常见废水处理技术方法物理化学法

合集下载

常见污水处理工艺介绍

常见污水处理工艺介绍

常见污水处理工艺介绍一.物理法:1.沉淀法:主要去除废水中无机颗粒及SS2.过滤法:主要去除废水中SS和油类物质等3.隔油:去除可浮油和分散油4.气浮法:油水分离、有用物质的回收及相对密度接近于1水的密度近似1的悬浮固体5.离心分离:微小SS的去除6.磁力分离:去除沉淀法难以去除的SS和胶体等二.化学法:1.混凝沉淀法:去除胶体及细2.中和法:酸碱废水的处理3.氧化还原法:有毒物质、难生物降解物质的去除4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除三.物理化学法:1.吸附法:少量重金属离子、难生物降解有机物、脱色除臭等2.离子交换法:回收贵重金属,放射性废水、有机废水等3.萃取法:难生物降解有机物、重金属离子等4.吹脱和汽提:溶解性和易挥发物质的去除.重点介绍随着各种工艺不断改进,原有缺点不断被修正,因此只列出各种工艺的优点四.生物法1.活性污泥法:中微生物micro-organism悬浮在水中的各种方法的统称.1SBR法序列间歇式活性污泥法Sequencing Batch Reactor Activated Sludge Process的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法.工艺流程图:SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统.优点:1工艺简单,节省费用2理想的推流过程使生化反应推力大、效率高3运行方式灵活,脱氮除磷效果好4防治污泥膨胀的最好工艺5耐冲击负荷、处理能力强2CASS法CASS法是SBR法的改进型,特点是占地小、运行费用低、技术成熟、工艺稳定. CASS法是在CASS反应池前部设置生物选择区,后部设置可升降的自动滗水装置.工艺流程图:3AO法AO工艺法也叫厌氧好氧工艺法,AAnacrobic是厌氧段,用与脱氮除磷;OOxic是好氧段,用于除水中的有机物.工艺流程图:优点:1系统简单,运行费低,占地小2以原污水中的含碳有机物和内源代谢产物为碳源,节省了投加外碳源的费用3好氧池在后,可进一步去除有机物4缺氧池在先,由于反硝化消耗了部分碳源有机物,可减轻好氧池负荷5反硝化产生的碱度可补偿硝化过程对碱度的消耗4AAO法AAO法又称法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称厌氧-缺氧-好氧法,是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果.工艺流程图:优点:1本工艺在系统上可以称为最简单的同步脱氮除磷工艺,总水力停留时间少于其他类工艺2在厌氧缺氧、好氧交替运行条件下,丝状菌不能大量增殖,不易发生污泥丝状膨胀,SVI值一般小于1003污泥含磷高,具有较高肥效4运行中勿需投药,两个A段只用轻轻搅拌,以不增加溶解氧为度,运行费用低5氧化沟法氧化沟是活性污泥法的一种变型,其曝气池呈封闭的沟渠型,所以它在水力流态上不同于传统的活性污泥法,它是一种首尾相连的循环流曝气沟渠,污水渗入其中得到净化,最早的氧化沟渠不是由钢筋混凝土建成的,而是加以护坡处理的土沟渠,是间歇进水间歇曝气的,从这一点上来说,氧化沟最早是以序批方式处理污水的技术.工艺流程图:优点:除具有一般活性污泥法的优点外,还具有许多独特的特性:1流程简化,一般不需设初沉池.氧化沟水力停留时间和污泥龄较长,有机物去除较为彻底,剩余污泥高度稳定,污泥一般不需厌氧消化.2氧化沟具有推流特性,因此沿池长方向具有溶解氧梯度,分别形成好氧、缺氧和厌氧区.通过合理设计和控制可使N和P得到较好地去除.3操控灵活,如曝气强度可以通过调节转速或通过出水溢流堰来改变曝气机的淹没深度;交替式氧化沟各沟间交替运行的动态控制等.4在技术上具有净化程度高、耐冲击、运行稳定可靠、操作简单、运行管理方便、维修简单、投资少、能耗低等特点.2.生物膜法:利用固着在惰性材料表面的膜状生物群落处理污水或废气的方法.生物滤池法、生物接触氧化法和生物转盘法均属于此种方法.1生物滤池一种用于处理污水的生物反应器,内部填充有惰性过滤材料,材料表面生长生物群落,用以处理污染物.