大学物理相对论复习提纲讲解
大学物理上册(第五版)重点总结归纳及试题详解第十五章狭义相对论基础

⼤学物理上册(第五版)重点总结归纳及试题详解第⼗五章狭义相对论基础第⼗五章狭义相对论基础⼀、基本要求1. 理解爱因斯坦狭义相对论的两个基本假设。
2. 了解洛仑兹变换及其与伽利略变换的关系;掌握狭义相对论中同时的相对性,以及长度收缩和时间膨胀的概念,并能正确进⾏计算。
3. 了解相对论时空观与绝对时空观的根本区别。
4. 理解狭义相对论中质量和速度的关系,质量和动量、动能和能量的关系,并能分析计算⼀些简单问题。
⼆、基本内容1.⽜顿时空观⽜顿⼒学的时空观认为,物体运动虽然在时间和空间中进⾏,但时间的流逝和空间的性质与物体的运动彼此没有任何联系。
按⽜顿的说法是“绝对空间,就其本性⽽⾔,与外界任何事物⽆关,⽽永远是相同的和不动的。
”,“绝对的,真正的和数学的时间⾃⼰流逝着,并由于它的本性⽽均匀地与任何外界对象⽆关地流逝着。
”以上就构成了⽜顿的绝对时空观,即长度和时间的测量与参照系⽆关。
2.⼒学相对性原理所有惯性系中⼒学规律都相同,这就是⼒学相对性原理(也称伽利略相对性原理)。
⼒学相对性原理也可表述为:在⼀惯性系中不可能通过⼒学实验来确定该惯性系相对于其他惯性系的运动。
3. 狭义相对论的两条基本原理(1)爱因斯坦相对性原理:物理规律对所有惯性系都是⼀样的,不存在任何⼀个特殊的(例如“绝对静⽌”的)惯性系。
爱因斯坦相对论原理是伽利略相对性原理(或⼒学相对性原理)的推⼴,它使相对性原理不仅适⽤于⼒学现象,⽽且适⽤于所有物理现象。
(2)光速不变原理:在任何惯性系中,光在真空中的速度都相等。
光速不变原理是当时的重⼤发现,它直接否定了伽利略变换。
按伽利略变换,光速是与观察者和光源之间的相对运动有关的。
这⼀原理是⾮常重要的。
没有光速不变原理,则爱因斯坦相对性原理也就不成⽴了。
这两条基本原理表⽰了狭义相对论的时空观。
4. 洛仑兹变换()--='='='--='2222211c u xc u t t z z y y c u ut x x (K 系->'K 系)()-'+'='='=-'+'=2222211c u x c u t t z z y y c u t u x x (K 系->'K 系)令u c β=,γ=①当0→β,γ=1得ut x x -=',,',','t t z z y y ===洛仑兹变换就变成伽利略变换。
大一相对论知识点

大一相对论知识点相对论是物理学中的重要分支之一,它主要研究物体在高速运动或强引力场中的行为规律。
相对论由爱因斯坦在20世纪初提出,引起了物理学界的广泛关注和深入研究。
本文将介绍大一相对论学习中的重点知识点,帮助读者全面了解相对论的基本概念和原理。
一、狭义相对论狭义相对论是相对论的基础,它基于两个基本原理:光速不变原理和等效原理。
狭义相对论主要包括以下几个知识点:1. 雷射定理雷射定理指出,任何惯性系中的物体在光速下运动时,其时间、空间坐标和质量都会发生变化。
特别地,物体的质量会随着速度的增加而增加,达到光速时将无穷大。
2. 同步时钟的变化相对论认为,在高速运动的物体中,同步时钟会发生变化。
当一个时钟以接近光速的速度运动时,相较于静止状态下的时钟,它的时间会变慢。
3. 空间收缩效应相对论还指出,当物体以接近光速的速度运动时,物体的长度会相对于静止状态下的长度而言发生收缩。
这一现象被称为空间收缩。
二、广义相对论广义相对论是相对论的拓展,它主要研究强引力场中物体的运动规律。
广义相对论的重点知识点如下:1. 弯曲时空广义相对论认为,物体的质量和能量会使时空发生弯曲。
这种弯曲会导致物体在强引力场中的非惯性运动,即所谓的“自由落体”运动。
2. 引力波引力波是广义相对论的重要预测之一。
