+⎪⎭⎫ ⎝⎛--π的值为【答案】13.下列计算中,正确的是( )A .020= B .2a a a =+C3=±D .623)(a a =【答案】D4.下列运算正确的是( )A .1331-÷= Ba = C .3.14 3.14ππ-=- D .326211()24a b a b =典型例题二:估算 1.82cm 接近于( )实数有理数无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数)正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<aA .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 【答案】C2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D典型例题三:应用题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人【答案】B.2.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 【注:销售利润率=(售价—进价)÷进价】 【答案】40%典型例题四:信息与推断题1.观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 2.观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 3.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C4.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C . 【答案】210典型例题五:比较大小10 -1 a b B A1. 31.0与1.02.331与213. 215--与-2 4. 2003-2002与2002-2001作业:设2的整数部分为a ,小数部分为b ,则1+2a b -2b =第三讲 平移、旋转与对称专题例题精讲1. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31), D .(40),随堂练习1下列四张扑克牌图案,属于中心对称的是( ).2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个例题精讲2将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。
实数知识点总结及典型例题练习

实数知识点总结考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现) 考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 -a (a <0) ;注意a 的双重非负性:a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
实数知识点及例题

实数知识点及例题一、实数的概念实数是有理数和无理数的总称。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数。
例如,π(圆周率)、根号 2 等都是无理数。
而像 3、-5、025 等则是有理数。
二、实数的分类1、按定义分类:有理数:整数和分数。
无理数:无限不循环小数。
2、按性质分类:正实数:大于 0 的实数,包括正有理数和正无理数。
负实数:小于 0 的实数,包括负有理数和负无理数。
三、实数的基本性质1、实数的有序性:任意两个实数 a 和 b,必定有 a > b、a = b 或a <b 三种关系之一成立。
2、实数的稠密性:两个不相等的实数之间总有另一个实数存在。
3、实数的四则运算:实数的加、减、乘、除(除数不为 0)运算满足相应的运算律。
四、数轴数轴是规定了原点、正方向和单位长度的直线。
实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
例如,在数轴上表示 2 的点在原点右侧距离原点 2 个单位长度。
五、绝对值实数 a 的绝对值记作|a|,定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a。
绝对值的性质:1、|a| ≥ 0,即绝对值是非负的。
2、若|a| =|b|,则 a = ±b。
例如,|3| = 3,|-5| = 5。
六、相反数实数 a 的相反数是 a,它们的和为 0,即 a +(a) = 0。
例如,5 的相反数是-5,它们的和为 0。
若两个实数的乘积为 1,则这两个数互为倒数。
非零实数 a 的倒数是 1/a。
例如,2 的倒数是 1/2,-3 的倒数是-1/3。
八、实数的运算1、加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2、减法法则:减去一个数,等于加上这个数的相反数。
3、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
实数知识点总结及练习题

复习:实数知识点总结一、平方根:如果a x =2,那么x 叫做a 的平方根(或二次方根)。
记作a x ±=性质:(1)平方根号里的数是非负数,即0≥a(2)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
例 1、36的平方根是 ;16的算术平方根是 .2、如果102=x ,则x 是一个 数,x 的整数部分是 .3、=22 ,()23-= ,213= ,()=-225 ,20= , 综上所述,=2a .4、()=29 ,()=236 ,()=⎪⎭⎫ ⎝⎛-227 ,()=20 , 综上所述,()=2a .二、立方根:如果a x =3,那么x 叫做a 的立方根(或三次方根)。
记作3a x =性质:(1)立方根号里的数是任意实数(2)任意实数的立方根只有一个,且符号相同例 1、8的立方根是 ;327-= .2、=-3343 ,=-3343 ,则33433a3、37-的相反数是 .4、=33a ,()=33a .三、实数分类⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧ 0无限不循环小数负无理数正无理数无理数无限不循环小数有限小数或负分数正分数分数负整数正整数整数有理数实数说明:(1)实数与数轴上的点一一对应。
(2)相反数:a ,b 是实数且互为相反数b a b a -==+⇔,0(3)绝对值:设a 表示一个实数,则⎪⎩⎪⎨⎧<-=>=时当时当时当0 000 a a a a a a例 1、把下列各数分别填入相应的集合里:()2,2,3.0,1010010001.0,125,722,0,123-----•π 有理数集合:{ };无理数集合:{ };负实数集合:{ };2、2-的绝对值是,11-的绝对值是 .3+的相反数是,-的相反数的绝对值是 .4、计算:22322+-测试题:一、选择题:1、实数38 2π 34 310 25 其中无理数有()A 、 1个B 、 2个C 、 3个D 、 4个2、如果162=x ,则的值是()A 、 4B 、 -4C 、 4±D 、 2±3、下列说法正确的是()A 、 25的平方根是5B 、22-的算术平方根是2C 、 8.0的立方根是2.0D 、65是3625的一个平方根 4、下列说法其中错误的有( )个⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数⑷两个无理数的和还是无理数 (5)两个无理数的积还是无理数A 、 3B 、 1C 、 4D 、 25、如果x x -=2成立的条件是()A 、0≥xB 、0≤xC 、0>xD 、0<x6、下列说法错误的是()A 、2a 与2)(a -相等 B 、a 与a -互为相反数C 、3a 与3a -是互为相反数D 、a 与a -相等 7、b a ,的位置如图所示,则下列各式中有意义的是( ).A 、b a +B 、b a -C 、abD 、a b - 8、16的平方根是( ) A. 4 B. -4 C. 4± D. 2±9、下列说法:① 任意一个数都有两个平方根; ② 3的平方根是3的算术平方根 ; ③ -125的立方根是5±; ④23是一个分数; ⑤ 32-无意义。
七年级下册实数知识点概括及常见题目

