分式知识点整理

合集下载

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。

考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。

分式知识点总结及复习汇总

分式知识点总结及复习汇总

分式知识点总结及复习汇总一、分式的定义和性质:分式是形如$\frac{a}{b}$的数,其中$a$为分子,$b$为分母,$a$和$b$都为整数且$b \neq 0$。

分式可以表示一个数,也可以表示一个运算过程。

分式可以进行四则运算,包括加减乘除。

分式的相反数:$\frac{a}{b}$的相反数为$-\frac{a}{b}$。

分式的倒数:$\frac{a}{b}$的倒数为$\frac{b}{a}$,其中$a、b$不为零。

分式的化简:将分式化简为最简分式,即分子和分母的最大公约数为1的形式。

二、分式的运算法则:1.加法:两个分式相加,分母相同,分子相加。

2.减法:两个分式相减,分母相同,分子相减。

3.乘法:两个分式相乘,分子相乘,分母相乘。

4.除法:一个分式除以另一个分式,被除数乘以除数的倒数。

三、分式的化简方法:1.求最大公约数:分式的分子和分母同时除以它们的最大公约数。

2.因式分解:将分式的分子和分母进行因式分解,然后约去相同的因式。

四、分式与整式的相互转化:1.分式转化为整式:将分式中的分子除以分母,得到的结果为整数。

2.整式转化为分式:将一个整数写成分子,分母为1的形式。

五、分式的应用:1.比例问题:可以利用分式来表示两个比例的关系。

2.部分与整体的关系:可以用分式表示部分与整体的关系。

3.商业问题:例如打折、利润等问题,可以用分式来表示计算。

4.几何问题:例如面积、体积等问题,可以用分式来表示计算。

六、分式的简化步骤:1.因式分解。

2.分子、分母约去最大公约数。

3.整理化简结果。

七、分式的应用举例:1.甲乙两人分别在一段时间内完成一件工作,甲用时5小时完成,乙用时8小时完成,那么甲乙两人一起完成这件工作需要多少小时?解:甲和乙一起完成工作的效率是每小时$\frac{1}{5}$和$\frac{1}{8}$,所以他们一起完成工作的效率是$\frac{1}{5}+\frac{1}{8}=\frac{13}{40}$。