它是一种类似于电磁波的波动,由大质量物体在运动或碰撞中产生。
引力波的探测对于验证相对论的正确性非常重要。
3. 黑洞和奇点广义相对论预测了黑洞的存在,它是一种极高密度物体,引力场极其强大,连光都无法逃离。
此外,广义相对论还预言了奇点的存在,奇点是时空曲率无限大的点,这使得相对论在奇点附近失效。
三、相对论与实际应用相对论不仅仅是理论研究的范畴,它在实际应用中也发挥着重要作用。
以下是相对论在现实生活中的一些应用:1. 卫星导航系统全球卫星定位系统(GNSS)的运行离不开相对论的修正。
由于卫星在高速运动中,相对论效应对导航信号传输的精确性有重要影响,必须进行修正。
跟我学《大学物理》(上)_ 狭义相对论(一)_重点难点讲解_

ut
伽利略 逆变换
x = x'+ ut' y = y' z = z' t = t'
伽利略速度变换:
正变换 逆变换
vx'= dx' = d(x - ut) = v
dt'
dt
vy'=
dy' =
dy=v
y
dt' dt
vz'= dz' = dz = v z dt' dt
x -u
x' = x ut y' = y
设S’(O’x’ y’ z’ )系以速度 u 相对于 S(Oxyz)系作直线运动。
假设 t=t ’=0 时, 坐标系 S ’和 S
的原点重合。
伽利略坐标变换:(牛顿的绝对时空观)
伽 利 略
x' = x ut y' = y
伽 利 略
正 z' = z
逆
变 换
t' = t
变 换
x = x'+ ut' y = y' z = z' t = t'
dt'
dt
v ' = dy' = dy =v
y dt' dt
y
x -u
变 t' = t 换
变 换
dz' dz vz'= = = v
z
dt' dt
3、伽利略变换下经典力学规律的不变性: ( 1) 动量守恒规律的不变性
考虑有两个质点构成一个质点系: S 系中动量守恒: S’系中:
➢动量守恒规律在伽利略变换下是保持不变的。
《大学物理》期末复习 第十四章 相对论

第十四章相对论在第一册中讲过的牛顿力学,只适用于宏观物体低速运动,高速运动的物体则使用相对论力学。
相对论内的理论)般参照系包括引力场在广义相对论(推广到一性参照系的理论)狭义相对论(局限于惯本章只介绍狭义相对论§14-1伽利略变换式牛顿绝对时空观一、力学相对性原理力学定律在一切惯性系中数学形式不变理解:体现对称性思想——对于描述力学规律而言,一切惯性系彼此等价。
在一个惯性系中所做的任何力学实验,都不能判断该惯性系相对于其它惯性系的运动。
二、伽利略变换概念介绍:事件:是在空间某一点和时间某一时刻发生的某一现象(例如:两粒子相撞)。
事件描述:发生地点和发生时刻来描述,即一个事件用四个坐标来表示)(t,z,y,x如图所示,有两个惯性系S,'S,相应坐标轴平行,'S相对S以v沿'x正向匀速运动,0=='tt时,O与'O重合。
现在考虑p点发生的一个事件:⎩⎨⎧)时空坐标为(系观察者测出这一事件)时空坐标为(系观察者测出这一事件'''''t ,z ,y ,x S t ,z ,y ,x S按经典力学观点,可得到两组坐标关系为⎪⎪⎩⎪⎪⎨⎧===-=t t z z y y vt x x '''' 或 ⎪⎪⎩⎪⎪⎨⎧===+=''''t t z z y y vtx x (14-1)式(14-1)是伽利略变换及逆变换公式。
三、绝对时空观1、时间间隔的绝对性设有二事件1P ,2P ,在S 系中测得发生时刻分别为1t ,2t ;在'S 系中测得发生时刻分别为't 1,'t 2。
在S系中测得两事件发生时间间隔为12t t t -=∆,在'S 系测得两事件发生的时间间隔为'''tt t 12-=∆。
11t t '=,22t t '=,∴t t '∆∆=。
大学物理相对论复习提纲共43页

谢谢!
