达朗贝尔原理及虚位移原理知识点总结
第十四章达朗贝尔原理

Fb 0, F cos mg 0 Fn 0, F sin F* 0
例题
第14章 达朗贝尔原理
O
θ
l
F
eb
en
et
mg F*
F cos mg 0 F sin F* 0
J B 2
1 2
FP g
v2
QS
sin
FP S
1 2
Q g
v2
(1 2
1 2
Q g
r2
v2 r2
)2
1 2
FP g
v2
QS
sin
FP
S
(Q
FP ) v2 2g
(Q sin
FP )S
两边对时间求一次导数
B
2(Q
FP 2
)v
a
g(Q sin
FP
)v
例题
第14章 达朗贝尔原理
均质圆柱体A和B的重量均为P,半径均为r 一绳绕于可绕固定轴O转动的圆柱体A上, 绳的另一端绕在圆柱B上,求B下落的质心 的加速度,摩擦不计。
A
r
A
A J A A Tr JBB T r
O
D
B
O
T
ao1
A B ac
ao1c
aon1c
2Q F P
例题5
第14章 达朗贝尔原理
滚子A,重Q,沿倾角为α的斜面滚动而不滑 动,滑轮B与滚子A有相同的质量和半径,且均可 看作均值圆盘。物体C重FP,求滚子中心的加速 度。设绳子不可伸长,其重量可略而不计,绳与
第14章达朗贝尔原理汇总

FT1=
m2 g
2cos
,
FT1=FT1
cos m1 m2 g m1l 2
质点的惯性力与动静法
例 题2
y 振动筛
y
平衡位置 O
y=a sin t
求:颗粒脱离台面的 最小振动频率
质点的惯性力与动静法 例 题 2
解:通过分析受力、分析运动并施加惯性力,确定 颗粒脱离台面的位置和条件。
y
y
FI FN m
m1g (FT1 FT2 )cos 0
对于重锤 C
FT1=FT3 ,
FT1=
m2 g
2cos
,
FT1=FT1
质点的惯性力与动静法 例 题 1
解:
Fx1 0 Fy1 0
FT1=FT3 ,
m1l 2sin (FT1 FT2 )sin 0
m1g (FT1 FT2 )cos 0
Wsin
W g
l
2
W 4
sin
CR W1
动静法应用于刚体的 动约束力分析
例 题5
半径为R、重量为W1的 大圆轮,由绳索牵引,在
O
重量为W2的重物A的作用 下,在水平地面上作纯滚
动,系统中的小圆轮重量
忽略不计。
A
求:大圆轮与地面之间
的滑动摩擦力
W2
动静法应用于刚体的 动约束力分析
例 题5
CR
W1
F FN
FO
解:1、受力分析
y
考察整个系统,有4个未知
O
FO 约束力。
x
如果直接采用动静法,需
将系统拆开。因为系统为一
个自由度,所以考虑先应用
A
动能定理,求出加速度,再 对大圆轮应用动静法。
第10章达朗贝尔原理及虚位移原理

sA
3 11 1 FA F1 F2 M 8 14 8
解:
(1) 给虚位移 rA , rB ,
由 rB cos rA sin ( rA , rB 在 A ,B 连线上投影相等)
代入虚功方程,有
FA rA FB rB 0
Fi ri 0
FA rB cot FB rB
y
A
rA
O
rB
M
B
x
实位移是质点系真实实现的位移,它与约束条件、时间、 主动力以及运动的初始条件有关 .
实位移
dr , dx, d
等
10.3.3 虚功
力在虚位移中作的功称虚功.
W F r
W M
如果在质点系的任何虚位移中,所有约束力所作虚功的和 等于零,称这种约束为理想约束.
s 2 h
F
F'
s
W
F
FN s 2 Fl 0
FN
FN h 2 Fl 0 WF 2
因 是任意的
FN h 2 Fl 0 2
4 l FN F h
例10-6 已知:如图所示椭圆规机构中,连杆AB长为l,滑块A,B与杆 重均不计,忽略各处摩擦,机构在图示位置平衡. 求:主动力FA与 FB 之间的关系。
mg FT FI 0
b
F
0, FT cos mg 0
F
解得
n
0, FT sin FI 0
FT
v
mg 1.96 N cos
FT l sin 2 2.1 m s m
虚位移原理和达朗伯原理

