一般离散无记忆信道容量的迭代计算
(最新整理)信道容量的计算

(完整)信道容量的计算编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)信道容量的计算)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)信道容量的计算的全部内容。
§4.2信道容量的计算这里,我们介绍一般离散信道的信道容量计算方法,根据信道容量的定义,就是在固定信道的条件下,对所有可能的输入概率分布)(x P 求平均互信息的极大值。
前面已知()Y X I ;是输入概率分布的上凸函数,所以极大值一定存在。
而);(Y X I 是r 个变量)}(),(),({21r x p x p x p 的多元函数。
并且满足1)(1=∑=ri i x p 。
所以可用拉格朗日乘子法来计算这个条件极值。
引入一个函数:∑-=ii x p Y X I )();(λφ解方程组0)(])();([)(=∑∂-∂∂∂i ii i x p x p Y X I x p λφ1)(=∑iix p (4.2。
1)可以先解出达到极值的概率分布和拉格朗日乘子λ的值,然后在解出信道容量C .因为 )()(log)()();(11i i i i i ri sj i y p x y Q x y Q x p Y X I ∑∑===而)()()(1i i ri i i x y Q x p y p ∑==,所以e e y p y p i i i i i x y Q i x p i x p log log ))(ln ()(log )()()(==∂∂∂∂。
解(4.2。
1)式有0log )()()()()()(log )(111=--∑∑∑===λe y p x y Q x y Q x p y p x y Q x y Q ii i ii r i s j i i i i sj i i (对r i ,,2,1 =都成立) 又因为)()()(1j k k rk k y p x y Q x p =∑=ri x y Q sj i j,,2,1,1)(1==∑=所以(4.2.1)式方程组可以转化为 ),,2,1(log )()(log)(1r i e y p x y Q x y Q j i j sj i j =+=∑=λ1)(1=∑=ri i x p假设使得平均互信息);(Y X I 达到极值的输入概率分布},,{21r p p p 这样有 e y p x y Q x y Q x p j i j i j ri sj i log )()(log)()(11+=∑∑==λ从而上式左边即为信道容量,得 e C log +=λ 现在令)()(log)();(1j i j sj i j i y p x y Q x y Q Y x I ∑==式中,);(Y x I i 是输出端接收到Y 后获得关于i x X =的信息量,即是信源符号i x X =对输出端Y 平均提供的互信息。
离散信道容量迭代实现

中文摘要信道是信息传递的通道,承担信息的传输和储存的任务,是构成通信系统的重要组成部分。
信道容量是指信道能够传输信息量的大小。
信道容量的研究在现实中有着非常重要的理论意义。
而信道容量的计算是一个比较复杂的问题,所以我们要借助于数学软件Matlab来解决这个难题。
本文的第一部分从信道容量的基本概念、基本原理、信道模型及分类等方面系统的介绍了信道容量。
并在此基础上,介绍了一般信道容量的计算步骤。
本文的第二部分开始介绍信道容量的迭代算法及迭代算法在Matlab中的实现,举例检验迭代算法在Matlab中实现的程序的可行性关键词信道容量 Matlab 迭代算法AbstractChannel is a channel of information transmission. And it take on the task of information transmission and storage. Channel is an important part of communication system. Channel capacity is the size of the amount of information can be transmitted. It has important significances in reality. However, calculating the channel capacity is a complex issue. So we must use the mathematical software Matlab to solve this problem.The first part of the article, it introduces channel capacity by the basic concepts, principles and the classification of channel models. On this basis, introduce and discuss the calculation steps of the general channel capacity.The second part of the article, it introduces the Iterative algorithm of the channel capacity and implementes the iterative algorithm in Matlab. After that, by realizing the feasibility of the procedure, we make some examples. And also