大学物理相对论复习提纲
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
大学物理相对论总结.doc

大学物理相对论总结大学物理知识点总结大学物理机械波总结大学物理复习资料转动定律篇一:大学物理_相对论总结时间、空间与运动———狭义相对论及其伟大科学意义航空航天与力学学院工程力学系前言:在这一学期的普通物理学课程中,我们开始学习现代物理学的相关知识,尤其是相对论和量子物理学部分,虽然有些难以理解但真的激起了我很大的探究兴趣.我在课下查阅了很多关于相对论的知识,在这学期即将结束的时候在这里做一下总结和梳理,并以此来表达我在着一个学期中对物理学学习的心得与体会.以下就是我对狭义相对论的学习梳理. 爱因斯坦1905年创立的划时代的狭义相对论,发现了时间和空间与运动的相对性关系,建立了以实验事实为基础的适用于全部物理学和自然科学的新的相对时空理论及其新的运动学定律,从而彻底推翻了统治物理学已二百多年的牛顿的绝对时空理论,成为物理学、自然科学和哲学史上一次最伟大的科学革命.从狭义相对论的相对时空结构理论得出的最令人叹为观止,也最令人惊奇的结论,是最深刻地揭示了自然界最深层的一个极为神奇而又非常有趣的现象和基本规律:时空的相对性结构是一切自然界定律对相对运动保持其不变性和对称性的基础,也是自然界因果关系成立的基础.没有时空的相对性结构就没有自然界定律对运动的不变性和对称性,也没有自然界的因果关系,反之亦然.正是两者的辩证统一构成和展示了自然界的和谐性和统一性.有人认为狭义相对论证明了世界上的一切事物都是相对的,没有绝对的,只有相对真理,没有绝对真理,这完全是一种误解.狭义相对论只是相对时空结构理论,只是证明了时间和空间是相对性的,而不是绝对的,只是证明了正是时空的相对性结构保证了一切自然界定律对运动的不变性和对称性,并没有否定自然界定律的不变性和绝对性.为此,爱因斯坦在多年内一直把狭义相对论称之为相对性原理,用以强调时间和空间的相对性结构,1915年起才开始称之为狭义相对论,以区别于广义相对论.1 物理学的三大革命19世纪末,由于实验和理论研究的深入发展,发现了一系列新的物理现象,诸如X射线、放射性、塞曼效应、电子等,利用已有的经典物理学理论无法作出解释,使物理学陷入了空前危机,也进入了一个新的革命性转折时期.因此,在20世纪初物理学相继发生了三次史无前例的伟大革命,这就是狭义相对论、广义相对论和量子论革命,革命性地改变了物理学的公理基础和概念结构.狭义相对论发现了时间和空间的相对性结构,建立了新的相对时空结构理论及其新的运动学定律,改变了人类对时间和空间的认识.广义相对论则揭示了四维弯曲时空几何结构与引力的关系,建立了新的引力场理论,由此建立了科学地研究宇宙起源、演化及其结构的现代宇宙学.量子论则深化了对物质微观结构的认识,建立了研究微观粒子运动规律的量子力学,有力地促进了分子和原子物理学、固体物理学、核物理学和基本粒子物理学以及化学等学科的飞跃发展.三大革命开辟了现代物理学的研究及其新纪元,为现代高科技发展奠定了牢固的理论基础.狭义相对论和广义相对论革命是爱因斯坦一人独力完成的,他对量子论革命也作出了至关重要的开创性贡献.因此,爱因斯坦的伟大科学成就被举世一致公认为物理学和科学史上非常罕见的奇迹,爱因斯坦也被公认为有史以来最伟大的物理学家和科学大师. 划时代的狭义相对论是爱因斯坦在1905年创立的,也是他在科学征途上攀登的第一座科学高峰.当时他才26岁,跨出大学校门只短短5年,但已充分展示了他非凡的科学天才.由于发现和建立了适用于全部物理学和自然科学的新的相对时空结构理论及其新的运动学定律,不但圆满解决了长久以来困扰物理学界的麦克斯韦电动力学不能应用于运动物体的问题,也解决了力学与电动力学在相对运动上的不对称性,为物理学理论的统一迈出了新的一步,由此发现了自然界一系列的新奇定律,脱颖而出,因此爱因斯坦也很快成为科学界刮目相看的一颗光芒灿然的科学新星.2 牛顿的绝对时空观时间和空间是一切物质存在、运动和相互作用的基础,一切自然界现象和事件都是在时间和空间中发生的.因此时间和空间概念是物理学和一切自然科学描述自然界现象和事件的基础.物理学中的时间和空间概念起源于17世纪的伽利略和牛顿.牛顿在其伟大著作《自然哲学之数学原理》一书中指出“绝对的、真正的、数学的时间,就其本性而言是永远均匀地流逝,与一切外界事物无关的”.