离散数学 练习题及答案
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
《离散数学》题库及标准答案

《离散数学》题库及标准答案《离散数学》题库及答案————————————————————————————————作者:————————————————————————————————日期:《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。
在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。
2. 存在三个可识别的状态A,B,C。
置换群 $S_3$ 作用在状态集上。
定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。
确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。
3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。
4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。
b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。
答案1. $A \cap B = \{2,4,6\}$。
2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。
这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。
所以合数的个数不小于任意$n$。
4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。
如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。
所以从这条路径中任意取出的子路径都是最短路径。
b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。
因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。
所以从$i$到$j$的最短路径可能不唯一。
离散数学-练习题附答案可编辑

离散数学-题库1、将下列命题推理符号化并给出形式证明:已知张三或李四的彩票中奖了;如果张三的彩票中奖了,那么你是知道的;如果李四的彩票中奖了,那么王五的彩票也中奖了;现在你不知道张三的彩票中奖。
所以李四和王五的彩票都中奖了。
答案:解:设:p:张三的彩票中奖了。
q:李四的彩票中奖了。
r:你知道张三的彩票中奖。
s:王五的彩票中奖了。
符号化:前提:p∨q,p→r,q→s,¬r结论:q∧s证明:(1)¬r 前提(2)p→r 前提(3)¬p (1)(2)拒取式(4)p∨q 前提(5)q (3)(4)析取三段论(6)q→s 前提(7)s (5)(6)假言推理(8)q∧s (5)(7)合取引入2、用推导法求下列公式的主合取范式和主析取范式:((¬P∨Q)→R)答:((¬P∨Q)→R)⇔(¬(¬P∨Q)∨R)⇔((P∧¬Q)∨R)⇔((P∨R)∧(¬Q∨R))⇔((P∨(Q∧¬Q)∨R)∧((P∧¬P)∨¬Q∨R))⇔((P∨Q∨R)∧(P∨¬Q∨R)∧(¬P∨¬Q∨R))⇔((P∧Q∧R)∨(P∧¬Q∧R)∨(P∧¬Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧¬Q∧R))3、设集合 A ={1,2,3,4},A上二元关系R ={<1,2>,<2,2>,<,2,4〉,<3,4>}. 求其自反闭包,对称闭包和传递闭包。
答案: r(R)={<1,1>,<1,2>,<2,1>,<2,3>,<3,4>,<2,2>,<3,3>,<4,4>} s(R)={<1,1>,<1,2>,<2,1>,<2,3>,<3,4>,<3,2>,<4,3>}t(R)={<1,1>,<1,2>,<2,1>,<2,3>,<3,4>,<1,3>,<2,2>,<2,4>,<1,4>}4、设A,B,C是三个集合,证明(A∩B)-C=(A-C)∩B答案:答:(A∩B)-C=(A∩B)∩C=(A∩C)∩B=(A-C)∩B5、证明等价式:(∃χ)(A(χ)→B(χ))⇔(∀χ)A(χ)→(∃χ)B(χ)答案:(∃χ)(A(χ)→B(χ))⇔(∃χ)¬(A(χ)∨B(χ))⇔(∃χ)¬A(χ)∨(∃x)B(χ) ⇔¬(∀χ)A(χ)∨(∃χ)B(χ)⇔¬(∀χ)A(χ)→(∃χ)B(χ)6、设复数集合C={a+bi|a,b∈R,a≠0},定义C上二元关系R:<a+bi,c+di>∈R当且仅当ac>0,证明:R为等价关系。
离散数学习题集(十五套含答案)

离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(+=⋃BA{0,1,2,3,4,6} 。
2.A,B,C表示三个集合,文图中阴影部分的集合表达式为。
3R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。
4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。
5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。
6.设A={1,2,3,4},A上关系图为则R2 = {<a.b>,<a,c>,<a,d>,<b,d>,<c,d> 。
7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A。
8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。
10.下图所示的偏序集中,是格的为 c 。
二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有( C )个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C .若R ,S 是对称的, 则S R是对称的;D .若R ,S 是传递的, 则S R 是传递的。
(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.
