不銹钢常见腐蚀种类

不銹钢常见腐蚀种类
不銹钢常见腐蚀种类

不銹鋼常見腐蝕種類

1.

2.電流腐蝕(galvanic corrosion)或稱二金屬腐蝕(two-metal corrosion)

兩不同金屬在電解質溶液中接觸,當兩者的電位不同時,活性較大者將成為陽極,活性較小者將成為陰極,形成一個封閉回路,兩極間即有電流流動,造成電流腐蝕。電流腐蝕的大小,取決於兩不同金屬的電位差大小。

3.裂隙腐蝕(crevice corrosion)

裂隙腐蝕是發生在裂隙處的局部腐蝕,常見的裂隙處為搭接面(lap joint),止洩墊面(gasket)螺絲丁頭下,以及沈積物(deposit)下等。不論是金屬與金屬或金屬與非金屬接合面間隙,都可能發生裂隙腐蝕。

4.孔蝕(pitting)

孔蝕是局部的穿孔腐蝕,在金屬表面生成一個個或是許多密集的坑坑洞洞,深淺不一,使金屬表面看起來粗糙,但也只是一區一區的,並不是整個表面。

孔蝕的生成原因很多,最普通的一個是不清潔,金屬表面有灰塵、鐵銹、污垢等沈積物。

5.粒界腐蝕(intergranular corrosion)

晶粒邊界是液態金屬最後凝固的部分,其熔點最低,固體金屬熔解時,此部分也最先熔解。晶粒邊界也是高能量區,富有化學活性,所以金屬腐蝕時,也容易先由晶粒邊界開始。

6.選擇腐蝕(或稱分離腐蝕)

選擇固體合金中某一合金元素腐蝕。最常見的例子是黃銅(30﹪Zn+70﹪Cu)因腐蝕而失去鋅,失去鋅的部位表面顯現出銅原有的紅色,肉眼即可辨別出紅色和黃色。所以也稱為失鋅(Dezincification)。

7.應力腐蝕(stress corrosion)

內有應力,外有J腐蝕媒體,聯合造成的金屬腐蝕,叫做應力腐蝕。應力腐蝕大多會發生裂紋,所以又稱為應力蝕裂(stress corrosion cracking,簡寫成SCC)。

應力腐蝕可能有兩種情況:

(1) 應力促進的腐蝕(stress-accelerated corrosion )

(2) 應力蝕裂(SCC),是比較重要的一種情況。

8.沖蝕(erosion corrosion)

機件遇到流動的腐蝕流體(corrodent)所造成的腐蝕,叫做沖蝕。形成的要件有二,一是腐蝕媒體是流體(fluid),一是腐蝕媒體是流動的。腐蝕流體包括氣體,水溶液,有機溶液,和液態金屬。

與沖蝕有關的因素是:

(1) 媒體的腐蝕性強弱。

(2) 流體中有無懸浮的固體顆粒,如泥漿(slury)。

(3) 流體的流動是穩定流(steady flow)或是亂流(turbulent flow),以及流速的大小。

9.其他腐蝕

腐蝕的種類很多有些少見的現象,是在無法觀察處漸漸進行,並非由顯著外力造成的物質敗壞,也可歸類於腐蝕。下面列出的就是此類。

(1)刃狀腐蝕(knife-line attack),簡寫為KLA

(2)磨蝕(fretting corrosion)

(3)熱變(thermal gradient)

(4)絲狀腐蝕(filiform corrosion)

双相不锈钢参数对比

双相钢介绍 双相不锈钢(Duplex stainless steel) 双相不锈钢是一种铁素体相和奥氏体相共存的不锈钢,同时也是集优良的耐蚀性能、高强度和易于加工制造等诸多优异性能于一身的钢种。 双相不锈钢已经有60多年的历史,世界上第一批双相不锈钢于1930年在瑞典生产出来并用于亚硫酸盐造纸工业。 1968年不锈钢精炼工艺——氩氧脱碳工艺(AOD)的发明,使一系列新的不锈钢的产生成为可能。AOD工艺带来的诸多进步之一就是合金元素N的添加。双相不锈钢添加N元素可以使焊接状态下热影响区的韧性和耐蚀性能接近于基体金属的性能,还可以降低有害金属间相的形成速率。 双相不锈钢同奥氏体不锈钢一样,是一种按腐蚀性能排序的钢种,腐蚀性能取决于它们的合金成分。双相不锈钢一直在不断发展,现代的双相不锈钢可以分为四种类型: 1、不含Mo的低级双相不锈钢2304; 2、标准双相不锈钢2205(德标),占双相钢总量的80%以上; 3、25%Cr的双相不锈钢,典型代表合金255,可归为超级双相不锈钢; 4、超级双相不锈钢,含25-26%Cr,与255合金相比Mo和N的含量增加。典型代表钢种2507。