又指出“绝对空间就其本性而言,是永远处处相同和不动的,与一切外界事物无关的”.一般称之为牛顿的绝对时空.绝对时空最鲜明的特点是时间和空间结构都与运动和一切外界事物无关,是绝对的,永远不变的.绝对时空也是牛顿力学定律对一切匀速运动保持其不变性和对称性的基础. 牛顿的绝对时空在物理学中的体现和应用,是伽利略相对性原理及其数学表示式伽利略变换,也称为伽利略运动学.相对性原理是关于时间和空间与运动关系的原理.在物理学中一般利用坐标系来定义和描述物体的静止和运动状态,坐标系是时间和空间坐标的组合.最常用的一种坐标系是适合牛顿惯性定律的惯性坐标系(一般简称为惯性系).伽利略变换就是描述时间和空间在一切惯性坐标系内与运动关系的数学形式,其中时间不受运动和外界事物的影响,是绝对的,不变的;物体的空间位置虽随运动而变化,但牛顿认为这种相对空间只是绝对空间的可动部份或者量度,而绝对空间本身则是永远处处相同和不动的.牛顿力学定律完全适合伽利略相对性原理,对伽利略变换保持其不变性和对称性,都不受坐标系或者观察者运动状态的影响,因此两者共同构成了一个逻辑一致的理论体系. 牛顿的绝对时空观由于没有任何实验事实作为依据,因此从其问世之后曾经不断遭到其同时代学者及以后历代学者的批判.19世纪末叶,奥地利著名物理学家和实证主义哲学家马赫,更从实证主义出发,对牛顿的绝对时空概念进行了系统而深刻的批判,认为一切物理学定律和物理理论都只能包含可观测量,而不应包含不可观测量,牛顿的绝对时空由于没有任何观测事实依据,应从力学和所有物理学中彻底清除出去.由于马赫及其他学者的批判,至19世纪末开始形成了两个明确认识:一是牛顿力学定律并不是了解一切物理现象的先决条件或前提;二是把一切物理现象纳入牛顿力学框架,也不是人类理性的要求.马赫的批判对爱因斯坦青年时代思想的发展有深远影响,对他后来创立狭义相对论的相对时空理论无疑有重要启发意义.因此爱因斯坦一直对马赫给予了很高评价,称赞马赫的批判给他留下了持久而深刻的印象.他认为马赫的伟大之处是他不折不挠的怀疑主义和独立精神.但在爱因斯坦之前,从未有人提出过以实验事实为依据的科学的时空理论,来取代牛顿形而上学的绝对时空理论. 实际上,牛顿的绝对时空理论并非是毫无经验事实依据的无稽之论.绝对时空观不但完全符合人们在日常生活中从未觉察到时间和空间本身有任何变化的直接感觉经验,而且在低速情况下也有其牢固的实验基础.因为在低速情况下,由于时间和空间的相对性结构而产生的相对论效应一般极其微小,不但测量不出来,也不产生任何影响,只有在接近光速的高速物理现象中相对论效应才起着重要作用.正是由于这些原因,至19世纪末的二百多年内,牛顿的绝对时空和牛顿力学定律从未受到过任何实验事实的冲击和挑战,可以圆满地成功地应用于行星运动以及一切宏观物体的运动,今天也仍然如此.因此,在过去二百年中,牛顿力学在物理学的各个领域都取得了令人瞩目和惊异的伟大成就,一直被公认为是全部物理学甚至是整个自然科学的统一基础.物理学家一直试图把全部物理学都统一到力学框架内,从力学定律推导出一切物理学定律,由此建立对自然界的统一力学世界观.但是,麦克斯韦电动力学和光学实验的发展,从根本上动摇了力学作为全部物理学和自然科学牢固基础的教条式信念.3 狭义相对论的伟大科学意义狭义相对论的伟大科学意义爱因斯坦创立划时代的狭义相对论的论文有一个朴实无华的简单题目《论运动物体电动力学》这也是当时物理学界共同关心和研究的热门课题.但只有爱因斯坦建立了全新的相对时空结构理论及其新的运动学定律,才使这一问题圆满解决.这篇论文也是科学史上最具有特色的论文,不但其科学内容的革命性和创造性以及所展示的非凡物理洞察力和新思维是科学史上十分罕见的,而且其理论结构也构成了一个从最少基本原理出发的既完美又自洽一致的逻辑演绎体系.为此,爱因斯坦强调指出,狭义相对论体现了理论科学在现代发展的基本特征,也更接近于一切科学的伟大目标,即从最少的假设或者公理出发,通过逻辑演绎方法,概括最多的经验事实.又指出,过去适用于科学发展早期的占主导地位的归纳法,正在让位于探索性的演绎法.狭义相对论正是爱因斯坦倡导的逻缉演绎法的一个典范.现在演绎法已成现代理论物理学发展的主要模式.再者,其文体风格也十分特殊,没有引用任何。
高考物理最新近代物理知识点之相对论简介知识点总复习含解析

