实验三 信道容量计算

合集下载

信道容量

信道容量

信道容量研究通信的科研人员总是逃不过信道容量的计算。

而且会经常使用到C=B\mathrm{Log(1+SNR)}这个公式。

所以这个信道容量到底是什么意思呢,到底是怎么来的?所以信道容量的定义是什么,怎么推导、计算,实际意义又是什么?信道容量有两种:香农容量(遍历容量)和中断容量。

香农容量信道容量是在不考虑编解码延时和复杂度的情况下,误码率趋近于零的最高传输速率。

通道容量是一个上限。

如果要以高于这个的速率传输,就要付出误码率的代价。

香农是这样描述信道容量的:存在一个输入分布,可以最大化传输信息时的互信息。

这个最大互信息就是信道容量。

至于香农为什么可以这样定义,已经严格证明了,这是信息论的内容,后面再说。

互信息那么什么是互信息(这里默认理解为信息熵)?首先互信息是描述一个信息传递过程的一个量,用来刻画这个传输过程传输了多少有价值的信息。

比如说,你暗恋一个姑娘,你想去告白但是你很忐忑,成功了就很棒,失败了可能连朋友都做不成,所以H(X)就表示这种不确定性。

有一天你终于鼓起勇气给他发告白了,正常情况下对方会回复你,可能是“你是个好人”或者“那我们明天一起去看电影吧”或者给你一个尼克杨表情包,所以互信息就是用来刻画这条携带了多少信息量。

显然“好人”和“电影”这两个信息终究是给了你一个答案,解除了你心中的不确定性,携带的信息量就是你心中本来的不确定性。

但是如果他把你当备胎,回复你一个表情包,当然表情包也是可以看出来一点点她对你的态度,所以你心中的不确定性可能减小了一点,你能感受到对方的态度是有机会的还是没有机会的,所以这个表情包的携带的信息量可能就很小,因为虽然知道了一点对方的态度,但是你还是搞不清楚对方怎么想的。

X,Y分别表示两个随机变量,因为信源发送什么信息是一个随机事件,信息熵H(X)量化了信源的平均不确定性,而接收的信息经过信道的污染,也是随机的,所以H(Y)也量化了接收信息的平均不确定性。

虽然X,Y是两个变量,但是接收到的Y 肯定和X有点关系,并不是完全独立的,那么我们就可以根据Y猜X,能缩小一些X范围,能减小一些不确定性(互信息),这个互信息用I(X,Y)表示。

信道容量(Channel Capacity)

信道容量(Channel Capacity)

信道容量(Channel Capacity)无线传输环境中,如果发端和收端均采用单天线发送和接收信号,接收信号y的数学模型可以表示为y=hx+n \tag{1} ,其中h为无线信道, x为发送信号,n为高斯加性白噪声服从正太分布 \mathcal{C}(0,\sigma^2) 。

通信相关专业的学生应该知道香农公式:公式(1)表示的无线信道容量(Channel Capacity)为C=B\log_2\left(1+\frac{P_t|h|^2}{\sigma^2} \right),\tag{2}其中B为信号带宽, P_t 为信号发射功率。

相信很多人知道结论(2),但是不明白它是怎么得到的。

下面将简单的阐述其推导过程。

阅读该过程之前,建议阅读“ 徐光宁:信息论(1)——熵、互信息、相对熵”中关于熵和互信息的定义。

对于接收端,发送信息x是一个随机变量,例如以概率p(x=a)发送x=a。

如果发送信息x对于接收端为一个确定值,那发送本身就没有任何意义。

因为发送信号x和噪声n 都是随机变量,接收信号y也是随机的。

可以引入熵来描述随机变量y所含的信息量,即H(y)=\int_y p(y)\log \frac{1}{p(y)}dy,\\其中p(y)为y的概率密度函数。

当某一时刻发送某一x后(x 此时是确定的), 收到的y的信息量为H(y|x)=\int_y p(y|x)\log \frac{1}{p(y|x)}dy,\\其中p(y|x)为y在给定x下的条件概率。

注意y因为是随机变量x和n的和,且x和n相互独立,其信息量为传输信号x和噪声n的信息量之和。

而y|x的随机性仅仅与噪声n有关,其信息量为噪声n的信息量。

互信息定义为I(x,y)=H(y)-H(y|x)\\ 。

其物理意义为随机变量y的信息量减去噪声n的信息量,等于x的信息量。

信道容量C指信道所实际传输信息量的最大值C=\max\limits_{p(x)} I(x,y) \tag{3}数学证明当x服从高斯分布 \mathcal{C}(0,P_t) 时,C in (3)取得最大值。