analyze the procedure.Key word :channel capacity、matlab目录引言 (6)1、离散信道的数学模型 (6)2、信道容量和最佳输入概率分布 (6)2.1信道容量 (6)2.2最佳输入概率分布 (7)3、信道容量和平均互信息的计算步骤 (7)3.1平均互信息的计算 (7)3.2信道容量的计算 (7)4、信道容量的迭代算法 (8)5、实例分析 (9)结论 (10)参考文献 (11)附 (12)引言本文主要结合实例对离散信道及其信道容量进行相关阐述,及用迭代算法实现离散信道容量1、离散信道的数学模型设离散信道的输入为一个随机变量X ,相应的输出的随机变量为Y ,如图所示: 规定一个离散信道应有三个参数: 输入信号:X={X1, X2, …, XN} 输出信号:Y={Y1, Y2, …, YN}信道转移概率:P(y|x) 描述了输入信号和输出信号之间的依赖关系 。
信道容量matlab,离散无记忆信道容量的matlab算法

信道容量matlab,离散⽆记忆信道容量的matlab算法《离散⽆记忆信道容量的matlab算法》由会员分享,可在线阅读,更多相关《离散⽆记忆信道容量的matlab算法(2页珍藏版)》请在⼈⼈⽂库⽹上搜索。
1、functionI,pp=channelcapacity(P,k)%I是信道容量,pp是最佳⼊⼝分布,P是信道概率转移矩阵,k是迭代精度if nargin=k %迭代过程n=n+1;pb=zeros(1,b);%pb是输出概率for j=1:bfor i=1:apb(j)=pb(j)+pa(i)*Pji(i,j);endendsuma=zeros(1,b);for j=1:bfori=1:aPij(j,i)=pa(i)*Pji(i,j)/(pb(j)+eps); %Pij是反向概率转移矩阵suma(j)=suma(j)+pa(i)*Pji(i,j)*log2(Pij(j,i)+eps)/(p。
2、a(i)+eps);endendIo=sum(suma);%求信道容量的过程L=zeros(1,a);sumaa=0;for i=1:aforj=1:bL(i)=L(i)+Pji(i,j)*log(Pij(j,i)+eps);endaf(i)=exp(L(i);endsumaa=sum(af);fori=1:app(i)=af(i)/(sumaa+eps);endI=log2(sumaa);pa=pp;enddisp(最佳输⼊分布pa:),disp(pp);disp(输⼊的符号数a:),disp(a);disp(输出的符号数b:),disp(b);disp(信道容量I:),disp(I);disp(输出迭代精度k:),disp(k);disp(输出迭代次数n:),disp(n);检验过程:P=0.5,0.3,0.2;0.3,0.5,0.2 I=0.036 bitP=1/2,1/3,1/6;1/6,1/2,1/3;1/3,1/6,1/2 I=0.126 bit1 输⼊P=1,0;1,0;1/2,1/2;0,1;0,1回车2 channelcapacity(P) 即可。
离散信道信道容量的计算

输能力或者说能否达到信 道 容 量,取 决 于 两 点:信 源 离
散无记忆;信 源 的 输 入 概 率 分 布 是 使I(x;y)最 大 的 分 布.下面给出离散无记忆信道容量的定义:
C = maxI(X;Y); p(ai)
∑∑ 其 中I(X;Y)=
n i=1
j=m1p(ai)p(bj/ai)logpp(b(jb/ja)i)
工程管理与技术
离散信道信道容量的计算
余秀玲
(西南石油大学,四川 成都 610500)
摘 要:信道容量的计算是信道研究的核心,据 此 对 信 道 容 量 定 义 和 特 性 进 行 了 探 讨,并 研 究 了 三 种 特 殊 离 散信道的信道容量计算方法,有对称离散信道、强对 称 离 散 信 道 和 准 对 称 离 散 信 道,并 对 三 种 信 道 容 量 计 算 方 法 进行了区分与比较.最后介绍了一般离散信道的信道容量计算方法.
[5]严 新 乔 .高 职 院 校 实 施 混 合 所 有 制 办 学 的 实 践 与 探 索 ——— 以 浙 江 高 职 院 校 为 例 [J].职 业 技 术 教 育 ,2017,(11):13G16.
1 信 道 容 量 最简单的 通 信 系 统 由 信 源、信 道 和 信 宿 组 成. 对
于信道来说,在信道固定的 前 提 下,传 输 的 信 息 量 当 然 是越多越 好,因 此 信 道 容 量 问 题 是 信 道 研 究 的 重 点. 信道容量是信 道 传 输 信 息 的 最 大 能 力,由 信 道 特 性 决 定.对于特 定 的 信 道,信 道 容 量 是 个 定 值. 根 据 平 均 互信息的凸 函 数 性,平 均 互 信 息 量I(x;y)是 输 入 信 源 概率分布 {p(ai),i=1,2,������,n}的上凸函数,在固定信 道的的前提下,平均互信息 量 有 最 大 值,即 信 道 容 量 一 定存在.但是,在传输信息时,信 道 能 否 提 供 其 最 大 传
离散无记忆信道的信道容量计算实验报告PPT课件

2.信道容量算法
信道容量是互信息的最大值,首先要将信道容量求极值得问题表示 为二重交替优化问题。
(1)
• 运行结 果
(2)
实验结果(1):输入概率转移矩阵是之前例题中的概率转移矩阵,迭代 次数为11和70次,经验证,迭代程序结果比例题中的一般信道容量算 法更为精确。
实验结果(2):迭代次数为4,迭代结果为1.3219,经验算发现此输入 概率转移矩阵的实际结果为1.329,误差不大,符合要求,另外精度越 高,结果越接近。
离散无记忆信道的迭代运算
一、为什么要迭代?