七年级下册实数知识点概括及常见题目
一、知识点概括
1.实数的概念
实数是包括有理数和无理数的数的集合,它们可以表示在数轴
上的位置。
实数具有加法、减法、乘法和除法等运算规则。
2.有理数
有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、正分数和负分数。
有理数之间可以进行加减乘除运算,还可以
比较大小。
3.无理数
无理数是不能表示为两个整数之比的数,它们的十进制表示是
无限不循环的小数。
无理数包括根号2、根号3等。
4.实数的分布
实数可以在数轴上表示出来,正数在右侧,负数在左侧。
实数
之间可以进行大小比较。
二、常见题目
以下是七年级下册实数部分常见的题目类型:
1.判断题:给出一个数,判断它是有理数还是无理数。
2.计算运算结果:计算两个实数的和、差、积、商。
3.比较大小:给出两个实数,判断它们的大小关系。
4.补全数轴:给出数轴上的几个点,补全数轴上其它的实数点。
5.排序实数:给出几个实数,按大小顺序排列它们。
6.选择题:根据题目描述选择符合条件的实数。
以上是七年级下册实数知识点的概括及常见题目类型。
通过熟
练掌握这些知识点和题目类型,可以提高对实数的理解和应用能力。
实数_知识点+题型归纳

第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。
数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。
数a的相反数是-a。
正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。
2.绝对值:表示点到原点的距离,数a的绝对值为3.倒数:乘积为1的两个数互为倒数。
非0实数a的倒数为 . 0没有倒数。
4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1.三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。
数a的平方根记作(a>=0)特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。
负数没有平方根。
正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。
开平方:求一个数的平方根的运算,叫做开平方。
2.立方根:如果一个数的立方等于a,则称这个数为a立方根。
数a的立方根用表示。
任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。
开立方:求一个数的立方根(三次方根)的运算,叫做开立方。
四、实数的运算有理数的加法法则:a)同号两数相加,取相同的符号,并把绝对值相加;b)异号两数相加。
绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。
2.有理数的减法法则:减去一个数等于加上这个数的相反数。
3.乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.b)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c)几个数相乘,只要有一个因数为0,积就为04.有理数除法法则:a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章《实数》知识点总结及典型例题练习题
一、平方根
1. 平方根的含义
如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
即a x =2
,x 叫做a 的平方根。
2.平方根的性质与表示 ⑴表示:正数a 的平方根用a ±
表示,a 叫做正平方根,也称为算术平方
根,a -叫做a 的负平方根。
⑵一个正数有两个平方根:a ±
(根指数2省略)
0有一个平方根,为0,记作00= ,负数没有平方根 ⑶平方与开平方互为逆运算
开平方:求一个数a 的平方根的运算。
a a =2
==⎩
⎨⎧-a a
00<≥a a
()a a =2
(0≥a )
⑷a 的双重非负性:0≥a 且0≥a (应用较广) 例:y x x =-+-44 得知0,4==y x
⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地
向右或向左移动一位。
区分:4的平方根为____ 4的平方根为____ ____4=4开平方
后,得____
3.计算a 的方法⎪⎪⎪⎩⎪
⎪
⎪
⎨⎧精确到某位小数
=非完全平方类 =完全平方类 773294
*若0>>b a ,则b a >
二、立方根和开立方
1.立方根的定义
如果一个数的立方等于a ,呢么这个数叫做a 的立方根,记作3a
2. 立方根的性质
任何实数都有唯一确定的立方根。
正数的立方根是一个正数。
负数的立方根是一个负数。
0的立方根是0. 3. 开立方与立方
开立方:求一个数的立方根的运算。
()a a =3
3
a a =3
3 33a a -=- (a 取任何数)
这说明三次根号内的负号可以移到根号外面。
*0的平方根和立方根都是0本身。
三、推广: n 次方根
1. 如果一个数的n 次方(n 是大于1的整数)等于a ,这个数就叫做a 的n 次方根。