Fi ri 0
与前述条件矛盾
故 Fi ri 0 时质点系必处于平衡。
4
①虚位移原理还可写成:∑Fiδri cosαi=0 ②解析式
( X ixi Yiyi Z izi ) 0
(2.1.2)
ai——Fi与ri之间的夹角; Xi 、 Yi 、 Zi 及δxi、 δyi 、
5
i
Yi yi Z i zi ) 0
主动力在虚速度中所做的元功率称为虚功率,这种用 虚速度表示的虚位移原理称为虚功率原理:具有完整定常理 想约束的质点系在给定位置静止平衡的必要与充分条件是: 作用于质点系的所有主动力在任何虚速度上所作的元功率之 和等于零。上两式称为虚功率方程。
ri ri (q1 , q2 ,qk , t ) (i 1,2,n)
Mi的虚位移(固定时间t):
ri ri ri ri q1 q2 ... qk q1 q2 qk ri qa a 1 qa
FrB cos P2rD sin 0
而 rB 2b , rD b
代入上式,得
( F 2b cos P2 b sin ) 0
0, ( )0
2F 得tan P2
13
再使 保持不变,而使 获得变分 ,得到系统的另 一组虚位移,如图所示。
δzi——主动力Fi及δri在x、y、x轴上的投影。
上三式均称为虚功方程,实际应用时,用①②两式。 2.1.2 用虚速度表示的虚位移原理 在式(2.1.1)、(2.1.2)等号两边同除以dt,得
F r 0
( X x
i 1 i n
n
i 1
i
i
(2.1.7)
第十四章达朗贝尔原理资料

第十四章达朗贝尔原理动欝肉:用帝力学中研克平衡问题的方法来研克动力学问题・第一节惯性力a n质点的达朗贝余凍理F I = -man质点达朗贝余虑理作用于质点上的主动力F,釣束力F逢加惯性力F |扈形式上姐成平衡力糸.尸+仏+坊=0慣性力是人为地.級祖地加上去的,幷不真宾的作用蛊%体上。
达胡n余嫖理从形比上将动力学问题转化为符力学问题,它幷不故支动力学问题的卖质,质点矣际上也幷不平街。
F y+F Ny+F f y =0“动”代表研黑对象是动力学问题。
“鲁”代表研黑问题所用的方法是静力学方廉动静出的解題过程:1>分析境点所受的主动力和釣束力;2, 分析填点的运动,确走加速度;3. 衣填点上加上与加速度方向相反的慣性力。
—♦F/ = -ma4、用鑫平衡方程求解尸+丘+斤=0第二节质点糸的达朗贝余斥理质点糸达朗贝余療理—► —►—►F M +F* — 0对于每•个填A Fj +质点糸中毎个质点上作用的主动力,釣隶力和它的慣性力在形此上组成平衡力糸.玖=工即+工理)+工尸〃=0M。
=工M,,(砂))+工M。
(叩)+ 工M。
(F,) = 0工申+工礼=0工收(炉)+工见伉)二0例题1 汽车连同货杨的总质量是力,其质心c With o多汽车以加速度日沿水平道路行驶肘,求地面给前・后轮的铅直反力。
轮子的质量不计。
达朗贝尔原理后轮的水平距离分别是b和<7 ,离地面的离度是片力一加牡+尸皿@ +() = 0fn(gb +cih)则体作平动刖体作走粕转动1 •需粘不通过贋心,但驸体作匀速转动 F[ = mr c a ) co第三节创体慣性力糸的简化 巧=》(・m 冋) =沖a c。
第六章 分析力学基础