离散数学练习题(含答案)

离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。
A。
p∧┐p∧qB。
┐p∨qC。
┐p∧qD。
┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。
A。
p→┐qB。
p∨┐qC。
p∧qD。
p∧┐q3.只有语句“1+1=10”是命题(A)。
A。
1+1=10B。
x+y=10___<0D。
x mod 3=24.下列等值式不正确的是(C)。
A。
┐(x)A(x)┐AB。
(x)(B→A(x))B→(x)A(x)C。
(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。
(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。
A。
(x)Q(x,z)→(x)(y)R(x,y,z))B。
Q(x,z)→(y)R(x,y,z)C。
Q(x,z)→(x)(y)R(x,y,z)D。
Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。
}∪IA则对应于R的A的划分是(D)。
A。
{{a},{b,c},{d}}B。
{{a,b},{c},{d}}C。
{{a},{b},{c},{d}}D。
{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。
A。
{Ø,{Ø}}∈BB。
{{Ø,Ø}}∈BC。
{{Ø},{{Ø}}}∈BD。
{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。
A。
(X-Y)-Z=X-(Y∩Z)B。
(X-Y)-Z=(X-Z)-YC。
(X-Y)-Z=(X-Z)-(Y-Z)D。
(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。
A。
a*b=min(a,b)B。
a*b=a+bC。
a*b=GCD(a,b) (a,b的最大公约数)D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题逻辑
例1: 下面哪些语句是命题
十是一个整数. 真命题
北京是一个村庄. 假命题
我学英语或法语. 复合命题
如果天气好,我就去散步. 复合命题
向右看齐! 不是命题
您吃饭了吗? 不是命题
本命题是假的. 不是命题
例2:试以符号形式写出下列命题
1) 选小王或小李中的一人当班长。
P: 小王当班长。
Q: 小李当班长。
( P ∧ ⌝ Q) ∨ (⌝ P ∧ Q)
2) 小王是计算机系的学生,他生于1982年,他是一个好学生。
P: 小王是计算机系的学生。
Q: 他生于1982年。
R: 他是一名好学生。
P ∧ Q ∧ R
3) 只要我上街,我就去书店看看,除非我很累。
P: 我上街。
Q: 我去书店看看。
R: 我很累。
⌝ R →(P → Q)
例3 给出下列公式的真值表 成真指派:100,101,110,111
例4 试求下面公式的主析取(主合取)范式,并写出成真指派和成假指派。
()()P Q Q P ⌝→→⌝∨
例5 证明:P →Q ,⌝Q ∨R ,⌝R ,⌝S ∨P=>⌝S
证明:
(1) ⌝R 前提
(2) ⌝Q ∨R 前提
(3) ⌝Q (1),(2)
(4) P →Q 前提
(5) ⌝P (3),(4)
P
R Q P →→∧)(
(6) ⌝S ∨P 前提
(7) ⌝S (5),(6)
例6 证明:A ,A →B ,A →C ,B →(D → C) => D
证明:
(1) A 前提
(2) A →B 前提
(3) B (1),(2)
(4) A →C 前提
(5) C (1),(4)
(6) B →(D →⌝C) 前提
(7) D →⌝C (3),(6)
(8) ⌝D (5),(7)
例7 证明:⌝B ∨D ,(E →⌝F)→⌝D ,⌝E=>⌝B
证明:
(1) B 附加前提
(2) ⌝B ∨D 前提
(3) D (1),(2)
(4) (E →⌝F)→⌝D 前提
(5) ⌝(E →⌝F) (3),(4)
(6) E ∧⌝F (5)
(7) E (6)
(8) ⌝E 前提
(9) E ∧⌝E (7),(8)
例8 证明: 谓词逻辑
例1 符号化下列命题
不是所有的男人都比女人高。
M(x):x 是男人,W(x):x 是女人,H(x,y):x 比y 高。
P
Q Q P P Q →⇔∧∨→))(()))
,()(()((y x H y W y x M x →∀→⌝∀
例2 证明
集合
例1 求集合的幂集 例2 n 个元素的集合上,可以定义多少个关系?