当n 为奇数时,这个数叫做a 的奇次方根。
当n 为偶数时,这个数叫做a 的偶次方根。
2. 正数的偶次方根有两个。
n a ± 0的偶次方根为0。
00=n 负数没有偶次方根。
正数的奇次方根为正。
0的奇次方根为0。
负数的奇次方根为负。
例1.已知实数a 、b 、c 满足,2|a-1|
2
)2
1(-c =0,,求a+b+c 的值.
例2.若111--+-=x x y ,求x,y 的值。
例3.若312-a 和331b -互为相反数,求b
a
的值。
跟踪练习: 1.522y 2++-+-=x x x ,求x y 的平方根和算术平方根。
3.若0|2|1=-++y x ,求x+y 的值。
实战演练:一、填空
1.如果162
=x ,那么_____=x ;
2.144的平方根是______,64的立方根是_______;
3.
_____2516=±
,_____814
=-,____104
=,
_____106=-; 4.______287169=,_____83
33=,
_____643
=--; 5.要切一面积为16平方米的正方形钢板,它的边长是__________米; 6.5-的相反数是__________,绝对值是_________,倒数是_________;
9.=0144.0_______;
=
-3
27102
_________;
=+•632__
________,=⎪⎪⎭⎫ ⎝⎛-2
323________,
(
)(
)
_______252
5=+-;
10.比较大小:5-______6-, 14.3- _______π,
21
3-__
____ 21
;
12.若492=x ,则x =______,若
64)1(3=-x ,则x =______; 14.如果
0)6(42
=++-y x ,那么=+y x ; 15.若a 、b 互为相反数,c 、d 互为倒数,则
______3
=++cd b a ; 21.2
)5(-的平方根是
二、 选择题
1.与数轴上的点一一对应的是( )
A.实数 B. 正数 C. 有理数 D. 整数 2.下列说法正确的是( ).
A.(-5)是()25-的算术平方根 B.16的平方根是4± C.2是-4的算术平方根 D.64的立方根是4±
3.如果1-x 有意义,则x可以取的最小整数为( ).
A.0 B.1 C .2 D.3
4.若
()03212
=-+++-z y x 则x+2y +z= ( )
A.6
B.2 C.8 D .0 5一组数
246
135
,
343,22,16,27,2,14.3,313---π 这几个数中,无理数的个数是( ) A. 2 B. 3 C. 4 D. 5
7.一个自然数的算术平方根是x ,把么下一个与他它相邻的自然数的算术平方根
是( ) A. 12
+x B. 1+x C. 1+x D.
12+x
8.若一个数的平方根是8±,则这个数的立方根是( )
A. ±2 B. ±4 C. 2 D. 4
四、实 数
1. 实数:有理数和无理数统称为实数 实数的分类:
① 按属性分类: ② 按符号分类
ﻫ 2. 实数和数轴上的点的对应关系:
实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示. 数轴上的每一个点都可以表示一个实数.
2的画法:画边长为1的正方形的对角线
在数轴上表示无理数通常有两种情况:
思考:
(1)-a 2一定是负数吗?-a 一定是正数吗? (2)大家都知道
是一个无理数,那么
-1在哪两个整数之间?
(3)15的整数部分为a,小数部分为b,则a= , b= (4)判断下面的语句对不对?并说明判断的理由。
① 无限小数都是无理数; ② 无理数都是无限小数; ③ 带根号的数都是无理数;
④ 有理数都是实数,实数不都是有理数; ⑤ 实数都是无理数,无理数都是实数; ⑥ 实数的绝对值都是非负实数;
⑦ 有理数都可以表示成分数的形式。
3. 实数大小比较的方法 一、平方法: 比较2
3
和3的大小
二、移动因式法: 比较32和23的大小
三、求差法: 比较
2
1
5-和1的大小
练习:
一、比较下列各组数的大小: ① 2-和3- ② 15和5
4
3
④ 7-和-2.45 ⑤
327-与3
1
练习:平方根
1. 36的平方根是 ;16的算术平方根是 ; 2. 平方数是它本身的数是 ( ) ;平方数是它的相反数的数是 ( ) ;
3. 当x=__________ 时,12+x 有意义; 4.下列各式中,正确的是( )
(A )2)2(2-=- (B) 9)3(2
=- (C )
393
-=- (D) 39±=±
6.若a<0,则a a 22等于( ) A 、21 B 、21- C 、±2
1
D 、
0
9. 计算
⑴ 9
144
144
49⋅
⑵494 ⑶41613+-
10.若1<x<3,
练习:立方根
1.当x= _________时,325+x 有意义;
2.若164=x ,则x =_________;若813=n ,则n= ________。
3.若23-=x ,则x= __________; 若x -=364,则x =__________;
4.若n为正整数,则121+-n 等于( )
A. -1
B. 1
C. ±1 D . 2n+1 5.求χ的值:8)12(3
-=-x
6.(1)18
7
8
333
3
-+-
(2)83122)10(973.012
3+--⨯-
(3)33
3)6(25.0343--•+-。