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。

分式方程知识点归纳

分式方程知识点归纳

分式方程知识点归纳分式方程是指含有分子和分母的方程,分子和分母分别为代数式或数字,并且方程中包含有未知数的方程。

下面将分式方程的知识点进行归纳,以便更好地理解和应用分式方程。

一、基本概念:1.分式方程的定义:含有未知数、带有分式形式的等式称为分式方程。

2.分式的定义:分式是由一个或多个代数式构成的比。

二、分式方程的解的性质:1.分式方程的等价方程:分式方程可以转化为多项式方程进行求解,这样可以得到等价的方程,两者的解是相同的。

2.分式方程的根的性质:一个分式方程的解,如果使得分式方程中的分子等于0,则该解就是方程的根。

三、分数的性质:1.分式的约分:分式的分子和分母同时除以它们的公因式,可以得到分式的约分式。

2.分式的通分:将不同分母的分式通过找到它们的最小公倍数,转化为具有相同分母的等价分式。

3.分数的四则运算:分数之间可以进行加减乘除的运算,需要注意分子和分母的相应运算。

四、分式方程的解法:1.乘法解法:对分式方程的两边同乘以一个使得方程中的分母消去的数,从而化简为一个多项式方程。

2.加减消去解法:对分式方程的两边同乘以使得方程中的分母消去的数,然后将方程中的分式整理为一个多项式,并进行求解。

3.代入解法:将分式方程中的一个未知数表示成另一个未知数的代数式,再代入到分式方程中,得到一个不含有代入的未知数的分式方程,进而进行求解。

4.通分解法:对分式方程的两边同时乘以方程中所有的分母的积,将分式方程化简为一个多项式方程进行求解。

五、分式方程的解的判定:1.当方程的分式的分子为0时,方程的解为0。

2.当方程的分式的分子和分母存在着相同的因式时,方程的解为使得分式方程中的分子等于0的值。

3.当分式方程的分母的值等于0时,方程没有解。

六、应用:分式方程在实际问题中的应用非常广泛,例如在物理学和金融学中,经常需要使用分式方程来解决实际问题。

比如计算财务利润率、财务收益率、物体的运动速度等。

七、常见的分式方程:1.一次方程:分式方程的分子和分母都是一次函数的方程。

分式知识归纳

分式知识归纳

第十六章分式【知识点1】分式1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母.2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可.【知识点2】有理式有理式的分类:有理式【知识点3】分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为:(其中M≠0)【知识点4】约分和通分1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分.2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.【知识点5】最简分式与最简公分母:约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.●知识链接:1分数的意义2.分数的基本性质3.分数基本性质的作用●中考考点本节的常考知识点有:1. 分式的有关概念,分式的意义,分式的值等于零.2. 分式的约分,分式的分子、分母的系数化整化正.3. 求分式的值以及分式与其它题的综合分式方程●学习目标1. 理解分式方程的定义,会解可化为一元一次方程的分式方程,了解产生增根的原因,并会验根.2. 列出分式方程,解简单的应用题.●重点难点重点:把分式方程转化为整式方程求解的化归思想及具体的解题方法.难点:(1)了解产生增根的原因,并有针对性地验根;(2)应用题分析题意列方程.●知识概要1. 分式方程的概念2. 解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 列分式方程解应用题的一般步骤:(1)审:审清题意;(2)设:设未知数;(3)找:找出等量关系;(4)列:列出分式方程;(5)解:解这个分式方程;(6)验:既要验证根是否为原分式方程的根,又要检验根是否符合题意;(7)答:写出答案.