双相不锈钢中的合金元素主要是Cr铬、Mo钼、N氮、Ni镍,它们在双相钢中的作用如下: 1、Cr铬 钢中最少含有%的Cr才能形成保护钢不受大气腐蚀的稳定的钝化膜。不锈钢的耐蚀性能随Cr的含量提高而增强。Cr是铁素体元素,它可以使具有体心立方晶格的铁组织稳定,也可以提高钢在高温下的抗氧化能力。 2、Mo钼 Mo与Cr协同作用能提高不锈钢的抗氯化物腐蚀的能力。Mo在氯化物环境下的抗点蚀和缝隙腐蚀的能力是Cr的3倍(参见CPT公式)。Mo是铁素体形成元素,同样能促进形成金属间相。因此,通常奥氏体不锈钢中Mo含量小于%,双相钢中小于4%。 3、N氮 N元素可增加奥氏体和双相不锈钢的抗点蚀和缝隙腐蚀的能力,并可以显着地提高钢的强度,它是固溶强化最有效的一个元素。在提高钢强度的同时,N元素还可以增加奥氏体不锈钢和双相不锈钢的韧性,延缓金属间相的形成,使双相不锈钢有足够的时间进行加工和制造,还可以抵消因高Cr、Mo所带来的易于形成σ相的倾向,N是强烈的奥氏体元素,在奥氏体不锈钢中能部分取代Ni。双相不锈钢中一般加入几乎接近溶解度极限的N和用以调整达到相平衡的Ni。铁素体元素Cr和Ni与奥氏体形成元素Ni和N需要达到平衡,才能获得期望的双相组织。

各种不锈钢的耐腐蚀性能1

各种不锈钢的耐腐蚀性能? 答:304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。

309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S 乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N 以及合硫量较高的易切削不锈钢316F。 是分别以钛,铌加钽、铌稳定化的不锈348 及347、321.钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢与不锈铁的区别 不锈钢一般是不锈钢和耐酸钢的总称。不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢自本世纪初问世,到现在已有90多年的历史。不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈

304不锈钢的腐蚀

304不锈钢的腐蚀 应力腐蚀 应力腐蚀是指零件在拉应力和特定的化学介质联合作用下所产生的低应力脆性断裂现象。 应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 它的发生一般有以下四个特征:一、一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。二、对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。三、一般应力腐蚀都属于脆性断裂。四、应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬段区三部分 应力腐蚀机理的机理一般认为有阳极溶解和氢致开裂 晶间腐蚀 说明:局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且金属表面往往仍是完好的,但不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝和一些含铬的合金钢中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。 晶间腐蚀是沿着或紧靠金属的晶界发生腐蚀。腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化。不锈钢、镍基合金、铝合金等材料都较易发生晶间腐蚀。 不锈钢的晶间腐蚀: 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的熔解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C8等。但是由于铬的扩散速度较小,来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。 不锈钢的晶间腐蚀 含碳量超过0.03%的不稳定的奥氏体型不锈钢(不含钛或铌的牌号),如果热处理不当则在某些环境中易产生晶间腐蚀。这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。这样的热处理造成碳化物在晶界沉淀(敏化作用),并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。敏化作用

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 镍与不锈钢基础知识—镍在不锈钢中的作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

304,316不锈钢耐腐蚀性

不锈钢的耐腐蚀性能一般随铬含量的增加而提高,其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的致密的氧化膜,它可以防止进一步的氧化或腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 1、在各种环境中的耐腐蚀性能 ①大气腐蚀 不锈钢耐大气腐蚀基本上是随着大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13、1 Cr 17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13和1 Cr 17不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变。奥氏体型不锈钢如1 Cr 17Ni7、1 Cr 18Ni9和0 Cr 18Ni9,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0 Cr 17 Ni 12M 02含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素,即表面状态和制作工艺。 精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感,即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要更经常的清理。

金属管道的腐蚀及防腐对策

目录 一、金属管道腐蚀的危害1 1.金属管道腐蚀程度鉴别 (2) 2. 金属管道的腐蚀及使命 (2) 3.管道腐蚀实例及分析 (5) 4.金属管道腐蚀的危害 (8) 二、金属管道腐蚀的原因 1.化学腐蚀 (8) 2.电化学腐蚀 (9) 3.其它原因 (10) 三、防腐对策 (10) 1.做好金属管道的防腐层处理 (11) 2.合理选用管材及阀件 (13) 3. 合理设计 (13) 4.精心施工,严格按规范操作 (13) 5.加强运行维护管理 (14) 6.质量控制及检验 (14) 结论 (19) 致谢 (21) 参考文献 (22)