第六章 分析力学基础本章是动力学问题的引深,将介绍解决刚体和刚体系统动力学问题中经常采用的分析方法,这些方法将在某个方面使动力学问题的解决得以方便或简化,有的方法将直接涉及到动力学分析的计算机应用,这些方法包括达朗贝尔原理、虚位移原理、第一类拉格朗日方程和第二类拉格朗日方程。
第一节 达朗贝尔原理达朗贝尔原理(有的书称之为达朗伯原理)的核心是引入惯性力和惯性力矩的概念,从而将动力学问题转化为静力学问题解决。
(一) 达朗贝尔惯性力我们已经知道,牛顿第二定律描述了一个质点的运动规律,即F r m = (6.1.1)这里,r表示该质点在惯性参考基中的位置,F 则表示该质点所受外力的主矢量。
如果将上式改写为0=-r m F(6.1.2)再定义r m F -=* (6.1.3)称为该质点的达朗贝尔惯性力,则牛顿第二定律可以改写为如下形式:0=+*F F (6.1.4)上式可以这样理解:质点的达朗贝尔惯性力与该质点所受到所有真实的外力的矢量和等于零,或者说,质点的达朗贝尔惯性力与该质点所受到所有真实的外力组成一个平衡力系。
这个结论称之为质点的达朗贝尔原理。
下面就(6.1.4)式作出讨论:① 所谓所有真实外力包括主动力和理想约束力。
② 达朗贝尔惯性力与非惯性基下的牵连惯性力和科氏惯性力是有区别的,后者仅仅是为了将非惯性基下的动力学方程写成类似于惯性基的形式而采用的,显然,它们取决于惯性基的运动,而达朗贝尔惯性力与非惯性基存在与否没有关系,达朗贝尔惯性力的定义为了将相对惯性基的动力学方程改写为另外一种形式,即一种力的平衡形式。
③ 达朗贝尔原理也称为动静法,即动力学问题的静力学处理方法。
④ 达朗贝尔惯性力是描述相对惯性基的运动,所以,它也直接简称为惯性力。
对于一个由n 个质点组成的质点系统,每个质点的外力中显然包含了系统内其他质点的作用力,但是对于整个系统而言,它们之间的作用力相互抵消,因此,该质点系的外力仅仅是系统外部的作用力,当然包括主动力和理想约束力。
13第十三章-达朗贝尔原理(动静法)解析

13
一、刚体作平动
刚体内各点的加速度都与质心C的加速度 aC相等,任一
质点的惯性力 FIi mi aC ,组成一同向的平行力系。
这个惯性力系简化为通过质心C的合力:
FIR FIi miaC ( mi )aC FIR mac
FI1 aC
FI2
附加动约束力); 2 推出消除附加动约束力的条件。
定轴转动刚体,角速度 ,角加速度 。
坐标系oxyz如图示,o点为转轴上的一点。
取简化中心:转轴上一点O。
z
所有主动力向O点简化的结果: 主矢:FR 主矩:M O
A FAx
惯性力系向O点简化的结果:
主矢:FIR
主矩:M IO
MO O
惯性力没有Z方向的分量(Z方向无加
第九章 质点动力学的基本方程 第十章 动量定理 第十一章 动量矩定理 第十二章 动能定理 ★ 第十三章 达朗贝尔原理 第十四章 虚位移原理
本章介绍动力学的一个重要原理——达朗贝尔原 理。应用这一原理,就将动力学问题从形式上转化 为静力学问题,从而根据关于平衡的理论来求解。 这种用静力学解答动力学问题的方法,也称为动静 法。
FOx
(m1 m2 )g (m1 m2 )a
FIB
B
a 在本题中不计滑轮的质量,如果要
考虑滑轮的质量,则如何计算?
A
a
m2g
m1g
加上滑轮的惯性力和重力。
FIA
§13-3 刚体惯性力系的简化
应用达朗贝尔原理求解质点系动力学问题必须给各质点虚 加上它的惯性力。对于运动的刚体每个质点加上它的惯性力, 这些惯性力组成一惯性力系。因为刚体有无限个质点,在每个 质点上加惯性力是不可能的,为了应用方便,按照静力学中力 系的简化方法将刚体的惯性力系加以简化,这样在解题时就可 以直接施加其简化结果,使动静法切实可行。
13 达朗贝尔原理