优点:1生物滤池的处理效果非常好,在任何季节都能满足各地最严格的环保要求.2不产生二次污染.3微生物能够依靠填料中的有机质生长,无须另外投加营养剂.因此停工后再使用启动快,且能迅速恢复最佳使用效果.4生物滤池缓冲容量大,能自动调节浓度高峰使微生物始终正常工作,耐冲击负荷的能力强.5运行采用全自动控制,非常稳定,无须人工操作.易损部件少,维护管理非常简单,基本可以实现无人管理,工人只需巡视是否有机器发生故障.6生物滤池的池体采用组装式,便于运输和安装;在增加处理容量时只需添加组件,易于实施;也便于气源分散条件下的分别处理.7此类过滤形式的生物滤池能耗非常低,在运行半年之后滤池的压力损失也只有500Pa左右.2生物转盘一种好氧处理污水的生物反应器,由水槽和一组圆盘构成,圆盘下部浸没在水中,圆盘上部暴露在空气中,表面生长有生物群落,转动的转盘周而复始接触污水和空气中的氧,使污水得到净化.优点:1具有占地面积小、结构紧凑2能耗低、处理效率高3管理方便、操作容易特别适用于中小型畜禽加工厂污水处理3生物接触氧化池结构包括池体,,布水装置,.工作原理为:在中设置填料,将其作为生物膜的载体.待处理的废水经充氧后以一定流速流经填料,与生物膜接触,生物膜与悬浮的活性污泥共同作用,达到净化废水的作用.优点:1容积负荷高,耐冲击负荷能力强2具有膜法的优点,剩余污泥量少3具有活性污泥法的优点,辅以机械设备供氧,生物活性高,泥龄短4能分解其它生物处理难分解的物质5容易管理,消除污泥上浮和膨胀等弊端3. :包括厌氧消化、池、UASB等.厌氧生物处理法是利用兼性厌氧菌和专性厌氧菌将污水中大分子有机物降解为低分子化合物,进而转化为甲烷、二氧化碳的有机污水处理方法,分为酸性消化和碱性消化两个阶段.在酸性消化阶段.由产酸菌分泌的外酶作用,使大分子有机物变成简单的有机酸和醇类、醛类氨、二氧化碳等;在碱性消化阶段,酸性消化的代谢产物在甲烷细菌作用下进一步分解成甲烷、二氧化碳等构成的生物气体.这种处理方法主要用于对高浓度的有机废水和粪便污水等处理.优点:1能耗低2可回收生物能源沼气3每去除单位质量底物产生的微生物污泥少4整个过程不需要氧气,因而不受传氧能力限制,对有机物具有很高的负载力4.自然条件下的生物处理法1稳定塘将土地进行适当的人工修整,建成池塘,并设置围堤和防渗层,依靠塘内生长的微生物来处理污水.优点:1能充分利用地形,结构简单,建设费用低.2可实现污水资源化和污水回收及再用,实现水循环,既节省了水资源,又获得了经济收益.3处理能耗低,运行维护方便,成本低.4美化环境,形成生态景观.5污泥产量少.6能承受污水水量大范围的波动,其适应能力和抗冲击和能力强.2土地处理法用土壤和植物改善水质的方法的统称.同时利用废水的水分和养分滋养土地.土地处理法主要有灌溉、漫灌和高灌率渗透三个方法.现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理.一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求.经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准.一级处理属于二级处理的预处理.二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质BOD,COD物质,去除率可达90%以上,使有机污染物达到排放标准.三级处理,进一步处理难降解的有机物、氮和磷等能够导致的可溶性无机物等.主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,,离子交换法和电渗分析法等.整个过程为通过粗的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理即物理处理,初沉池的出水进入生物处理设备,有和生物膜法,其中活性污泥法的反应器有,氧化沟等,生物膜法包括生物滤池、生物转盘、和生物流化床,生物处理设备的出水进入二次,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法.二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用.。