设集合X,Y, |X|=m, |Y|=n ,可以定义多少个从X 到Y
的函数? 例3 对任意两个集合A, B,试证 例4 判断关系的性质 例5 求关系的闭包 例6 设 A={1,2,3}, 求出A 上所有的等价关系
解:先求A 的各种划分:
设对应于 πi 的等价关系为R i ,则:
R 1={<1,1>,<2,2>,<3,3>} = I A
R 2={<1,2>,<2,1>} ∪ I A
R 3={<1,3>,<3,1>} ∪ I A
R 4={<2,3>,<3,2>} ∪ I A
R 5={<1,2>,<1,3>,<2,1>,<2,3>, <3,1>,<3,2>} ∪ I A
例7 画出哈斯图 1)(()()) 2)()() 1)3)() 4)() 3)5)() 2)4)6)() 5)x A x B x P A u B u US x B x P B u US A u T xA x EG ∀⌝→⌝→∀⌝⌝∃)(()()),()()a x A x B x x B x xA x ∀⌝→∀⌝⇒∃=⊆=}{)(φφx x P }
{φ)2(2
n B
A B A A -=⋂-)(}
,,,,,,,{1><><><><=c c b b b a a a R },,,{c b a X =}
,,,{><><=c b b a R ><⊆R c b a P },,,{
代数系统
例1 设集合S k={x | x∈I∧x≥k}, k≥ 0, 判断<S k ,+> 是否为半群, 其中+ 是普通的加法。
例2 设群<G,*>除单位元外每个元素的阶均为2,则<G,*>是交换群。
证明:
对任一a∈G,由已知可得a*a=e,即a-1=a。
对任意a,b∈G,因为a*b=(a*b)-1=b-1*a-1=b*a,所以运算*满足交换律。
从而<G,*>是交换群。
例3 任一有限半群一定在等幂元。
证明:
设<S,*>是一个有限半群。
任取a∈S,由于*满足结合律,我们有 {a,a2,a3,…,a n,…}⊆S
因为S是有限集合,故a,a2,a3,…,a n,…不可能两两不同。
从而一定存在正整数k,m,1≤k<m使得
a k=a m
令p=m-k,则由于*满足结合律,a k=a m= a p* a k。
对任意正整数q≥k,有
a q= a k * a k q- =(a p* a k)*a k q-= a p* a q(#)
若p=q,则元素a p就是一个等幂元。
否则因为p≥1,故存在正整数n 满足np≥k。
故利用(#)可得
a np= a p* a np= a p* (a p* a np)=a p2* a np= a p2*( a p* a np)
=a p3* a np=……= a np* a np
故a np就是S的一个等幂元。
例4 在一个群<G,*>中,若A和B 都是G的子群。
若A⋃B=G,则A=G或B=G。
证明:
用反证法证明。
若A≠G且B≠G,则有a∈A,a∉B且b∈B,b∉A。
因为A,B都是G 的子群,故a,b∈G,从而a*b∈G。
因为a∈A,所以a1-∈A。
若a*b∈A,则b= a1-*(a*b)∈A,这与a∉B 矛盾。
从而a*b∉A。
同理可证a*b∉B。
综合可得a*b∉A⋃B=G,这与已知矛盾。
从而假设错误,得证A=G 或B=G。
例5 在整除关系下,下确界即是最大公约数,上确界即是最小公倍数。
(1)偏序集S={1,2,3,4,6,12}是格。
(2)S={1,2,3,4,6,8,10,12}不是格;
事实上,因为6824S
∨=∉
(3)S={1,2,3,4,5,6,7,8,9,10}不是格;
(4)S-{2,3,6,12,24,36}不是格;
因为231S
∧=∉。
图论
例一设T=<V,E>是一棵树,若|V|>1,则T中至少存在两片树叶。
证明:用反证法证明。
设|V|=n。
因为T=〈V,E〉是一棵树,所以|E|=n-1。
由欧拉握手定理可得∑
∈V
v
deg(v)=2|E|=2n-2。
假设T中最多只有1片树叶,则∑
∈V
v
deg(v)≥2(n-1)+1>2n-2。
得出矛盾。
例2 在一个有n个顶点的G=<V,E>中,u,v∈V。
若存在一条从u到v的一条通路,则必有一条从u到v的长度不超过n-1的通路。
证明:
设v
0e
1
v
1
e
2
…e
l
v
l
是从u=v
到v=v
l
的长为l的通路。
若l≤n-1,则结论显然成立。
否则因为l+1>n,故v
0,v
1
,…,v
l
中必有一个顶点是重复出现的。
不妨设
v
i =v
j
(0≤i<j≤l),则新通路v
e
1
v
1
e
2
…v
i
e
1+j
v
1+j
e
2
+j
v
2
+j
…e
l
v
l
是一条从u
到v的通路,且此通路长度比原通路长度至少少1。
若新通路的长度≤n-1,则结论得证。
否则对新通路重复上述过程,必可以得到一条从u到v的长为n-1的通路。