金属管道的腐蚀及防腐对策 摘要介绍了金属管道腐蚀的危害及实例。简述了化学腐蚀、电化学腐蚀和由于安装原因造成的管道腐蚀,提出了覆盖层保护法,加强运行维护管理和精心施工,合理选用管材管件等防腐措施。 关键词:金属管道化学腐蚀电化学腐蚀防腐质量控制 一、金属管道腐蚀的危害 金属及金属管道腐蚀是一个世界性的问题。用于建筑设备配管的金属管道由于直接接触各种易产生腐蚀的介质,其腐蚀问题尤为突出。建筑设备配管的金属管道按材质分主要有钢管(含镀锌钢管)、铸铁管、不锈钢管、铜管、铝管等,按用途分有生活、生产的冷、热给水管、蒸汽及其它气体、污废水排水、凝结水、消防给水管等。因钢管的用量最大、最容易腐蚀,本文将予以重点讨论。 1.1 金属管道腐蚀程度的鉴别方法可用表1 来表述(指安装前内外壁检查)。 1.2 金属管道的腐蚀及其使用寿命 腐蚀将严重影响金属管道使用寿命。随着时间的推移,金属管道的腐蚀是不可避免的。即使做了防腐涂层,其涂层也会逐渐老化而丧失其防腐蚀性能。金属管道的腐蚀有多方面因素,主要原因可用表2 来表述。

不锈钢管道腐蚀的种类

在众多的工业用途中,不锈钢都能提供令人满意的耐腐蚀性能。根据使用经验来看,除机械失效外,不锈钢腐蚀主要表现在:不锈钢的一种严重的腐蚀形式是局部腐蚀(即应力腐蚀开裂、点腐蚀、晶间腐蚀、腐蚀疲劳以及缝隙腐蚀)。这些局部腐蚀所导致的失效事例几乎占失效事例的一半以上。事实上,很多失效事故是可以通过合理选材而予以避免的。 1.应力腐蚀开裂(SCC):是指承受应力的合金在腐蚀性环境 中由于裂纹的狂战而护生失效的一种通用术语。盈利腐蚀开裂具有脆性断口形貌,但他也可能发生于热性高的材料中。发生应力腐蚀开裂的必要条件是要有拉应力(不论是残余应力还是外加应力,或者两者兼而有之)和特定的腐蚀介质存在。形纹的形成和扩展大致与拉应力方向垂直。 这个导致应力腐蚀开裂的应力值,要比没有腐蚀介质存在时材料断裂所需要的应力值小得多。在微观上,应力腐蚀开裂扩展至其一深度时(此处,承受载荷的材料断面上的应力达到它在空气中的断裂应力),则材料就按正常的裂纹(在韧性材料中,通常是通过纤维缺陷的聚合)而断开。 因此,由于应力腐蚀开裂而失效的零件的断面,将包含有应力腐蚀开裂的特征区域以及与已微缺陷的聚合相联系的“韧窝”区域。 2.点腐蚀:是一种导致腐蚀的局部腐蚀形式。 3.晶间腐蚀:晶粒间界是结晶学取向不同的晶粒间紊乱错合

的界城,因而,他们是钢中各种溶质元素偏析或金属化合物(入碳化合物)沉淀析出的有利区域。因此,在某些腐蚀介质中,晶粒间界可能先行被腐蚀乃是不足为奇的。这种类型的腐蚀被称为晶间腐蚀,大多数的金属和合金在特定的腐蚀介质中都有可能呈现晶间腐蚀。 4.缝隙腐蚀:是局部腐蚀的一种形式,它可能发生于溶液停 滞的缝隙之中或屏蔽的表面内。这样的缝隙可以在金属与金属或金属与非金属的结合处形成,例如,在与柳钉、螺栓、垫片、阀座、松动的表面沉积物以及海生物想接触之处形成。 5.全面腐蚀:是用来描述在整个合金表面上以比较均匀的方 式所发生的腐蚀现象的术语。当发生全面腐蚀时,材料由于腐蚀而逐渐变薄,甚至材料腐蚀失效。不锈钢在强酸和强碱中可能呈现全面腐蚀。全面腐蚀所引起的失效问题并不怎么令人担心,因为,这种腐蚀通常可以通过简单的浸泡试验或查阅腐蚀方面的文献资料而预测它。

不锈钢的耐腐蚀性能

所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀。 不锈钢的耐腐蚀性取决于铬,但是因为铬是钢的组成部分之一,所以保护方法不尽相同。 在铬的添加量达到10.5%时,钢的耐大气腐蚀性能显著增加,但铬含量更高时,尽管仍可提高耐腐蚀性,但不明显。原因是用铬对钢进行合金化处理时,把表面氧化物的类型改变成了类似于纯铬金属上形成的表面氧化物。这种紧密粘附的富铬氧化物保护表面,防止进一步地氧化。这种氧化层极薄,透过它可以看到钢表面的自然光泽,使不锈钢具有独特的表面。而且,如果损坏了表层,所暴露出的钢表面会和大气反应进行自我修理,重新形成这种氧化物"钝化膜",继续起保护作用。 因此,所有的不锈钢元素都具有一种共同的特性,即铬含量均在10.5%以上。 普通碳钢与大气中氧,在金属表面形成过氧化膜,然后继续进行氧化,使锈蚀不断扩大,形成“千层糕”式的腐蚀物,直至烂穿。不锈钢的不锈性与钢中铬含量有光。钢中铬含量达到12%时,与大气接触,在不锈钢表面产生一层钝化膜(Cr2O3),它是致密的富铬氧化物,有效