常见的物理化学水处理方法

常见的物理化学水处理方法

常见的物理化学水处理方法水是生命之源,无论是工业生产还是日常生活中,水的质量都是至关重要的。

为了保证水的质量,我们常常需要进行水处理。

水处理是通过物理和化学方法来改善水的质量,使其达到特定的要求。

下面将介绍一些常见的物理化学水处理方法。

1. 沉淀法沉淀法是一种常见的物理水处理方法,通过加入化学药剂使悬浮在水中的颗粒物质形成团聚并沉淀下来。

这种方法主要用于去除悬浮物、浑浊物和悬浮菌等杂质。

常用的沉淀剂包括铁盐、铝盐和钙盐等。

沉淀法处理后的水质明显改善,适用于处理饮用水、污水和工业废水等。

2. 过滤法过滤法是一种常见的物理水处理方法,通过过滤介质将水中的固体颗粒、悬浮物和胶体等杂质截留下来。

常用的过滤介质有砂子、石英砂、活性炭和陶瓷等。

过滤法可以有效去除水中的悬浮物、胶体、微生物和有机物等,适用于处理饮用水、游泳池水和工业废水等。

3. 吸附法吸附法是一种常见的物理化学水处理方法,通过吸附剂吸附水中的有机物、重金属离子和溶解性无机盐等。

常用的吸附剂有活性炭、离子交换树脂和吸附树脂等。

吸附法可以有效去除水中的有害物质和异味物质,适用于处理饮用水、游泳池水和工业废水等。

4. 气浮法气浮法是一种常见的物理水处理方法,通过将空气或气体注入水中,利用气泡与悬浮物质和胶体颗粒发生附着和升浮作用,从而实现固液分离。

气浮法主要用于去除水中的悬浮物、胶体物质和油脂等。

常见的气浮设备有气浮池和气浮机等。

气浮法处理后的水质清澈透明,适用于处理污水和工业废水等。

5. 氧化法氧化法是一种常见的化学水处理方法,通过加入氧化剂使水中的有机物和无机物发生氧化反应,从而降解和去除有害物质。

常用的氧化剂包括氯气、臭氧、次氯酸钠和高锰酸钾等。

氧化法可以有效去除水中的有机物和微污染物,适用于处理饮用水和工业废水等。

6. 加热蒸发法加热蒸发法是一种常见的物理水处理方法,通过加热水使其蒸发,从而实现水的浓缩和去除。

加热蒸发法主要用于处理含有大量溶解性固体的水,如海水和盐湖水等。

废水处理方法

废水处理方法

废水处理方法废水处理是指将工业、农业、生活等过程中产生的废水进行处理,以达到排放标准,保护环境和人类健康的目的。

废水处理方法因地区、行业、水质等因素而异,下面将介绍几种常见的废水处理方法。

首先,物理处理是废水处理的一种常见方法。

物理处理主要是通过物理手段去除废水中的悬浮物、沉淀物和浮油等杂质。

常见的物理处理方法包括筛网过滤、沉淀沉降、气浮等。

筛网过滤是利用筛网将废水中的大颗粒杂质拦截下来,沉淀沉降则是利用重力将废水中的沉淀物沉降到底部,气浮则是通过通入气体使悬浮物浮起,再进行捞取。

物理处理方法简单易行,但对于溶解性污染物和微生物等有一定局限性。

其次,化学处理是废水处理的另一种重要方法。

化学处理主要是利用化学试剂与废水中的污染物发生化学反应,达到去除或转化有害物质的目的。

常见的化学处理方法包括混凝、中和、氧化、还原等。

混凝是利用絮凝剂使微小的悬浮颗粒凝聚成较大的絮凝体,从而方便后续的沉降或过滤;中和是通过加入酸碱试剂将废水中的酸碱度调整到中性范围,以减少对环境的危害;氧化还原则是通过氧化剂和还原剂将有机物氧化分解或还原为无害物质。