●知识链接解分式方程主要是将其转化成整式方程来解.解完方程要注意验根即是否使最简公分母为零.●中考视点: 本节内容在中考中经常出现,通常是以计算题或应用题的形式出现,并且多与其它章节如函数、方程等知识结合,因此,一定要注意含有字母系数的方程的解法以及可化为一元一次方程的分式方程的解法和应用,切记一定要验根.第二节、教材解读一、约分的根据、实质与关键约分的根据是分式的基本性质;约分的实质是将一个分式化成最简分式——分子与分母没有公因式的分式;约分的关键是确定一个分式的分子与分母的公因式.二、确定分子、分母公因式的方法分子与分母的公因式是:分子、分母的系数的最大公约数与相同因式的最低次幂的积.三、约分时应防止的三类错误1.有关分式的概念辨析,字母或分式的取值等问题,一般不用约分,否则会造成错误.2.约分时,分子的整体与分母的整体都要除以同一个(公)因式,当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.等都是错误的.其中(1)中的分式已是最简分式,不需再约分;(2)的正确答案是.为此,必须牢记,只有当分子、分母都是乘积形式时才能约分.3.分式的分子与分母是同底数的幂做因式时,应约去最低次幂,切不可对指数进行约分.就犯了用指数6与2约分的错误,正确的结果是四、掌握解分式方程的步骤解分式方程的一般步骤是:一是方程两边同乘最简公分母,化分式方程为整式方程;二是解这个整式方程;三是检验.如:解方程: .第一步:方程两边都乘以x(x+6),得90x+540=60x;第二步:解这个整式方程,得x=-18;第三步:检验:把x=-18代入原方程的左、右两边有左边=右边,即-18是原分式方程的解.五、列分式方程解简单的实际应用问题列分式方程解简单的实际应用题的步骤简单地可分为:审、设、找、列、解、检、答七个步骤.其中关键是“列”,难点是“找”.如:如图,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?解:第一步:审清题意;第二步:设王老师的步行速度为xkm/h,则骑自行车的速度为3xkm/h;第三步:王老师现在骑车所用的时间-原来步行所用时间=20min;第四步:根据题意,得;第五步:解这个方程:去分母,得3+3+0.5-1.5=x,即x=5;第六步:经检验x=5是原方程的解,所以3x=15;第七步:答:王老师的步行速度及骑自行车的速度分别为5km/h和15km/h.列分式方程解应用题一定要验根,还要保证其结果符合实际意义.第三节、错题剖析分式概念是本章学习的基础,由于学生的认知水平和经验的不足,特别容易出现一些常见的通病.下面将通过举例讲解,让同学们少走弯路,更快地学好分式的基础知识.同学们在学习过程中可能会犯以下错误.一、分式概念理解偏差【例1】下列各式是分式的是()错解1:显然B 式分母中含有字母,又是的形式,所以选B.错解2:显然A 、D 都是整式,经过同底数的幂相除化为3a也是整式,故选B.错解分析:前者误认为π是字母.其实π是常数;后者先约分再判断是不行的.正解:选C.反思:(1)把握判断分式的唯一标准是看分母中是否含有字母.分母中不含字母的是整式,分母中含有字母的是分式.(2)分式的判断是看形式,数的判断是看结果.如数的结果是3,所以是有理数不是无理数.二、分式的值为零的条件混乱【例2】当x 取何值时,的值为0?错解1:因为x无论等于2还是-2,分式的值为0,均无意义,故x没有值可取;错解2:x=±2错解分析:前者误认为分式的值为0属于无意义,后者却忽视分式的值为0的前提条件是分式有意义.正解:x=2.反思:弄清分式的值为零的条件有两个:(1)分子的值为零;(2)分母的值不为零.这两个条件必须同时具备才可.三、分式无意义的条件不清【例3】当x _____ 时,分式无意义.错解:因为当x=1时,分母的值为0,故x=1.错解分析:这个答案只考虑了分母为零时x=1,忽视了-1=0时x=±1都使分母为零.属于思维习惯上的问题.正解:x=±1.四、分式基本性质理解错误【例4】不改变分式的值,把分式的分子、分母中的各项系数都化为整数错解:错解分析:错解的分子、分母所乘的不是同一个数,而是两个不同的数,虽然把各项系数化成了整数,但分式的值改变了,违背了分式的基本性质.