无线通信中的信道容量与频谱效率计算

无线通信中的信道容量与频谱效率计算

无线通信中的信道容量与频谱效率计算引言:无线通信是指通过无线电波等无线媒介进行信息传输的方式。

在现代社会中,无线通信已广泛应用于各个领域,包括移动通信、卫星通信、无线局域网等。

而了解无线通信中的信道容量与频谱效率的计算方法对于设计和优化无线通信系统至关重要。

本文将详细介绍无线通信中信道容量与频谱效率的计算步骤与方法。

一、信道容量的基本概念与计算方法1. 信道容量的定义信道容量是指在给定的频谱带宽、信号功率和信噪比条件下,信道能够承载的最大信息传输速率。

2. 香农公式香农公式是计算信道容量的基本公式,表示为:C = B*log2(1+S/N),其中C为信道容量,B为频谱带宽,S为信号功率,N为信噪比。

3. 信道容量的计算步骤a) 确定频谱带宽B。

b) 确定信号功率S。

c) 确定信噪比N。

d) 将所得参数代入香农公式,计算信道容量C。

二、频谱效率的定义与计算方法1. 频谱效率的定义频谱效率是指在给定的频谱带宽下,单位频谱资源所能承载的信息传输速率。

2. 频谱效率的计算公式频谱效率的计算公式为:SE = C / B,其中SE为频谱效率,C为信道容量,B 为频谱带宽。

3. 频谱效率的计算步骤a) 计算信道容量C。

b) 确定频谱带宽B。

c) 将所得参数代入频谱效率的计算公式,计算频谱效率SE。

三、信道容量与频谱效率的应用1. 无线通信系统设计与优化通过计算信道容量与频谱效率,可以评估无线通信系统的性能并进行系统设计与优化。

例如,在设计无线局域网系统时,可以根据信道容量和频谱效率来选择合适的调制方式、编码方式和调制阶数。

2. 频谱资源规划与管理了解频谱效率可以帮助进行频谱资源规划与管理。

在无线通信系统中,频谱资源是有限的,因此需要合理分配和利用频谱资源。

通过计算频谱效率,可以评估不同信号调制方式和系统参数对频谱资源的利用效率,从而进行合理的频谱资源规划和管理。

结论:无线通信中的信道容量与频谱效率是评估系统性能和进行系统设计与优化的重要指标。

信道容量的计算方法

信道容量的计算方法

信道容量的计算方法信道容量的计算方法:1、对于离散无记忆信道,香农公式是计算信道容量的重要方法。

香农公式为C = W log₂(1 + S/N),其中C表示信道容量,W表示信道带宽,S表示信号功率,N表示噪声功率。

2、在计算信道容量时,先确定信道带宽W的值。

例如,在一个无线通信系统中,经过测量或者根据通信标准规定,信道带宽可能是20MHz。

3、接着确定信号功率S。

信号功率可以通过功率测量仪器得到,比如在一个发射机输出端测量到的功率为10W。

4、然后确定噪声功率N。

噪声功率的确定需要考虑多种因素,如热噪声、干扰噪声等。

热噪声功率可以根据公式N₀= kT₀B计算,其中k是玻尔兹曼常数,T₀是绝对温度,B是等效噪声带宽。

在常温下,假设T₀= 290K,若等效噪声带宽与信道带宽相同为20MHz,可算出热噪声功率,再加上其他干扰噪声功率得到总的噪声功率N。

5、将确定好的W、S、N的值代入香农公式计算信道容量C。

6、对于离散有记忆信道,计算信道容量会更复杂。

需要考虑信道的记忆特性,通常采用马尔可夫链来描述信道状态的转移概率。

7、构建马尔可夫链的状态转移矩阵,矩阵中的元素表示从一个状态转移到另一个状态的概率。

8、通过求解马尔可夫链的稳态分布,结合输入符号的概率分布,利用信息论中的互信息公式来计算信道容量。

9、在多输入多输出(MIMO) 系统中,信道容量的计算又有不同。

需要考虑多个发射天线和多个接收天线之间的信道矩阵H。

10、利用矩阵H的特征值等信息,根据MIMO信道容量公式C = log₂det(I + ρHH*)计算信道容量,其中ρ是信噪比,I是单位矩阵,H*是H的共轭转置矩阵。