化学处理方法对于溶解性有机物和重金属等有较好的去除效果,但需要谨慎选择化学试剂,避免产生次生污染。

此外,生物处理是废水处理的一种环保、经济的方法。

生物处理主要是利用微生物对废水中的有机物进行降解和转化,从而达到净化水质的目的。

常见的生物处理方法包括活性污泥法、生物膜法、生物滤池法等。

活性污泥法是将含有大量微生物的污泥与废水充分接触,使微生物降解废水中的有机物;生物膜法则是通过在填料表面形成生物膜,利用生物膜对废水进行处理;生物滤池法则是利用填料将微生物固定在表面,通过废水在填料中的渗透和微生物的降解作用来净化废水。

生物处理方法对于有机物和氨氮等有较好的去除效果,但对于重金属和难降解有机物等有一定局限性。

综上所述,废水处理方法包括物理处理、化学处理和生物处理等多种方法,各种方法之间可以相互结合,根据实际情况进行选择和应用。

电厂污水处理方法

电厂污水处理方法

电厂污水处理方法随着电力工业的快速发展,电厂所排放的废水成为环境污染的重要源头之一。

因此,电厂污水的处理变得至关重要。

本篇文章将探讨电厂污水处理的方法,涵盖传统的物理化学处理方法以及现代的生物处理技术。

一、传统的物理化学处理方法1. 沉淀法沉淀法是最常见的处理电厂污水的物理化学方法之一。

该方法通过添加化学混凝剂,使悬浮物颗粒凝聚成较大的团块,然后利用重力沉降的原理将其分离出来。

通过沉淀池和沉淀池后隔离单位的结合,电厂所排放的废水能够去除大部分悬浮物质。

2. 活性炭吸附法活性炭吸附法利用活性炭对有机物质的吸附作用来处理电厂废水中的有机污染物。

通过将废水通过活性炭床,有机物质会附着在活性炭表面上,从而达到去除有机污染物的目的。

3. 化学氧化法化学氧化法利用化学物质氧化废水中的有机物质,将其转化为无害的物质。

常用的氧化剂包括氯气、臭氧和过氧化氢等。

通过与废水充分接触并进行化学反应,电厂废水中的有机污染物可以得到有效去除。

二、现代的生物处理技术1. 厌氧处理技术厌氧处理技术是将废水置于无氧条件下进行处理的方法。

在这个过程中,厌氧菌会分解有机物质并产生甲烷气体。

相较于传统的物理化学方法,厌氧处理技术具有更好的能源回收效果,并且对于一些难降解的有机物质也能够有良好的处理效果。

2. 好氧生物处理技术好氧生物处理技术是一种利用好氧菌来分解废水中有机物质的方法。

在好氧条件下,好氧菌通过代谢将有机物质分解成较小的无害物质,同时释放出二氧化碳和水。

好氧生物处理技术除了能够有效去除有机物质外,还可以提高废水的氧化还原潜力。

3. 植物处理法植物处理法是利用植物的生长和代谢作用来处理电厂废水的方法。

通过将废水引入植物园区,植物的根系能够吸收废水中的营养物质并降解其中的有机物质。

该方法具有适用范围广、运行成本低等优点。

综上所述,电厂污水处理方法可以采用传统的物理化学处理方法,如沉淀法、活性炭吸附法和化学氧化法,也可以使用现代的生物处理技术,如厌氧处理技术、好氧生物处理技术和植物处理法。