五、去分母时常数漏乘公分母【例5】解方程错解:方程两边都乘以(x-3),得2-x=-1-2,解这个方程,得x=5.错解分析:解分式方程需要去分母,根据等式的性质,在方程两边同乘以(x-3)时,应注意乘以方程的每一项.错解在去分母时,-2这一项没有乘以(x-3),另外,求到x=5没有代入原方程中检验.正解:方程两边都乘以(x-3),得2-x=-1-2(x-3),解得x=3检验:将x=3代入原方程,可知原方程的分母等于0,所以x=3是原方程的增根,所以原方程无解.六、去分母时,分子是多项式不加括号【例6】解方程错解:方程化为,方程两边同乘以(x+1)(x-1),得3-x-1=0,解得x=2.所以方程的解为x=2.错解分析:当分式的分子是一个多项式,去掉分母时,应将多项式用括号括起来.错解在没有用括号将(x -1)括起来,出现符号上的错误,而且最后没有检验.正解:方程两边都乘以(x+1)(x-1),得3-(x-1)=0,解这个方程,得x=4.检验:当x=4时,原方程的分母不等于0,所以x=4是原方程的根.七、方程两边同除可能为零的整式【例7】解方程 .错解:方程两边都除以3x-2,得,所以x+3=x-4,所以3=-4,即方程无解.错解分析:错解的原因是在没有强调(3x-2)是否等于0的条件下,方程两边同除以(3x-2),结果导致方程无解.正解:方程两边都乘以(x-4)(x+3),得(3x-2)(x+3)=(3x-2)(x-4),所以(3x-2)(x+3)-(3x-2)(x-4)=0.即(3x-2)(x+3-x+4)=0.所以7(3x-2)=0.解得x=.检验:当x=时,原方程的左边=右边=0,所以x=是原方程的解.第四节、思维点拨【例1】已知且a、b都不等于0,求的值【思考与分析】从题目的条件可以得出a、b的值代入要求的分式使得分式有意义即可求出分式值.得(a-b)·(a-2b)=0.所以a-b=0或a-2b=0;当a-b=0时,得a=b≠0,当a-2b=0时,得a=2b≠0,所以综上可得,【反思】本题是求含字母的分式,利用因式分解,两个因式的积为零,则可转化为两个因式中至少有一个为零,代入分式来求解,注意前提仍然是分式必须有意义.【思考与分析】可以灵活运用这个条件.①要求的分式也可以化成含的形式,整体代入即可;【反思】本题在求值过程中利用了分式的基本性质,并且采用多种方法来利用已知条件使问题简化.【例3】供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果同时到达.已知抢修车的速度是摩托车的速度的1.5倍,求这两种车的速度.解题思路一:寻求时间上的相等关系建立方程【解法1】:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时.根据题意得:解得x=40,经检验,x=40是原方程的根.所以1.5x=1.5×40=60答:摩托车的速度为40千米/时,抢修车的速度为60千米/时.解题思路二:寻求速度之间的相等关系建立方程【解法2】设摩托车行30千米所用的时间为x小时,则抢修车所用的时间为(x -)小时,根据“抢修车的速度是摩托车速度的1.5倍”得:解题思路三:寻求路程之间的相等关系建立方程【解法3】设摩托车行30千米所用的时间为x 小时,则抢修车行驶30千米所用的时间为(x-)小时,摩托车的速度为千米/时,抢修车的速度为×1.5千米/时,根据“抢修车的速度×抢修车所用的时间=总路程30千米”得:(×1.5)(x-)=30解题思路四:列方程组解答【解法4】设摩托车与抢修车每小时分别行驶x千米、y千米,根据题意得方程组:(2、3、4解答过程略)【小结】题中含有多种关系时,列方程组可降低思维难度.前面的各种解法中,若把所推出的代数式用新的未知数替换,则都能写成方程的形式.【例5】读下列一段文字,然后解答问题.已知:方程的解是;方程的解是;方程的解是;方程的解是.【探究一】观察上述方程及其解,再猜想方程的解,并写出检验过程.解:猜想方程的解是.检验:当x=11时,左边=,右边=,所以左边=右边;当x =时,左边=右边=.∴x1=11,x2=是方程的解.【探究二】你能猜想方程(n为正整数)的解吗?若能请你验证你的猜想是否合理?解:猜想方程(n 为正整数)的解是x1=n+1,x2=-.