(*)
(1)解方程组求出的输入分布 {P(x)}可能不唯一,因为可能有多个 极值点;
(2)需要验证求出的输入分布序列 是否符合要求。
(2)从达到DMC的信道容量的充要条件出发:
二、Blahut-Arimoto算法
1.交替优化
(2)、通过轮流固定f的其中一个自变量,对另一个没固定的 自变量求极值,由此来确定受此自变量影响下的最值。下一 次对另一个自变量也如此操作,循环往复形成迭代。
程序部分
• 程序设计思路
• (1)参数输入模块
• (2)判断模块
判断矩阵中的元素是否 >=0且<=1
判断矩阵的行相加是否 都为1
• (3)迭代模块1
• (4)迭代模块2
• (5)输出模块Байду номын сангаас
• P116 4.3 (b)
• 一般的DMC
• 一般的DMC
概率矩阵:
参考文献
[1]王育民、李晖 .《信息论与编码理论第二版》[M]北京:高等教育出版社,2013.4 96-101 [2]辛英.《离散信道容量的迭代算法及其实现》[D]山东:山东工商学院,1994 [3]徐伟业 耿苏燕 马湘蓉 冯月芹.《任意DMC信道容量的计算与仿真》[D]南京:南京工程学院 2017
离散无记忆信道的信道容量计算实验报告

感谢聆听!
2.信道容量算法
信道容量是互信息的最大值,首先要将信道容量求极值得问题表示 为二重交替优化问题。
(1)
运行结果
(2)
实验结果(1):输入概率转移矩阵是之前例题中的概率转移矩阵,迭代 次数为11和70次,经验证,迭代程序结果比例题中的一般信道容量算 法更为精确。
实验结果(2):迭代次数为4,迭代结果为1.3219,经验算发现此输入概 率转移矩阵的实际结果为1.329,误差不大,符合要求,另外精度越高, 结果越接近。
离散无记忆信道的迭代运算
一、为什么要迭代?
(1)解方程组求出的输入分布 {P(x)}可能不唯一,因为可能有多个 极值点;
(2)需要验证求出的输入分布序列 是否符合要求。
二、Blahut-Arimoto算法
1.交替优化
(2)、通过轮流固定f的其中一个自变量,对另一个没固定的 自变量求极值,由此来确定受此自变量影响下的最值。下一 次对另一个自变量也如此操作,循环往复形成迭代。
程序部分
程序设计思路
(1)参数输入模块
(2)判断模块
判断矩阵中的元素是否 >=0且<=1
判断矩阵的行相加是否 都为1
(3)迭代模块1
(4)迭代模块2
(5)输出模块
P116 4.3 (b)
一般的王育民、李晖 .《信息论与编码理论第二版》[M]北京:高等教育出版社,2013.4 96-101 [2]辛英.《离散信道容量的迭代算法及其实现》[D]山东:山东工商学院,1994 [3]徐伟业 耿苏燕 马湘蓉 冯月芹.《任意DMC信道容量的计算与仿真》[D]南京:南京工程学院 2017
一般离散无记忆信道的信道容量

8. 一般离散无记忆信道 (DMC)离散无记忆信道的信道容量定理 对前向转移概率矩阵为Q 的离散无记忆信道,其输入字母的概率分布 能使互信息 取最大值的充要条件是:其中是输入符号传送的平均互信息,C 就是这个信道的信道容量。
1(|)(;)(|)log()J j k k j k j j q b a I x a Y q b a p b ===∑**(;)|,*()0;(;)|,*()0;k p p k k p p k I x a Y C p a I x a Y C p a ====>=≤=当当*p k a ),(Q p I信道容量的迭代算法 Blahut-Arimoto 算法[]IFEND P P Q M j for xp f p ELSESTOPI C THEN I I IF f I x I P F x M j for q p p f CC Y Y j j j LC L U j j U L Ck k j k j k j ⋅=-===<-==⋅=-∈⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=∑|22||1,0/)())(max (log )(log 1,0ln exp ε设输入符号集合X , 输出符号集合Y ,P Y|X 为给定信道的前向概率传递矩阵。
r=M, s=N, 令F=[f 0 , f 1 , …, f M-1]。
设ε是一个给定的小的正数。
令,输入符号等概率分布]1,1,0[],1,1,0[-∈-∈N k M j X X Y Y j P P Q M p |,1==输出符号概率分布9. 组合信道1) 级联信道(;)(;)I X Y I X Z ≥(;)(;)and I Y Z I X Z ≥121NN k k Q Q Q Q Q ===∏ 系统的前向概率传递矩阵为:例题. 两个错误概率为p 的BSC 信道级联,求信道容量。