地保护着不锈钢表面,特别是能防止进一步再氧化。这种氧化膜极薄(只有几个微米),头各国它可以看到钢表面的自然光泽,使不惜刚既有独特的表面。若表面钝化膜一旦被破坏,钢中的铬与大气中的氧心生成钝化膜,继续起保护作用。 不锈钢遇到特殊环境,也会出现某些局部腐蚀,如孔蚀、晶间腐蚀、应力腐蚀、电偶腐蚀等。为了克服这些腐蚀,在钢中分别加入了钼、氮、钛或铌等元素,并研制出了低碳、超低碳、双相不锈钢等新品种,提高不锈钢的耐腐性。 不锈钢的耐腐蚀性能一般随铬含量的增加而提高。其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的至密的氧化膜,它可以防止进一步的氧化或义腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 (一)在各种环境中的耐腐蚀性能 1.大气腐蚀 不锈钢耐大气腐蚀基本上是随大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境 1Cr13、1Cr17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。

不锈钢管道点腐蚀的理论分析

不锈钢管道点腐蚀的理论分析 1 循环水旋转滤网反冲洗系统简介 循环水过滤系统(CFI)的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。反冲洗的水源与主循环水一样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m/s。反冲洗海水管道设计采用公称直径150mm(壁厚7.11mm)的316L不锈钢管。输送的海水含氯量为17g/L,摩尔浓度为0.48mol/L,为防止回路中海生物滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在1×10-6。 2 316L不锈钢管道的使用情况 CFI系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。但在2001年9月,1号机管道又发现漏点。2001年10月电厂决定将所有反冲洗管道更换为碳钢衬胶管道。改造后运行至今未发生泄漏。 3 316L不锈钢的抗腐蚀性分析 316L不锈钢属300系列Fe-Cr-Ni合金奥氏体不锈钢,由于铬、镍含量高,是最耐腐蚀的不锈钢之一,并具有很好的机械性能。字母“L”表示低碳(碳含量被控制在0.03%以下),以避免在临界温度范围(430~900℃)内碳化铬的晶界沉淀,在焊后提供特别好的耐蚀性。但316L不锈钢抗氯离子点腐蚀的能力较差。

不同腐蚀环境下不锈钢的特点与选用

不同腐蚀环境下不锈钢的特点与选用不锈钢是石油、化工、化肥、食品、国防、餐具、合成纤维和石油提炼等工业行业中广泛使用的金属材,而许多容器、管道、阀门、泵、等一般都因与各种腐蚀性介质接触遭受腐蚀而报废。据统计,全世界每年因腐蚀而报废的钢材约占钢材年产量的1/4。而不锈钢的产量占钢铁总产量的1%。因此,材料受到腐蚀而失效是当今材料研究与发展中的三大主要问题之一。 不锈钢是指具有抗腐蚀性能的一类钢种。 通常所说的不锈钢是不锈钢与耐酸钢的总称。 不锈钢不一定耐酸,但耐酸钢同时又是不锈钢。 所谓不锈钢是指能抵抗大气及弱腐蚀介质腐蚀的钢种。腐蚀速度<0.01mm/年者为完全耐腐蚀钢,速度<0.1mm/年者为耐蚀钢。所谓的耐酸钢是指在各种强腐蚀介质中能耐酸的钢.腐蚀速度<0.1mm/年者为完全耐蚀,腐蚀速度<1mm/年者为耐蚀。因此.不锈钢并不是不腐蚀、只不过腐蚀速度较慢而已、绝对不被腐蚀的钢是不存在的。 值得注意的是在同一介质中.不同种类的不锈钢腐蚀速度大不相同而同一种不锈钢在不同的介质中腐蚀行为也大不一样。例如.Ni-Cr不锈钢在氧化性介质中的耐蚀性很好.但在非氧化介质中(如盐酸)的耐蚀性就不好了。因此掌握各类不锈钢的特点、对于正确选择和使用不锈钢是很重要的。 不锈钢不仅要耐蚀,还要承受或传递载荷,因此还需要具有较好的力学性能。不锈钢一般以板、管等型材加工成构件或零件,因此.要有良好的切削加工性能和良好的焊接性能。 不锈钢按典型组织分为:铁素体(F)型不锈钢;马氏体〔M)型不锈钢;奥氏体(A)型不锈钢;奥氏体-铁素体(A-F)双相型不锈钢;沉淀硬化型不锈钢。 一、金属腐蚀 (一)金属的腐蚀过程 在外界介质的作用下使金属逐渐受到破坏的现象称为腐蚀。腐蚀基本上有两种形式.化学腐蚀和电化学腐蚀。在生产实际中遇到的腐蚀主要是电化学腐蚀,化学腐蚀中不产生电流,巨在腐蚀过程中形成某种腐蚀产物。这种腐蚀产物一般都覆盖在金属表面上形成一层膜,使金属与介质隔离开来。 如果这层化学生成物是稳定、致密、完整并同金属表层牢固结合的,则将大大减轻甚至可以防止腐蚀的进一步发展,对金属起保护作用。形成保护膜的过程称为钝化。例如,生成SiO2、Al2O3、Cr2O3等氧化膜,这些氧化膜结构致密、完整、无疏松、无裂纹且不易剥落,可起