检验:当x=n+1时,左边=n+1-=,右边=,所以左边=右边;当x=-时,左边=右边=.∴x1=n+1,x2=-是方程x -=(n为正整数)的解.【例6】解方程【思考与分析】因为方程中有分母,所以首先应该去掉分母,只是注意,原来整式方程中分母全是数,而分式方程中则是代数式,因而去分母时应该两边同乘一个代数式,这里应该同乘x(x-1).解:去分母,两边同乘以x(x-1)得:x(x-1)-x(x-1)·=·x(x-1)化简得:x2-x-(x2-1)=2x去掉括号,得:3x=1,∴ x=检验:把x=代入原方程的各个分母,都不为0.∴x=是原方程的解.【反思】(1)在解分式方程时,因乘的是同一个代数式,最后求得的根可能使同乘的这个代数式的值为0,这样的根叫做增根,但不是每个方程都有增根.因此,在解完方程之后,一定要检验方程的根,如果是增根,就标出来并且舍去.(2)在去分母时,同乘的是一个代数式,在题目中,可能有的项没有分母,这种项也同样要乘以这个代数式.第五节、竞赛数学当题目中的未知数具有对称关系时,应用基本对称式:x+y=a,xy=b,进行替换,可使解题过程简化.现以部分竞赛题为例,介绍这种解题技巧在求分式值中的妙用.【思考与分析】首先看题目给的条件似乎没有必然的联系,但是经过化简含有可以利用建立联系解答.【例2】如果a2-3a+1=0,那么,的值是 ______ .【思考与分析】这题看起来没有对称关系,但是不要急,我们先从题目中所给的已知条件入手,可解出一个关于a 的新的关系式再将分别换元为x、y,所求的分式经过化简也可以用含有x、y的分式来求.【思考与分析】题目看起来很麻烦,无从下手,大家仔细观察已知分式与要求分式的对应项系数的关系,就可以知道将已知的等式取倒数就可以找到相应的关系了.【例4】若a、b 都是正实数,且求的值【思考与分析】由已知条件入手,可以得出这样就与要求的分式建立联系了,设可求出x与y的关系,代入要求的分式来解即可.【例5】证明恒等式【思考与分析】本题两边如果通分,可见其分母相同,若等式成立,则分子也必定相等,但这样运算量太大;如果把左边的分子灵活变形如b-c=(a-c)-(a-b)则可简化运算.证明: 原式左边=故原等式成立.【例6】使实数a、b、c 满足,求证:.【思考与分析】这里999是奇数,从题目的格式看,应该是对一般的奇数都成立,因而可以考虑由一般到特殊的证明方法.证明: ∵,故(bc+ca+ab)·(a+b+c)=abc.整理可得: (a+b)(b+c)(c+a)=0,故a=-b或b=-c或c=-a.不妨设a=-b,则a2n-1=-b2n-1,令n=500代入上式可得.小结:分式证明题形式多种多样,一般的证明途径有:(1)由繁到简,即从等式较复杂的一边入手,经过配方因式分解换元降次等多种变形,逐步推到另一边;(2)将等式两边同时变形为同一个代数式,从而推出相等的结果.第六节、本章训练基础训练题分式一、细心填一填(共7题,每题4分,共28分)1.x=3 分式的根(填“是”或“不是”).2.当x= 时,分式与的值相等.3.试写出一个解为x=2的分式方程 .4.分式方程的根是 .5.已知分式的值是零,那么x的值是 .6.若有增根,则增根为 .7. 在实数范围内定义一种运算“*”,其规则为,根据这个规则,方程5*(x-1)=3的解为 .二、精心选一选(共9题,每小题5分,共45分)8.下列方程中是分式方程的是()A. B. C.y+2=3 D.9.把分式方程的两边同时乘以(x-2),约去分母,得()A.1+(1-x)=x-2B.1+(1-x)=1C.1-(1-x)=x-2D.1-(1-x)=110.要把分式方程化为整式方程,方程两边需要同时乘以()A.2x-4B.xC.2(x-2)D.2x(x-2)11.方程的解是()A.1B.-1C.±1D.212.已知,用含x的代数式表示y,得()A.y=2x+8B.y=2x+10C.y=2x-10D.y=2x-813.关于x 的方程的解为x=1,则a等于()A.1B. -3C.-1D. 314.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A. B.C. D.15.用换元法解分式方程,如果设,则原方程可变形为()A. B. C.D.16.