121NN k k Q Q Q Q Q ===∏ ⎥⎥⎦⎤⎢⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==22222122p p p p p p p p p p p p p p p p Q Q Q ))1(2(1p p H C --=解:12121(|)(|)NN N i i i p y y y x x x p y x ==∏ 1Ni i C C ==∑2) 并联信道1:并用信道21log 2iN C i C ==∑()()2i C C i p C -=the probability of each sub-channel in use:3) 并联信道2:和信道。
一般离散无记忆信道容量的迭代计算

一般离散无记忆信道容量的迭代计算信道容量的迭代算法1信道容量的迭代算法的步骤一、用了matlab 实现DMC 容量迭代的算法如下:第一步:首先要初始化信源分布:.0deta 10,1,0,1)(>>=⋯==,选置,,k r i rP k i 即选取一个精度,本次中我选deta=0.000001。
第二步:}{,)()()()(k ij i ji k i jik i k ij t p pp p t 得到反向转移概率矩阵根据式子∑=。
第三步:第四步:第五步: 若a C C C k k k det )1()()1(>-++,则执行k=k+1,然后转第二步。
直至转移条件不成立,接着执行下面的程序。
第六步:输出迭代次数k 和()1+k C 和1+k P ,程序终止。
()()()()(){}111]log exp[]log exp[+++==∑∑∑k i k i j ij k ji j ij k ji k i p P t pt p p 计算由式()()()()()()。
C t p t P I C k r i s j k ij ji k k k 10011log exp log ,+==++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡==∑∑计算由式2. Matlab实现clear;r=input('输入信源个数:');s=input('输入信宿个数:');deta=input('输入信道容量的精度: ');Q=rand(r,s); %形成r行s列随机矩阵QA=sum(Q,2); %把Q矩阵每一行相加和作为一个列矩阵AB=repmat(A,1,s); %把矩阵A的那一列复制为S列的新矩阵%判断信道转移概率矩阵输入是否正确P=input('输入信道转移矩阵P:')%从这句话开始将用下面两句代替可自动生成信道转移矩阵[r,s]=size(P);for i=1:rif(sum(P(i,:))~=1) %检测概率转移矩阵是否行和为1.error('概率转移矩阵输入有误!!')return;endfor j=1:sif(P(i,j)<0||P(i,j)>1) %检测概率转移矩阵是否负值或大于1error('概率转移矩阵输入有误!!')return;endendend%将上面的用下面两句代替可自动生成信道转移矩阵%disp('信道转移概率矩阵:')%P=Q./B 信道转移概率矩阵(每一个原矩阵的新数除以所在行的数总和)i=1:1:r; %设置循环首项为1,公差为1,末项为r(Q的行数)的循环p(i)=1/r; %原始信源分布r个信源,等概率分布disp('原始信源分布:')p(i)E=repmat(p',1,s);%把r个等概率元素组成一列,复制为s列for k=1:1:1/detam=E.*P; % m=p.*E; %后验概率的分子部分a=sum(m); %把得到的矩阵m每列相加之和构成一行su1=repmat(a,r,1);%把得到的行矩阵a复制r行,成一新矩阵sul,后验概率的分母部分t=m./su1; %后验概率矩阵n=exp(sum(P.*log(t),2)); %信源分布的分子部分su2=sum(n); %信源分布的分母部分p=n/su2; %信源分布E=repmat(p,1,s);C(k+1)=log(sum(exp(sum(P.*log(t),2))))/log(2);kk=abs(C(k+1)-C(k))/C(k+1);if(kk<=deta)break;enddisp('迭代次数:k='),disp(k)enddisp('最大信道容量时的信源分布:p='),disp(p')disp('最大信道容量:C='),disp(C(k+1))3.运行结果及分析结果分析:这两组数据都是我随机选的,都是选的信源个数为2,信宿的个数为3,选用的精度为0.000001。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般离散无记忆信道容量的迭代计算
信道容量的迭代算法
1信道容量的迭代算法的步骤
一、用了matlab 实现DMC 容量迭代的算法如下:
第一步:首先要初始化信源分布:
.0deta 10,1,0,1)(>>=⋯==,选置,,k r i r
P k i 即选取一个精度,本次中我选deta=0.000001。
第二步:}{,)
()()()(k ij i ji k i ji
k i k ij t p p
p p t 得到反向转移概率矩阵根据式子∑=。