钢材腐蚀

CORROSION OF METALS IN CONTACT WITH MINERAL BUILDING MATERIALS KORROSION DER METALLE IM KONTAKT MIT MINERALISCHEN BAUSTOFFEN CORROSION DES METAUX EN CONTACT AVEC DES MATERIAUX MINERAUX Ulf Nürnberger ABSTRACT Metals such as steel, aluminium, copper, zinc and lead in structural engi-neering get into contact with very different mineral building materials. As a rule, solid phases of the building materials do not attack metals. A corrosive attack only is possible, if the capillary-, pore-, or canal-like cavities, that exist in each building material, contain free water. Further, in case of oxygen-type corrosion, the oxygen that is necessary for the maintenance of the corrosion reaction must be able to rediffuse to the surface of the metal through the cavities of the build-ing material. In addition, conditions that inhibit or destroy passivity have to ex-ist. In all cases of corrosion, there is a complicating effect, if the water dissolves ingredients of the building material that are aggressive against metal or ease the transportation of polluting agents from the environment of the structural ele-ment. In structural engineering, from a corrosion-technical point of view, contacts of metals and mineral building materials, that are produced with cement and gypsum, play an important role. ZUSAMMENFASSUNG Metalle wie Stahl, Aluminium, Kupfer, Zink und Blei kommen im Ingeni-eurbau mit den unterschiedlichsten Baustoffen in Berührung. Die festen Phasen von mineralischen Baustoffen greifen die Metalle im Regelfall nicht an. Ein Korrosionsangriff ist nur m?glich, wenn die im Baustoff vorhandenen kapillar-, poren- oder kanal?hnlichen H ohlr?ume ungebundenes Wasser enthalten. Wei-terhin mu? der für die Korrosion erforderliche Sauerstoff in der Lage sein, von der Oberfl?che her durch die Hohlr?ume des Baustoffes zu diffundieren. Zus?tz-lich haben Bedingungen zu existieren, welche eine Passivit?t hemmen oder Pas-

钢铁腐蚀与防护

钢铁腐蚀与防护 1.有机涂层腐蚀防护 由有机高分子化合物为主体组成覆盖层统称为有机覆盖层。有机涂层还常常称作涂料,早期的涂料通常叫做油漆。其主要成膜物质和溶剂等,是以有机材料为主体的有机涂料。覆盖层是通过阻抗抑制、氧缺乏、阻止金属向环境放电和缓蚀技术来达到腐蚀防护的目的。 有机涂层种类繁多,应该依据钢结构的用途、环境、使用年限要求等进行选择。有机涂料的选择应考虑与腐蚀环境相适应的涂料品种、体系相匹配。更进一步了解成膜物质、溶剂等,其品种主要有过氯乙烯类、环氧树脂类、氯磺化聚乙烯类、聚氨酯类、氯化橡胶类、不饱和聚酯类、聚氟橡胶类、有机硅类,以及可用于地下的沥青焦油类等。有的还可交替搭配(如环氧煤焦油、含氟聚氯乙烯等) 。作为防腐涂料的特殊要求,须包含具有缓蚀作用的防锈颜料,一般有碱性颜料(红丹、铅酸钙等) 、可溶性颜料(锌黄、铬黄、磷锌黄等) 、阴极保护型颜料(锌、铝、镁粉等) 在室外使用的耐候性树脂覆盖层的耐久性按下面的顺序递增: 油脂≤酚醛≤醇酸树脂≤氯化橡胶系≤丙烯酸系≤聚氨酯系≤丙烯酸有机硅≤氟树脂类 目前国内外使用最多的钢铁结构件防腐方法是有机涂料涂装。涂装防腐主要基于隔离机理。显然只有当涂层将钢铁基体与腐蚀环境完全隔离时,涂层才能有效地保护钢铁材料免于腐蚀。但是事实上几乎所有的有机涂料橡层都存在一些微小的“针孔”.当外界的腐蚀介质通过这些通道到达钢铁基体时,就在涂层与基体的界面处发生腐蚀。钢铁腐蚀对产生的腐蚀产物体积将膨胀20倍,其结果是在涂层中出现蚀痕、鼓泡和剥脱.最终导致腐蚀防护体系的失效。为了维持涂层对钢铁基体的保护作用,通常每隔几年就要对钢铁构件重新涂装一遍,在腐蚀严重的环境下甚至每年都要涂装一遍.涂装方法的另一个缺点是污染环境。目前.许多国家对使用有机涂料的限制越来越严格 2.无机非金属涂层腐蚀防护