下列关于x的方程,其中不是分式方程的是()A. B. C.D.三、耐心做一做(第17题12分,第18题15分)17.解方程:18.八年级(2)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是慢车速度的1.5倍,求慢车的速度.分式方程一、精心填一填(共8题,每小题4分,共32分)二、细心选一选(共8题,每小题5分,共40分)14.若代数式在实数范围内有意义,则x的取值范围为().A.x>0B.x≥0C.x≠0D.x≥0且x≠116.已知两个分式其中x≠±2,则A与B的关系是().A. 相等B. 互为倒数C. 互为相反数D. A大于B三.解答题(第17题12分,第18题16分)17.化简求值:其中x=-3.18.请将下面的代数式尽可能化简,再选择一个你喜欢的数(要合适哦!)代入求值:提高训练题4.解方程5.解方程:6.甲、乙两班参加绿化校园活动.已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?7.已知x2-5x-2000=0,则代数式的值是().A.2001B.2002C.2003D.20048.化简(=.9.已知,则的值为.10.解关于x的方程:ax-b=2x-3.强化训练题一、精心选一选1.下列代数式中:是分式的有()A. 1个B. 2个C. 3个D. 4个2.下列判断中,正确的是()A.分式的分子中一定含有字母B.当B=0时,分式的值为0C.当A=0,B≠0时,分式的值为0(A、B为整式)D.分数一定是分式3.分式中,当x=-a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠-时,分式的值为零D.若a≠时,分式的值为零4.分式中的字母x、y都扩大为原来的4倍,则分式的值()A.不变B.扩大为原来的4倍C.扩大为原来的8倍D.缩小为原来的5.不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以()A.10B.9C.45D.906.下列各分式中,最简分式是()二、细心填一填8.当x 时,分式有意义.9.当x 时,分式的值为零.10.当a=时,分式无意义.11.约分:=.三、耐心做一做12.当x 为何值时,分式的值为负?13.把化为整数系数.14.不改变分式的值,把下式分子、分母中最高次项的系数变为“+”号:.四、应用题15.2008年夏季奥运会将在北京举行.为了支持北京申奥成功,红、绿两支宣传北京申奥万里行的车队在距北京3000千米处会合,并同时向北京进发.绿队走完2000千米时,红队走完1800千米,随后,红队的速度提高20%,两车队继续同时向北京进发.(1)求红队提速前红、绿两支车队的速度比.(2)红、绿两支车队能否同时到达北京?说明理由.(3)若红、绿两支车队不能同时到达北京,那么哪支车队先到达北京?并求出第一支车队到达北京时,两车队间的距离.综合训练题一、选择题(每题5分,共30分)1.下列分式中,一定有意义的是()2.如果分式中,x,y的值都变为原来的一半,则分式的值()A.不变B.扩大2倍C.缩小2倍D.以上都不对3.下列变形正确的是()4.下列运算正确的是()5.将分式的分子、分母各项系数都化为整数,正确的结果是()6.如果从一捆粗细均匀的电线上截取1米长的电线,称得它的质量为a,再称得剩余电线的质量为b,那么原来这捆电线的总长度是()二、填空题(每题5分,共30分)7.当x= 时,分式的值为零.8.分式约分的结果是 .9.计算:= .10.一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要小时.11.代数式中x的取值范围是 .12.方程=1的解是 .三、解答题(共40分)13.(11分)计算:-x14.(13分)计算,并把负指数化为正:(2mn-2)-3(-m-2n-1)-215.(16分)甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城,已知A、C两城的距离为450km,B、C两城的距离为400km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城,求两车的速度.。