M IC J C
FIC
第十三章 达朗贝尔
例题13-2 均质杆长 l ,质量m,与水平面铰接,杆由与
平面成角位置静止落下,求初始瞬时OA杆的角
加速度及O点支座反力
A
C
O
mg
第十三章 达朗贝尔
例题13-3
绕线轮重为P,半径分别为R 和r ,对质心O的 转动惯量为JO ,在与水平成角的常力T 作用下 作纯滚动,不计滚阻力偶,求轮心O的加速度并
第十三章 达朗贝尔
若将作用于每个质点的力分为内力和外力,则: e i Fi Fi FIi 0 由空间任意力系平衡条件: e i Fi Fi FIi 0 e i M O Fi M O Fi M O FIi 0
它主动力时不论位置如何总能平衡,这叫静平衡 动平衡
若转轴过中心惯性主轴,则刚体转动时不出
现附加约束力,这叫动平衡
•第十三章 达朗贝尔
如图(a)、(b)、(c)、(d)所示定轴转动情形, 哪些情况满足静平衡,哪些情况满足动平衡?
m m
r
r
r
m
2m
r
r
2r
r
m
m m
r
(b)
m
(a )
(c)
(d )
静约束力 附加动约束力
FBz FRz
•第十三章 达朗贝尔
要使附加动约束力为零,则必须有:
FIx FIy 0
M Ix M Iy 0
由定轴转动刚体惯性力计算公式:
FIx maCx FIy maCy 0
M Ix J xz J yz 2 0 M Iy J yz J xz 2 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
达朗贝尔原理
知识总结
1.质点的惯性力。
•设质点的质量为m ,加速度为,则质点的惯性力定义为
2.质点的达朗贝尔原理。
•质点的达朗贝尔原理:质点上除了作用有主动力和约束力外,如果假想地认为还作用有该质点的惯性力,则这些力在形式上形成一个平衡力系,即
3.质点系的达朗贝尔原理。
•质点系的达朗贝尔原理:在质点系中每个质点上都假想地加上各自的惯性力,则质点系的所以外力和惯性力,在形式上形成一个平衡力系,可以表示为
4.刚体惯性力系的简化结果
(1)刚体平移,惯性力系向质心C 简化,主矢与主矩为
(2)刚体绕定轴转动,惯性力系向转轴上一点O 简化,主矢与主矩为
其中
如果刚体有质量对称平面,且此平面与转轴z 垂直,则惯性力系向此质量对称平面与转轴z 的交点O 简化,主矢与主矩为
(3)刚体作平面运动,若此刚体有一质量对称平面且此平面作同一平面运动,惯性力系向质心C简化,主矢和主矩为
式中为过质心且与质量对称平面垂直的轴的转动惯量。
5.消除动约束力的条件。
刚体绕定轴转动,消除动约束力的条件是,此转轴是中心惯性主轴(转轴过质心且对此轴的惯性积为零);质心在转轴上,刚体可以在任意位置静止不动,称为静平衡;转轴为中心惯性主轴,不出现轴承动约束力,成为动平衡。
常见问题
问题一在惯性系中,惯性力是假想的(虚加的),达朗贝尔原理也是数学形式上的,物体一般并不是真的处于平衡。
问题二惯性力系一般都是向定点或者质心简化,因此这时惯性力系的主矩,而向其它的点简化,一般上是不成立的。
如果一定要向某一任意点A简化,那么要先向定点或质心简化,之后将其移至A点(注意力在平移时将会有附加力偶)。
惯性力系的主失是与简化中心无关的。
问题三用达朗贝尔原理解题时,加上惯性力系后就完全转化成静力学问题,其求解方法与精力学完全相同。
问题四物体系问题。
每个物体都有惯性力系,因此每个物体的惯性力系向质心(或定点)简化都得到一个力与一个力偶。
虚位移原理
知识点总结
1.虚位移·虚功·理想约束。
在某瞬时,质点系在约束允许的条件下,人所假想的任何无限小位移称为虚位移。
虚位移可以是线位移,也可以是角位移。
力在虚位移中所作的功称为虚功。
在质点系的任何虚位移中,所有约束力所作虚功的和等于零,这种约束称为理想约束。
2.虚位移原理。
虚位移原理:对于具有理想约束的质点系,其平衡条件是作用于质点系上的所有主动力在任何虚位移上所作虚功的和等于零。
其一般表达形式为
虚位移原理是不同于下列平衡方程求解静力学平衡问题的一种方法。
虚位移原理可以用于具有理想约束的系统,也可以用于具有非理想约束的系统。
虚位移原理可以求主动力之间的关系,也可以求约束力。
常见问题
问题一虚位移与实位移的区别,虚功与实功的区别。
问题二虚位移可以是线位移,也可以是角位移。
问题三虚位移原理是求解力系平衡时主动力之间关系的,如果要求约束力,则解除该约束,以主动力代替。
问题四求解虚功方程前,要建立各个虚位移之间的关系,这是解题中的重要一步。