废水处理方法

废水处理方法

废水处理方法废水处理是指对工业、农业、生活等产生的废水进行处理,使其达到排放标准或者可以再利用的过程。

废水处理方法的选择对环境保护和资源利用具有重要意义。

下面将介绍几种常见的废水处理方法。

一、物理处理方法。

物理处理方法是指通过物理手段对废水进行处理,包括过滤、沉淀、蒸馏等。

其中,过滤是利用过滤介质对废水进行过滤,去除悬浮物和颗粒物;沉淀是利用重力作用使废水中的悬浮物沉降到底部;蒸馏则是通过加热使水蒸发,蒸馏液中的有害物质得以去除。

这些物理处理方法简单易行,但对于废水中溶解性物质的处理效果较差。

二、化学处理方法。

化学处理方法是指利用化学药剂对废水进行处理,包括氧化、还原、中和、沉淀等过程。

例如,利用氯气对废水进行氧化处理,将有机物氧化成无机物;利用氢氧化铁进行沉淀处理,将废水中的重金属离子沉淀下来。

化学处理方法对废水中的有机物、重金属等有较好的处理效果,但需要投入较多的化学药剂,且产生的污泥处理也需要额外考虑。

三、生物处理方法。

生物处理方法是指利用微生物对废水中的有机物进行降解,达到净化水质的目的。

常见的生物处理方法包括活性污泥法、生物膜法、人工湿地法等。

其中,活性污泥法是通过在污水中加入活性污泥,利用微生物对有机物进行降解;生物膜法则是利用生物膜对废水进行降解处理。

生物处理方法对有机物的处理效果较好,且操作简便,但对废水中的重金属等无机物处理效果较差。

四、综合处理方法。

综合处理方法是指将物理、化学、生物等多种处理方法结合起来进行废水处理。

例如,先利用物理方法去除废水中的悬浮物和颗粒物,然后再利用化学方法对有机物和重金属进行处理,最后再利用生物方法进行二次净化。

综合处理方法能够充分发挥各种处理方法的优势,达到更好的处理效果,但投资和运行成本也相对较高。

综上所述,废水处理方法的选择应根据废水的性质、排放标准和经济成本等因素进行综合考虑。

不同的废水可能需要采用不同的处理方法,甚至需要多种方法结合使用。

废水中的除氮方法

废水中的除氮方法

废水中的除氮方法
目前常用的废水除氮方法包括生物法、物理化学法和膜法。

1. 生物法:生物法是通过利用细菌、微生物等生物体来降解废水中的氮化物。

常见的生物法包括曝气法、缺氧法、脱氮好氧法等。

其中,曝气法是最常用的方法,通过给废水供氧使氨氮转变为硝氮,再通过反硝化反应将硝氮还原为氮气从而除氮。

2. 物理化学法:物理化学法是利用化学反应和物理过程来除去废水中的氮化物。

常见的物理化学法包括化学沉淀法、吸附法、氧化还原法等。

其中,化学沉淀法是通过加入适当的化学药剂使废水中的氮化物产生沉淀,从而实现除氮的目的。

3. 膜法:膜法是利用特殊的过滤膜来分离和去除废水中的氮化物。

常见的膜法包括微滤、超滤、纳滤和反渗透等。

这些膜可以通过筛选的方式将废水中的氮化物分离出来,达到除氮的效果。

以上是目前常用的废水除氮方法,不同的方法适用于不同的废水处理场景,具体选择何种方法需根据实际情况综合考虑。

3-污水处理方法-物理化学篇

3-污水处理方法-物理化学篇
33
氧化沟工艺
工艺组成
原理:A/O工艺的多级串联 A段:距曝气机下游较远的区域; O段:距曝气机下游较近的区域; 特点:循环水流—混合条件好, 传质效果佳。
氧化沟 回流污泥 污 泥 污泥泵房 剩余污泥 预处理后的污 水 转刷 二沉池 处理水
工艺变革
工艺变革:前端增设厌氧池,相当于A2/O工艺; 设备变革:出现微孔曝气氧化沟;
交换吸附:溶质的离子由于静电引力作用聚集在吸附剂表面的带电点上。 物理吸附:溶质与吸附剂之间由于分子间力(范德华力)而产生的吸附
化学吸附:是溶质与吸附剂发生化学反应,形成牢固的吸附化学键和表
面配合物的过程。 活性炭是目前应用最为广泛的吸附剂。
7
微孔
大孔
中孔
中孔
微孔
粒状活性炭