初中数学分式知识点归纳

初中数学分式知识点归纳

初中数学分式知识点归纳分式是初中数学中的一个重要内容,分式的概念和运算在解决实际问题中有着广泛的应用。

在这篇文章中,我将对初中数学中常见的分式知识点进行归纳,帮助学生更好地理解和掌握分式。

一、分式的定义和基本性质分式可以表示为a/b的形式,其中a称为分子,b称为分母。

分式的值可以为整数、小数或无理数。

在分式中,分子和分母都可以是整数、代数式或其他形式。

1.1 分式的定义分式是用一个数的算式表示另一个数。

1.2 分式的基本性质(1)两个分数相等的充要条件是分子与分母分别相等。

(2)分子分母的积是一个确定的数,即a/b * b/a = 1。

(3)一个分数乘以或除以一个非零数,其值不变,即a/b * c = ac/b,a/b ÷ c = a/b * 1/c。

(4)分子分母同时乘(或除)以同一个非零数,不改变分数的值,即a/b = a * c /b * c,a/b = a ÷ c /b ÷ c。

二、分式的基本运算分式的运算包括加法、减法、乘法和除法四种基本运算,下面将逐一介绍这些运算的具体方法。

2.1 分式的加法和减法(1)同分母的分式相加(减):保持分母不变,分子相加(减),结果的分子写在分数线上,分母不变。

(2)异分母的分式相加(减):找到它们的公倍数作为新的分母,然后将分子按照原来的分母和新分母的比例相加(减),得到的结果即为最简分数,如果需要化简,在得到的结果上进行约分。

2.2 分式的乘法分式的乘法中,将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,并将结果化简为最简分数。

2.3 分式的除法分式的除法可以转化为分式的乘法,即将除号转化为乘号,同时将除数的分子与被除数的分母相乘作为新的分子,将除数的分母与被除数的分子相乘作为新的分母,并将结果化简为最简分数。

三、分式的化简和分式方程的解法化简分式的目的是将分式转化为最简分数的形式,使得分子和分母互质。

化简分式的方法包括约分和转换为连分数等。

数学八下分式

数学八下分式

数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。

以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。

2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。

3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。

4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。

5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。

八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。

建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。

第4讲_分式

第4讲_分式
分式的乘方 :
通分
an a b bn
n
1 1 a n a a
n
n
分式的概念,求字母的取值范围
2 【例 1】 (1)(2014· 贺州)分式 有意义,则 x 的取值范 x-1 围是( A ) A.x≠1 B.x=1 C.x≠-1 D.x=-1
x2-1 (2)(2014· 毕节)若分式 的值为零,则 x 的值为( C ) x-1
脚踏实地, 才能走的更远!
第 4讲
分式
禹城市华奥学校中学数学组一、知识点梳理分来自式{概念{
A 的形式 B B中含有字母
B≠0
{
分式有意义
B≠0
分式的加减
{
同分母相加
分式的值为0 B C BC B≠0 A A A
{
A=0且
BC BD CA BD AC 异分母相加 ADAD ADAD
通分
分式的乘除
约分
最简分式
1、约分 把一个分式中的分子和分母中的公因式约去 ①定系数:系数的最大公约数 :
②定因式:相同的因式(字母) ③定指数:相同因式(字母)的指数最小值
2、通分 把异分母的分式化为同分母的分式 ①定系数:系数的最小公倍数 :
②定因式:所有的因式(字母),相同的算一个 ③定指数:所有的因式(字母)的指数的最大值
(x+2)(x-2) x-3-1 解:原式= ÷ = (x+3)(x-3) x-3 (x+2)(x-2) x-3 (x+2)(x-2) · = , (x+3)(x-3) x-4 (x+3)(x-4)
不等式 2x-3<7,解得 x<5,其正整数解为 1,2,3,4, 1 当 x=1 时,原式= 4
2x2 x 1 1.(2014· 陕西)先化简,再求值: 2 - ,其中 x=- . 2 x -1 x+1 x(x-1) 2x2 解:原式= - = (x+1)(x-1) (x+1)(x-1) 1 - x(x+1) 2 x 1 1 = ,当 x=- 时,原式= = 2 1 3 (x+1)(x-1) x-1 - -1 2 2 x 2.(2013· 陕西)解分式方程: 2 + =1. x -4 x-2 解: 去分母得: 2+x(x+2)=x2-4, 整理得: 2+x2+2x=x2-4, 解得:x=-3,经检验得,x=-3 是原分式方程的根
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用心教育个性化辅导讲义第十六章 分式知识点整理 1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。

例1.下列各式a π,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。

例2.下列分式,当x 取何值时有意义。

(1)2132x x ++; (2)2323x x +- 变式练习:已知2-=x 时,分式ax b x +-无意义,4=x 时,分式的值为零,则____=+b a 。