第三步:
第四步:
第五步: 若a C C C k k k det )1()
()1(>-++,则执行k=k+1,然后转第二步。
直至转移条件不成立,
接着执行下面的程序。
第六步:输出迭代次数k 和()1+k C 和1+k P ,程序终止。
()()()()(){}111]log exp[]
log exp[+++==
∑∑∑k i k i j ij k ji j ij k ji k i p P t p
t p p 计算由式()()()()()()。
C t p t P I C k r i s j k ij ji k k k 10011log exp log ,+==++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡==∑∑计算由式
2. Matlab实现
clear;
r=input('输入信源个数:');
s=input('输入信宿个数:');
deta=input('输入信道容量的精度: ');
Q=rand(r,s); %形成r行s列随机矩阵Q
A=sum(Q,2); %把Q矩阵每一行相加和作为一个列矩阵A
B=repmat(A,1,s); %把矩阵A的那一列复制为S列的新矩阵
%判断信道转移概率矩阵输入是否正确
P=input('输入信道转移矩阵P:')%从这句话开始将用下面两句代替可自动生成信道转移矩阵
[r,s]=size(P);
for i=1:r
if(sum(P(i,:))~=1) %检测概率转移矩阵是否行和为1.
error('概率转移矩阵输入有误!!')
return;
end
for j=1:s
if(P(i,j)<0||P(i,j)>1) %检测概率转移矩阵是否负值或大于1
error('概率转移矩阵输入有误!!')
return;
end
end
end
%将上面的用下面两句代替可自动生成信道转移矩阵
%disp('信道转移概率矩阵:')
%P=Q./B 信道转移概率矩阵(每一个原矩阵的新数除以所在行的数总和)
i=1:1:r; %设置循环首项为1,公差为1,末项为r(Q的行数)的循环
p(i)=1/r; %原始信源分布r个信源,等概率分布
disp('原始信源分布:')
p(i)
E=repmat(p',1,s);%把r个等概率元素组成一列,复制为s列
for k=1:1:1/deta
m=E.*P; % m=p.*E; %后验概率的分子部分
a=sum(m); %把得到的矩阵m每列相加之和构成一行
su1=repmat(a,r,1);%把得到的行矩阵a复制r行,成一新矩阵sul,后验概率的分母部分
t=m./su1; %后验概率矩阵
n=exp(sum(P.*log(t),2)); %信源分布的分子部分
su2=sum(n); %信源分布的分母部分
p=n/su2; %信源分布
E=repmat(p,1,s);
C(k+1)=log(sum(exp(sum(P.*log(t),2))))/log(2);
kk=abs(C(k+1)-C(k))/C(k+1);
if(kk<=deta)
break;
end
disp('迭代次数:k='),disp(k)
end
disp('最大信道容量时的信源分布:p='),disp(p')
disp('最大信道容量:C='),disp(C(k+1))
3.运行结果及分析
结果分析:这两组数据都是我随机选的,都是选的信源个数为2,信宿的个数为3,选用的精度为0.000001。
然后输入信道转移矩阵P ,执行,将得到的结果代入,得到)1(+k p 后
,再进行
a C C C k k k det )1()
()1(>-++的判断,这个条件满足时继续求,再依次往下计算,直至
这个条件不满足,然后输出k 和()1+k C 和1+k P 。
总的来说这不过是将矩阵不断的代入公式,当最后的精度不大于0.000001.输出k 和()1+k C 和1+k P 。
}{,)()()()(k ij i ji k i ji
k i k ij t p p
p p t 得到反向转移概率矩阵∑=()()()()(){}111]log exp[]
log exp[+++==∑∑∑k i k i j ij k ji j
ij k ji k i p P t p
t p p 计算由式()()()()()()。
C t p t P I C k r i s j k ij ji k k k 10011log exp log ,+==++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡==∑∑计算由式)(k ij t
第二组数据:
4.心得体会
在此次matlab编程实现一般离散无记忆信道容量的迭代算法的过程中,开始我觉得这十分的困难,经过网上查阅资料和请教同学,最后才对本次设计有了一定的理解,详细理解了信道容量的迭代算法过程。
经过理解,发现这种编码其实挺简单的,最重要的是怎样用程序把它实现,这对我们的编程能力也是一次考验。