5E功能材料
吸附质 吸附相 纤维本体
采用本法前废水一般均需预处理,先除去水中的悬浮物、油渍、有
害气体等,有时还要调整pH,以便提高处理效果。
3
物理化学处理法的常用工艺形式
物理化学处理法的常用工艺形式:
离子交换 利用离子交换树脂对水中某种离子优先交换的性能而去除水中某些
离子的方法。常用工艺形式有阳床、阴床、混床等;
膜分离 微滤、超滤、纳滤、反渗透、电渗析等; 吸附 分物理吸附、化学吸附、离子吸附三种类型,常用活性炭吸附塔、 炉渣或粉煤灰吸附塔等; 萃取、吹脱、气提
消化池 污泥脱水机械 沼气利用设备 典型污泥处理工艺 剩余污泥→浓缩→(消化)→脱水→(干化) →资源源利用或填埋或焚烧
生物处理法还可去除营养元素氮和磷。
分解代谢 (异化作用) 微生物的 新陈代谢 合成代谢 (同化作用) 微生物增殖
15
复杂物质分解 为简单物质 + 能量

废水处理方法有哪些

废水处理方法有哪些

废水处理方法有哪些
废水处理是指对工业生产、生活污水等产生的废水进行处理,以达到排放标准或者再利用的目的。

废水处理方法主要包括物理方法、化学方法和生物方法三种。

物理方法是指利用物理原理对废水进行处理的方法,常见的物理方法包括沉淀、过滤、吸附等。

沉淀是通过重力作用将废水中的悬浮物沉降到底部,达到去除固体悬浮物的目的。

过滤则是通过过滤介质将废水中的固体颗粒截留下来,达到过滤净化的目的。

吸附则是利用吸附剂吸附废水中的有害物质,达到净化废水的目的。

化学方法是指利用化学药剂对废水进行处理的方法,常见的化学方法包括氧化、还原、中和等。

氧化是通过氧化剂将废水中的有机物氧化成无机物,达到去除有机物的目的。

还原则是将废水中的氧化性物质还原成无害物质,达到去除氧化性物质的目的。

中和则是通过加入酸碱中和剂将废水中的酸碱物质中和成中性物质,达到调节废水PH值的目的。

生物方法是指利用微生物对废水进行处理的方法,常见的生物方法包括好氧处理、厌氧处理、生物膜法等。

好氧处理是指利用好
氧微生物将废水中的有机物降解成无机物,达到净化废水的目的。

厌氧处理则是利用厌氧微生物将废水中的有机物降解成沼气和沉淀物,达到净化废水的目的。

生物膜法是在填料表面生长大量微生物膜,利用微生物对废水进行处理,达到净化废水的目的。

综上所述,废水处理方法包括物理方法、化学方法和生物方法三种,不同的废水可以采用不同的处理方法,以达到净化废水的目的。

在实际应用中,也可以采用物理、化学和生物方法相结合的综合处理方法,以提高废水处理的效果。

希望本文所述内容对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见废水处理技术方法物理化学法(1)了解离子交换法:离子交换反应原理、离子交换剂的种类和性质离子交换树脂的原理离子交换树脂是一类具有离子交换功能的高分子材料。

在溶液中它能将本身的离子与溶液中的同号离子进行交换。

按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。

阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。

例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为2R—SO3H+Ca2+—(R—SO3)2Ca+2H+这也是硬水软化的原理。

阴离子交换树脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团。

它们在水中能生成OH-离子,可与各种阴离子起交换作用,其交换原理为R—N(CH3)3OH+Cl- R—N(CH3)3Cl+OH-由于离子交换作用是可逆的,因此用过的离子交换树脂一般用适当浓度的无机酸或碱进行洗涤,可恢复到原状态而重复使用,这一过程称为再生。