例3.下列各式中,无论x 取何值,分式都有意义的是( )。

A .121x + B .21x x + C .231x x + D .2221x x + 例4.当x______时,分式2134x x +-无意义。

当x_______时,分式2212x x x -+-的值为零。

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C )例5.不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )。

例6.不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,则是(• )。

3.分式的通分和约分:关键先是分解因式例7.分式434y x a +,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有( )。

例8.约分:(1)22699x x x ++-; (2)2232m m m m-+- A A C B B C •=•A A C B B C ÷=÷例9.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a - 例10.已知x 2+3x+1=0,求x 2+21x 的值. 例11.已知x+1x=3,求2421x x x ++的值.4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

例12.当分式211x --21x +-11x -的值等于零时,则x=_________。

例13。

已知a+b=3,ab=1,则a b +b a的值等于_______。

例14.计算:222x x x +--2144x x x --+。

例15.计算:21x x --x-1 例16.先化简,再求值:3a a --263a a a +-+3a ,其中a=32。

5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n aa 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:m n m n a a a+•=; (2)幂的乘方:()m n mn a a=;(3)积的乘方:()n n n ab a b =; (4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)商的乘方:()nn n a a b b=;(b ≠0);a c ac a c a d ad b d bd b d b c bc •=÷=•=()nn n a a b b =7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题v v v 顺水水流静水=+、v v v 顺水水流静水=-例17.解方程。

(1)623-=x x (2)1613122-=-++x x x (3)01152=+-+x x (4)xx x 38741836---=- 例18.X 为何值时,代数式x x x x 231392---++的值等于2? 例19.若方程122423=+-+x x 有增根,则增根应是( ) 变式练习:已知分式方程xk x --=+-22321有增根,则______=k ; 8.科学记数法:把一个数表示成n a 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)例20.若25102=x ,则x -10等于( )。

A.51- B.51 C.501 D.6251 例21.若31=+-a a ,则22-+a a 等于( )。

A. 9B. 1C. 7D. 11例22.计算:(1)10123)326(34--⎪⎭⎫ ⎝⎛⋅-⋅- (2)()32132----xy b a例23.人类的遗传物质就是DNA,人类的DNA 是很长的链,最短的22号染色体也长达3000000个核苷酸,这个数用科学记数法表示是___________。

例24.计算()()___________1031032125=⨯÷⨯--。

例25.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为_________。

习题:一、选择题1.下列式子是分式的是( )A .2xB .x 2C .πxD .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am a n m n ++= 3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293mm m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c b a +的值是( ) A .54 B. 47 C.1 D.45 变式练习:如果32=b a 且2≠a ,那么51-++-b a b a 等于( ) A.0 B .51 C .51- D .没有意义8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程( )A .1%206060++=x x B. 1%206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x 10. 如果3553=-+-mA m ,那么A=( ) A.8-m B.m -2 C.m 318- D.123-m 变式练习:已知:()()5252223--+=-+-x b x a x x x ,则_______=+b a ; 二、填空题11.计算2323()a b a b --÷= .12.用科学记数法表示—0.000 000 0314= . 13.计算22142a a a -=-- . 14.方程3470x x=-的解是 . 15.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门。

请你尝试用含你n 的式子表示巴尔末公式 .16.如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (结果用含n 的代数式表示). 三、解答题17.计算: (1))2(216322b a a bc a b -⋅÷ (2)9323496222-⋅+-÷-+-a a b a ba a .(3)222412()2144x x x x x x x ---⋅-+-+ (4) 2142122+⨯--÷⎪⎭⎫ ⎝⎛+-a a a a a a a18.解方程求x :(1)114112=---+x x x (2)0(,0)1m n m n mn x x -=≠≠+(3)45151=---+x x x (4)1313122-+=+--x x x x 19.有一道题: “先化简,再求值:22241()244x x x x x -+÷+-- 其中,x=—3”. 小玲做题时把“x=—3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?20.今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。

相关文档
最新文档