不锈钢的种类及特性

不锈钢的耐腐蚀性及其种类 1.腐蚀的种类和定义 在众多的工业用途中,不锈钢都能提供今人满意的耐蚀性能。根据使用的经验来看,除机械失效外,不锈钢的腐蚀主要表现在:不锈钢的一种严重的腐蚀形式是局部腐蚀(亦即应力腐蚀开裂、点腐蚀、晶间腐蚀、腐蚀疲劳以及缝隙腐蚀)。这些局部腐蚀所导致的失效事例几乎占失效事例的一半以上。事实上,很多失效事故是可以通过合理的选材而予以避免的。 应力腐蚀开裂(SCC):是指承受应力的合金在腐蚀性环境中由于烈纹的扩展而互生失效的一种通用术语。应力腐蚀开裂具有脆性断口形貌,但它也可能发生于韧性高的材料中。发生应力腐蚀开裂的必要条件是要有拉应力(不论是残余应力还是外加应力,或者两者兼而有之)和特定的腐蚀介质存在。型纹的形成和扩展大致与拉应力方向垂直。这个导致应力腐蚀开裂的应力值,要比没有腐蚀介质存在时材料断裂所需要的应力值小得多。在微观上,穿过晶粒的裂纹称为穿晶裂纹,而沿晶界扩图的裂纹称为沿晶裂纹,当应力腐蚀开裂扩展至其一深度时(此处,承受载荷的材料断面上的应力达到它在空气中的断裂应力),则材料就按正常的裂纹(在韧性材料中,通常是通过显微缺陷的聚合)而断开。因此,由于应力腐蚀开裂而失效的零件的断面,将包含有应力腐蚀开裂的特征区域以及与已微缺陷的聚合相联系的“韧窝”区域。 点腐蚀:是一种导致腐蚀的局部腐蚀形式。 晶间腐蚀:晶粒间界是结晶学取向不同的晶粒间紊乱错合的界城,因而,它们是钢中各种溶质元素偏析或金属化合物(如碳化物和δ相)沉淀析出的有利区城。因此,在某些腐蚀介质中,晶粒间界可能先行被腐蚀乃是不足为奇的。这种类型的腐蚀被称为晶间腐蚀,大多数的金属和合金在特定的腐蚀介质中都可能呈现晶间腐蚀。 缝隙腐蚀:是局部腐蚀的一种形式,它可能发全于溶液停滞的缝隙之中或屏蔽的表面内。这样的缝隙可以在金属与金属或金属与非金属的接合处形成,例如,在与铆钉、螺栓、垫片、阀座、松动的表面沉积物以及海生物相接烛之处形成。 全面腐蚀:是用来描述在整个合金表面上以比较均勺的方式所发生的腐蚀现象的术语。当发生全面腐蚀时,村料由于腐蚀而逐渐变薄,甚至材料腐蚀失效。不锈钢在强酸和强碱中可能呈现全面腐蚀。全面腐蚀所引起的失效问题并不怎么令人担心,因为,这种腐蚀通常可以通过简单的浸泡试验或查阅腐蚀方面的文献资料而预测它。 1.不锈钢的定义 在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合金钢,不锈钢是具有美观的表面和耐腐蚀性能好,不必经过镀色等表面处理,而发挥不锈钢所固有的表面性能,使用于多方面的钢铁的一种,通常称为不锈钢。代表性能的有13铬钢,18-铬镍钢等高合金钢。