阳离子交换树脂可用稀盐酸、稀硫酸等溶液淋洗;阴离子交换树脂可用氢氧化钠等溶液处理,进行再生。

离子交换树脂的用途很广,主要用于分离和提纯。

例如用于硬水软化和制取去离子水、回收工业废水中的金属、分离稀有金属和贵金属、分离和提纯抗生素等。

离子交换树脂的基本类型(1) 强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。

树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。

这两个反应使树脂中的H+与溶液中的阳离子互相交换。

强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。

树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。

如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

(2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。

树脂离解后余下的负电基团,如R-COO -(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。

这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。

这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。

(3)强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。

这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。

这种树脂的离解性很强,在不同pH下都能正常工作。

它用强碱(如NaOH)进行再生。

(4) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。

这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。

这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。

它只能在中性或酸性条件(如pH1~9)下工作。

它可用Na2CO3、NH4OH进行再生。

(5) 离子树脂的转型以上是树脂的四种基本类型。

在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。

例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。

工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。

反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。

这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。

又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。

氯型树脂也可转变为碳酸氢型(HCO3-)运行。

强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH 范围宽广等。

离子交换树脂的构造和特性(2)熟悉膜分离技术:电渗析、反渗透、超滤A、电渗析原理渗析是指溶液中溶质通过半透膜的现象。

自然渗析的推动力是半透膜两侧溶质的浓度差。

在直流电场的作用下,离子透过选择性离子交换膜的现象称为电渗析。

离子交换膜是由高分子材料制成的对离子具有选择透过性的薄膜。

主要分阳离子交换膜(CM,简称阳膜)和阴离子交换膜(AM,简称阴膜)两种。

阳膜由于膜体固定基带有负电荷离子,可选择透过阳离子;阴膜由于膜体固定基带有正电荷离子,可选择透过阴离子。

阳膜透过阳离子,阴膜透过阴离子的性能称为膜的选择透过性。

电渗析过程最基本的工作单元称为膜对。

一个膜对构成一个脱盐室和一个浓缩室。

一台实用电渗析器由数百个膜对组成。

图3.2-1简明地示出电渗析器工作原理。

电渗析器的主要部件为阴、阳离子交换膜,隔板与电极三部分。

隔板构成的隔室为液流经过的通道。

淡水经过的隔室为脱盐室,浓水经过的隔室为浓缩室。

若把阴、阳离子交换膜与浓、淡水隔板交替排列,重复叠加,再加上一对端电极,就构成了一台实用电渗析器。

若电渗析器各系统进液都为NaCl溶液,在通电情况下,淡水隔室中的Na+向阴极方向迁移,Cl-向阳极方向迁移,Na+与Cl-就分别透过CM与AM迁移到相邻的隔室中去。