信道容量的计算公式

信道容量的计算公式

信道容量的计算公式
信道容量,即为一个通信系统情况下,传输单位时间所能发出信号的承载最大
量大小。

它是由通道的有效利用率、带宽以及传输信噪比(SNR)等因素共同影响
的结果,可用下面的公式来表示:
C=B \cdot log_2(1+S/N)
其中C为信道容量,单位为bps,B为信道带宽,单位为Hz,S/N为信号和噪
声之间的功率比,它表示通过此信道可以得到的信噪比,即任何一个噪声功率均等或小于其功率水平的情况都可以忽略不计。

信道容量是在可接受的噪声环境下,最大化信号的传输率的一项指标。

它的确
定性取决于信道在被激发的情况下具有的带宽和信噪比,因此,原则上讲,若把带宽B和S/N调大,信道容量也会有所增加,而若把带宽B和S/N调小,则信道容量会减少,即信道容量与带宽B、S/N成正比。

信道容量可用来衡量音频、视频等数据流在某特定带宽限制和噪声环境下传输
的能力,从而能够定制合适的通信系统结构。

因此,若想要得到高质量的通信体验,就必须了解其信道容量的大小以及构建可靠、高效的通信系统。

信息论基础——信道容量的计算

信息论基础——信道容量的计算
p
p p1 p 1
将p=3/5代入(2),得到信道容为:C=0.32bit/sym.
20
信道容量的计算
2 达到信道容量输入分布的充要条件

I (xi ;Y )
s j 1
p( y j
|
xi ) log
p( y j | xi ) p( yj )
def
D(Q( y |
x) ||
p( y))
定理4.2.2 一般离散信道的互信息I(X;Y)达到极大值
1 信道容量的计算原理
C是选择不同的输入概率分布p(x),在满足
∑p(x)=1条件下,求互信息的极大值:
I(X ;Y )
r i 1
s j 1
p(xi ) p( y j | xi ) log
p( y j | xi ) p(yj )
Lagrange乘子

17
信道容量的计算
例1、设某二进制数字传输系统接收判决器
6
数据可靠传输和信道编码
4.1 离散无记忆信道和信道容量 4.2 信道容量的计算
4.3 信道编码理论 4.4 带反馈的信道模型 4.5 联合信源-信道编码定理 4.6 线性分组码 习题四
7
8
接入信道容量的分析与寻呼信道不一样,寻呼信道用于前 向链路,容量的分析主要在于对寻呼信道占用率的计算, 而接入信道用于反向链路,对 CDMA 系统来说,反向链 路容量主要用于干扰的分析。即使采用时隙化的随机接入 协议,接入信道也可能有较高的通过量,大量的接入业务 会在反向链路中产生无法接受的干扰。如前所述,第一个 接入试探失败后,下一个接入试探将增加一定量的功率, 最终的结果将导致小区接收功率的增加以及反向链路容量 的减少。

信道容量的一般计算方法

信道容量的一般计算方法

信道容量的一般计算方法
信道容量是指在给定带宽条件下,信道可以传输的最大数据速率。

信道容量的计算是通过信道的带宽和信噪比之间的关系来确定的。

Step 1: 确定信道带宽(B)
信道带宽是指信道能够传输信号的频率范围,通常以赫兹(Hz)为单位。

确定信道带宽是计算信道容量的第一步。

Step 2: 确定信噪比(SNR)
信噪比是指信号和噪声的比例,以分贝(dB)为单位。

信噪比越高,信道传输的可靠性越高。

信噪比的计算需要根据具体信道的特性和环境条件进行。

Step 3: 计算信道的最大传输速率(C)
根据香农定理(Shannon's theorem),信道的最大传输速率(C)可以通过以下公式计算:
C = B * log2(1 + SNR)
其中,B为信道的带宽,SNR为信噪比。