双相不锈钢2205化学成份,及其性能

双相不锈钢2205化学成份,及其性能(2009/04/17 17:38)双相不锈钢2205(00Cr22Ni5Mo3N,S31803)的化学成份% 牌号C ≤ Mn ≤ P ≤ S ≤ Si ≤Ni Cr Mo N 2205 0.030 2.00.030.02 1.0 4.5-6.521-23 2.5-3.50.08-0.2双相不锈钢2205(00Cr22Ni5Mo3N,S31803)的机械性能 牌号温度/状态屈服强度σb ≥(ksi) 抗拉强度σ0.2 ≥(ksi) 伸长率δ 标距2in或50mm(或4D),≥,% 2205的板70oC/退火75 105 35 2205的板200oC/退火50 90 2205的板400oC/退火45 80 2205的板600oC/退火40 79 双相不锈钢2205的用途:用于炼油, 化肥,造纸,石油,化工等耐海水耐高温浓硝酸等的热交换器和冷淋器及器件。 双相不锈钢的主要代表牌号 DSS一般可分为四类: 低合金型--代表牌号是UNS S32304(23Cr-4Ni-0.1N) PREN值24~25 中合金型--代表牌号是UNS S31803(22Cr-5Ni-3Mo-0.15N), PREN 值32~ 33 高合金型--标准牌号有UNS S32550(25Cr-6Ni-3Mo-2Cu-0.2N), PREN 值38~39 超级双相不锈钢型--标准牌号有UNS S32750(25Cr-7Ni-3.7Mo-0.3N), PREN值>40 (※ PREN 耐孔蚀指数 PREN=Cr%+3.3×Mo%+16×N%) 低合金型UNS S32304不含钼, 在耐应力腐蚀方面可代替AISI304或316使用. 中合金型UNS S31803的耐蚀性能介于AISI 316L和6%Mo+N奥氏体不锈钢之间. 高合金型,一般含25%Cr,还含有钼和氮,有的还含有铜和钨,这类钢的耐蚀性能高于22%Cr的 双相不锈钢. 超级双相不锈钢型,含高钼和氮,有的也含钨和铜 , 可适用于苛刻的介质条件,具有良好的 耐腐蚀与力学综合性能,可与超级奥氏体不锈钢相比美. 代表牌号的主要化学成分 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 双相不锈钢化学成分,% 类型UNS 牌号C Cr Ni Mo Cu N 低合金型S32304≤0.032340.05/0.20中合金型 S31803≤0.0322 530.08/0.20中合金型 S32205≤0.0322530.14/0.20高合金型S325500.04256320.10/0.25超级DSS S32750≤ 0.0325740.24/0.32 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

2017-2018学年高中化学 每日一题 影响钢铁腐蚀的因素 新人教版

影响钢铁腐蚀的因素 高考频度:★★★☆☆难易程度:★★★☆☆ 典例在线 铁生锈是比较常见的现象,某实验小组为研究铁生锈的条件,设计了以下快速、易行的方法: 首先检查制氧气装置的气密性,然后按图连接好装置,点燃酒精灯给药品加热,持续3 min 左右,观察到的实验现象为:①直形管中用蒸馏水浸过的光亮铁丝表面颜色变得灰暗,发生锈蚀;②直形管中干燥的铁丝表面依然光亮,没有发生锈蚀;③烧杯中潮湿的铁丝依然光亮。 试回答以下问题: (1)由于与接触的介质不同,金属腐蚀分成不同类型,本实验中铁生锈属于________。能表示其原理的电极反应式为______________________________________________。 (2)仪器A的名称为________,其中装的药品可以是________________,其作用是 ________________________________________________________________。 (3)由实验可知,该类铁生锈的条件为________________________________。 决定铁生锈快慢的一个重要因素是________。 【参考答案】(1)电化学腐蚀负极:Fe-2e-===Fe2+,正极:2H2O+O2+4e-===4OH-(2)球形干燥管碱石灰(或无水氯化钙) 干燥O2 (3)与O2接触;与水接触氧气浓度 【试题解析】钢铁在潮湿环境下形成原电池,发生电化学腐蚀。在直形管中的实验现象说明,潮湿是铁生锈的必须前提;直形管实验与烧杯实验的对比,则说明O2浓度是影响铁生锈快慢的一个重要因素。 解题必备 1.金属腐蚀类型的判断方法