这样淡水隔室中的NaCl溶液浓度便逐渐降低。

相邻隔室,即浓水隔室中的NaCl溶液浓度相应逐渐升高,从电渗析器中就能源源不断地流出淡化液与浓缩液。

淡水水路系统、浓水水路系统与极水水路系统的液流由水泵供给,互不相混,并通过特殊设计的布、集水机构使其在电渗析内部均匀分布,稳定流动。

从供电网供给的交流电,经整流器变为直流电,由电极引入电渗析器。

经过在电极溶液界面上的电化学反应,完成由电子导电转化为离子导电的过程。

用夹紧板紧固在一起的膜堆部分称为电渗析器。

电渗析要进行工作,必须有水泵、整流器等辅助设备,还必须有进水预处理设施。

通常把电渗析器及辅助设备总称为电渗析装置。

就过程基本原理而言,电渗析技术至少有以下四方面的用途。

(1)从电解质溶液中分离出部分离子,使电解质溶液的浓度降低。

如海水、苦咸水淡化制取饮用水与工业用水;工业用初级纯水的制备;废水处理等。

特别苦咸水淡化是目前电渗析技术最成熟、应用最广泛的领域。

(2)把溶液中部分电解质离子转移到另一溶液系统中去,并使其浓度增高。

海水浓缩制盐是这方面成功应用的典型例子。

又如化工产品的精制、工业废液中有用成分的回收等也属于这方面的应用。

(3)从有机溶液中去除电解质离子。

目前主要用于食品和医药工业。

在乳清脱盐、糖类脱盐和氨基酸精制中应用得比较成功。

(4)电解质溶液中同电性具有不同电荷的离子的分离和同电性同电荷离子的分离。

使用只允许一价离子透过的离子交换膜浓缩海水制盐,是前者工业化应用的实例;后者因无实用的膜,处于开发研究阶段,如卤水中锂的分离已研究多年。

B、反渗透原理反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。

对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。

从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。

若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。

反渗透装置(简称RO装置)在除盐系统中属关键设备,装置利用膜分离技术除去水中大部份离子、SiO2等,大幅降低TDS、减轻后续除盐设备的运行负荷。

RO 是将原水中的一部分沿与膜垂直的方向通过膜,水中的盐类和胶体物质将在膜表面浓缩,剩余一部分原水沿与膜平行的方向将浓缩的物质带走,在运行过程中自清洗。

膜元件的水通量越大,回收率越高则其膜表面浓缩的程度越高,由于浓缩作用,膜表面处的物质溶度高于主体水流中物质浓度,产生所谓的浓差极化现象。

浓差极化会使膜表面盐的浓度高,增大膜的渗透压,引起盐透过率增大,为提高给水的压力而需要多消耗能量,因此在运行过程中必须采用合适的措施(例如增大浓水侧水的湍流度)减少浓差极化的程度。

RO膜进水水质标准进水压力≥0.2MPa进水温度5~40℃进水pH=4~9总溶解性固体TDS≤1000mg/L余氯≤0.05mg/LSDI≤5总铁Fe≤0.1mg/LCOD≤1.5mg/LTOC≤2mg/LNTU≤0.5mg/L影响反渗透性能的因素进水水质的影响a、色度、浊度和胶体有机物:悬浮物和胶体物质非常容易堵塞RO膜,使透水率很快下降,脱盐率降低;b、氧化剂:氧化剂会使复合膜性能恶化,水中含游离氯时,通常用活性炭吸附或加注还原剂,使游离氯还原到指标值以下;c、PH值:控制PH值的目的主要是防止(CaCO3)析出后形成水垢;d、铁、锰、铝等重金属氧化物:其含量高时,在膜表面易形成氢氧化物胶体,产生沉积现象;e、细菌、微生物:细菌繁殖会污染膜并恶化水质;f、硫酸根(SO42-),二氧化硅(SiO2):水中含有多量硫酸根时,易产生硫酸钙沉淀,含有多量SiO2时,也易产生沉淀,为防止沉淀,当浓水CaSO4溶度积>19×10-5时,可加注六偏磷酸钠,尽量避免浓水中SiO2含量超过100mg/L。

运行因素的影响a、压力渗透液通量随作用压力成线型增加,而渗透液的含盐量随作用压力而减少。

b、温度若其他参数保持固定只增加温度,渗透液通量及盐通过量都随之增加,但渗透液通量变化更为明显(见图3),一般来说,温度每提高1℃,透水量增加1-3%,而一般膜的额定通量是在25℃时给出的,下表8标示了不同温度下产水量修正系数。

实际产水量=额定产水量(25℃时)/修正系数。

C、超滤原理超滤是采用中空纤维过滤新技术,配合三级预处理过滤清除自来水中杂质;超滤微孔小于0.01微米,能彻底滤除水中的细菌、铁锈、胶体等有害物质,保留水中原有的微量元素和矿物质。

超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。

超滤原理也是一种膜分离过程原理,超滤利用一种压力活性膜,在外界推动力(压力)作用下截留水中胶体、颗粒和分子量相对较高的物质,而水和小的溶质颗粒透过膜的分离过程。

通过膜表面的微孔筛选可截留分子量为30000—10000的物质。

当被处理水借助于外界压力的作用以一定的流速通过膜表面时,水分子和分子量小于300—500的溶质透过膜,而大于膜孔的微粒、大分子等由于筛分作用被截留,从而使水得到净化。

也就是说,当水通过超滤膜后,可将水中含有的大部分胶体硅除去,同时可去除大量的有机物等。

相关文档
最新文档