这个公式表明,信道容量与信道带宽和信噪比的对数成正比。

Step 4: 优化信噪比以提高信道容量
为了提高信道容量,可以采取一些措施来优化信噪比,例如增加发射功率、减少噪声源、改善接收设备等。

Step 5: 考虑误码率和纠错编码
实际的信道容量还需要考虑误码率和纠错编码。

误码率是指在信道传
输过程中出现错误比特的概率,而纠错编码是一种冗余编码技术,可以在
接收端纠正部分错误。

综上所述,信道容量的计算方法主要包括确定信道带宽、信噪比和使
用香农定理计算最大传输速率。

通过优化信噪比和考虑误码率和纠错编码,可以进一步提高信道容量。

这些方法可以用于计算各种无线通信系统、光
纤通信系统等的信道容量,并对系统性能进行评估和优化。

信道容量的计算

信道容量的计算
可见,此假设分布满足定理,因此,信道容量
(bit/符号)
最佳分布是
若设输入分布为 。同理可得 ,根据定理有
从而,输入分布 也是最佳分布,可见,信道最佳输入分布不是唯一的。
对于一般的离散信道,我们很难利用特殊计算方法,因此只能采用解方程组式()的方法。
我们将()式的前r个方程组改写成
移项后得
令 ,代入上式得
化为矩阵形式为
这是含有 个未知数 个方程的非齐次线性方程组。
如果设 ,信道矩阵 为非奇异矩阵,则此方程组有解,并且可以求出 的数值,然后根据 求得信道容量
(bit/符号)
由这个 值可解得对应的输出概论分布 。
再根据 即可解出达到信道容量的最佳输入分布 。
下面给出一例。
例设离散无记忆信道输入 的符号集为 ,输出 的符号集为 ,如图所示。其信道矩阵为
上式只与対称信道矩阵中行矢量 和输出符号集的个数s有关。
证明

由于信道的对称性,所以 与 无关,为一常熟,即
接着举一个例子加以说明。
例某对称离散信倒的信道矩阵为
用公式计算信道容量
(bit/符号)
定义若信道矩阵Q的列可以划分成若干互不相交的子集矩阵 ,即 且 。由 为列组成的矩阵 是对称矩阵,则称信道矩阵Q所对应的信道为准对称信道。
如果信道的噪声熵 ,则此信道容量为
(bit/符号)
这里输出信源符Y的符号个数为s.
定义一个信道Q称为对称离散信道,如果它满足下面的性质:
(1)信道Q矩阵中每一行是另一行的置换;
(2)每一列式另一列的置称离散信道。
定义对称离散信道的信道容量为
(bit/符号)
只有当输入符号 互相独立,且输入符号 的概率分布达到各子信道容量的概率分布时,独立并联信道的信道容量才等于各信道容量之和,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三信道容量计算
一、实验目的:
了解对称信道与非对称信道容量的计算方法。

二、实验原理:
信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。

本实验利用信道容量的算法,使用计算机完成信道容量的计算。

实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。

其所有分量P (i)均不为0。

按照如下方法进行操作:
具体方法:
1、计算q(j)=∑
i
j
i
pyx
i
p)
,(
*)(,pyx(i,j)为信道转移概率
2、计算a(i)
先算中间变量d(i)=∑
j
j
q
j
i
pyx
j
i
pyx)
(
/)
,(
log(
*)
,(
然后,a(i)=exp(d(i))
3、计算中间变量U=∑
i
i
p i
a)(
*)(
4、计算IL=log2(u)
5、计算IU=log2(max(a(i))
6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。

①重新计算p(i)=p(i)*a(i)/U
②计算q(j),方法同1
③计算a(i),方法同2
④计算中间变量U=∑
i
i
p i
a)(
*)(
⑤计算IL=log2(u)
⑥计算IU=log2(max(a(i))
⑦计次变量n=n+1
返回6判断循环条件是否满足。

四、实验内容:
假设离散无记忆二元信道如图所示,编程,完成下列信道容量的计算
2e
1. 令120.1e e p p ==和120.01e e p p ==,先计算出信道转移矩阵,分别计算该对称信道的信道容量和最佳分布,将用程序计算的结果与用对称信道容量计算公式的结果进行比较,并贴到实验报告上。

2. 令10.15e p =,20.1e p =和10.075e p =20.01e p =,分别计算该信道的信道容量和最佳分布;
四、实验要求:
在实验报告中给出源代码,写出信道对应的条件转移矩阵,计算出相应结果。

并定性讨论信道容量与信道参数之间的关系。

附:程序参考代码(matlab)。

相关文档
最新文档