不锈钢管道腐蚀分析

No. 14044 不锈钢管道 Arthur H. Tuthill 不锈钢用作自来水管具有成本效益。 自六十年代中期以来,不锈钢已广泛用于饮用水工业,包括在水淡化厂用于处理加工淡水;在饮用水处理厂用于沉淀过滤装置和管道;在日本东京,不锈钢小口径管用家用自来水连接管。在纽约市,不锈钢大口径管用于立柱管和其它管道。不锈钢最为人们所熟悉的应用是喷嘴式饮水龙头。本文给出了304(UNS 30400)和316(S31600)不锈钢的背景资料和一般数据,并报道了目前不锈钢在饮用水方面的应用。对不锈钢在原水、氯化处理的水和纯净水中的行为以及埋在土壤里的管道的状态进行了评述,并论述了制作后清理以及外观的维护和保持清洁的方法。提出了成功应用不锈钢的指导方针。 不锈钢的不锈特性归结于其表面附着的一层厚度仅为几埃的坚固的铬氧化膜,这层铬氧化膜在空气或水中立即形成,并且能在划伤或损坏后自行修复。不锈钢易于焊接,尽管其焊接技术与普通碳钢的焊接技术稍有不同。316、316L(S31603)、304、304L(S30403),以及相应的铸钢钢号CF8M(J93000)、CF3M(J92800)、CF8(J92600)、CF3(J92700)是应用最广的锻造和铸造牌号。 表1给出了这些钢种的化学成分和机械特性。 表1 锻造和铸造不锈钢的化学成分% 牌号 UNS编号C(最大) Cr Ni Mo 锻造 304 S30400 0.08 18.0~20.0 8.0~11.0 8.0~13.0 18.0~20.0 304L S30403 0.035 2.0~ 3.0 11.0~14.0 316 S31600 16.0~18.0 0.08 2.0~ 3.0 11.0~15.0 316L S31603 0.035 16.0~18.0 铸造 CF3 J92500 0.03 17.0~21.0 8.0~12.0 CF8 J92600 0.08 18.0~21.0 8.0~11.0 CF3M J92800 0.03 17.0~21.0 9.0~13.0 2.0~3.0 CF8M J92900 0.08 18.0~12.0 9.0~12.0 2.0~3.0 不锈钢管在饮用水工业中大量使用的一个事例是用于美国、加勒比和中东的水淡化处理加工管道,304L和316L不锈钢用于水处理的收集水槽和混合厂的管道,生产出的高纯净水和当地可用的地下水在混合厂进行混合。 1 化学成分对性能的影响 不锈钢的化学成分有两个主要差别。一些牌号含有2%~3%的钼,而另一些则没有。牌号316/316L和CF8M/CF3M含有2%~3%的钼,大大提高了它们耐局部腐蚀的性能。当不锈钢发生腐蚀时,其腐蚀是局部的即呈现一个或多个小坑。在天然水中,不锈钢不会像碳钢那样受到全面腐蚀。保护不锈钢不受腐蚀薄而坚韧耐久的铬氧化膜有时会有一些缺陷,当环境条件对保护膜上的薄弱点有足够的腐蚀性时,不锈钢正是在这些缺陷处发生腐蚀。除了制作和装运过程中铁粒嵌入表面引起的生锈情况外,不锈钢曝露在空气中很少发生腐蚀,但在特殊条件下暴露于水中或埋入土壤中有时会发生腐蚀。在304/304L不锈钢会发生局部腐蚀的

双相不锈钢参数对比

1.4462 双相钢介绍 双相不锈钢(Duplex stainless steel)双相不锈钢是一种铁素体相和奥氏体相共存的不锈钢,同时也是集优良的耐蚀性能、高强度和易于加工制造等诸多优异性能于一身的钢种。双相不锈钢已经有60 多年的历史,世界上第一批双相不锈钢于1930 年在瑞典生产出来并用于亚硫酸盐造纸工业。 1968年不锈钢精炼工艺一一氩氧脱碳工艺(AOD)的发明,使一系列新的不锈钢的产生成为可能。AOD 工艺带来的诸多进步之一就是合金元素N 的添加。双相不锈钢添加N 元素可以使焊接状态下热影响区的韧性和耐蚀性能接近于基体金属的性能,还可以降低有害金属间相的形成速率。双相不锈钢同奥氏体不锈钢一样,是一种按腐蚀性能排序的钢种,腐蚀性能取决于它们的合金成分。双相不锈钢一直在不断发展,现代的双相不锈钢可以分为四种类型: 1、不含Mo 的低级双相不锈钢2304; 2、标准双相不锈钢2205(德标1.4462),占双相钢总量的80%以上; 3、25%Cr的双相不锈钢,典型代表合金255,可归为超级双相不锈钢; 4、超级双相不锈钢,含25-26%Cr与255合金相比Mo和N的含量增加。典型代表钢种2507。 双相不锈钢中的合金元素主要是Cr铬、Mo钼、N氮、Ni镍,它们在双相钢中的作用如下: 1 、Cr 铬 钢中最少含有10.5%勺Cr才能形成保护钢不受大气腐蚀的稳定的钝化膜。不锈钢的耐蚀性能随Cr的含量提高而增强。Cr是铁素体元素,它可以使具有体心立方晶格的铁组织稳定,也可以提高钢在高温下的抗氧化能力。 2、Mo 钼 Mo与Cr协同作用能提高不锈钢的抗氯化物腐蚀的能力。Mo在氯化物环境下的抗点蚀和缝隙腐蚀的能力是Cr的3倍(参见CPT公式)。Mo是铁素体形成元素,同样能促进形成金属间相。因此,通常奥氏体不锈钢中Mo 含量小于7.5%,双相钢中小于4%。 3、N 氮 N 元素可增加奥氏体和双相不锈钢的抗点蚀和缝隙腐蚀的能力,并可以显著地提高钢的强度,它是固溶强化最有效的一个元素。在提高钢强度的同 时,N元素还可以增加奥氏体不锈钢和双相不锈钢的韧性,延缓金属间相 的形成,使双相不锈钢有足够的时间进行加工和制造,还可以抵消因高

相关文档
最新文档