高考物理最新近代物理知识点之相对论简介知识点总复习含解析一、选择题1.麦克斯书认为:电荷的周围存在电场,当电荷加速运动时,会产生电磁波。
受此启发,爱因斯坦认为:物体的周围存在引力场,当物体加速运动时,会辐射出引力波。
爱因斯坦提出引力波的观点,采用了()A.类比法B.观察法C.外推法D.控制变量法2.在地面附近有一高速飞行的宇宙飞行器,地面上的人和宇宙飞行器中的宇航员观察到的现象,正确的是A.地面上的人观察到宇宙飞行器变短了B.地面上的人观察到宇宙飞行器变长了C.宇航员观察到宇宙飞行器内的时钟变慢了D.宇航员观察到宇宙飞行器内的时钟变快了3.下列说法正确的是________.A.物体做受迫振动时,振幅与物体本身无关B.光纤通信是激光和光导纤维相结合实现的C.火车以接近光速通过站台时车上乘客观察到站台上的旅客变矮D.全息照相技术是光的衍射原理的具体应用4.以下说法正确的是()A.核裂变与核聚变都伴有质量亏损,亏损的质量转化成能量B.β射线和光电效应中逸出的电子都是原子核衰变产生的C.真空中的光速在不同的惯性参考系中都是相同的,与光源、观察者间的相对运动没有关系D.原子核所含核子单独存在时的总质量不小于该原子核的质量5.下列说法正确的是________.A.机械波和电磁波都能在真空中传播B.光的干涉和衍射说明光是横波C.铁路、民航等安检口使用红外线对行李内物品进行检测D.狭义相对论指出,物理规律对所有惯性参考系都一样6.下列关于近代物理的说法,正确的是A.玻尔理论成功解释了各种原子发出的光谱B.能揭示原子具有核式结构的事件是氢原子光谱的发现C.光电效应实验现象的解释使得光的波动说遇到了巨大的困难D.质能方程2=揭示了物体的能量和质量之间存在着密切的确定关系,提出这一方E mc程的科学家是卢瑟福7.下列说法中正确的是( )A.光速不变原理指出光在真空中传播速度在不同惯性参考系中都是不同的B.变化的电场一定产生变化的磁场,变化的磁场一定产生变化的电场C.在光的双缝干涉实验中,若仅将入射光由红光改为绿光,则干涉条纹间距变宽D.声源与观察者相对靠近时,观察者所接收的频率大于声源振动的频率8.关于爱因斯坦质能方程,下列说法中正确的是()A.中是物体以光速运动的动能B.是物体的核能C.是物体各种形式能的总和D.是在核反应中,亏损的质量和能量的对应关系9.如图所示是黑洞的示意图,黑洞是质量非常大的天体,由于质量很大,引起了其周围的时空弯曲,从地球上观察,我们看到漆黑一片。
大学物理课件相对论、量子物理复习

' 2
1
2
2
t1 vx1 2
v cc t1' 1 2
2
由题意:
t
2
t1
(t2
t1 )
v( x2 1 v2
c2
x1 )
c2
0
则
t2
t1
v c2
x2
x1
v t2 t1 c2 1.2108 m s1 x2 x1
2、运用长度收缩公式解题 关键是记住当被测物体与观测者保持相
对静止时,长度测量值最大为固有长度
氢原子及核外电子排布 激光器
一、波函数 ( x, t)
1、标准化条件:单值、有限、连续
2、归一化条件:
(
r,
t
)
2
dV
1
二、薛定谔方程
当粒子在恒定势场 U = U ( x ) 中运动时,粒 子的定态薛定谔方程为
2 2m
2
x 2
U ( x)
E
一维无限深势阱问题
U(x) = 0 0< x < a
c
则它运动的距离为
h v 2.996108 30 2106
1.798104 m
量子物理复习
第一部分 实验事实和基本原理
黑体辐射
实验事实
光电效应 康普顿效应 氢原子光谱及玻尔理论
基本原理
粒子的波粒二象性 波函数的统计解释 不确定关系
黑体辐射
1、斯特藩 — 玻尔兹曼定律
M (T ) T 4 M (T ) T 4
1.同时性的相对性
t
t2
t1
t
v c2
x'
1v2 /c2
2.长度收缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注 意 v c 时, 1
转换为伽利略变换式.
12
同时的相对性
S 系 ( 地面参考系 )
y y' v
事件 1 (x1, y1, z1,t1) 事件 2 (x2 , y2 , z2 ,t2 )
1
o o' 12
12
9
39
3
6
6
2
12 x' x 9 3
6
Δt t2 t1
S'
y'
• 时间是绝对的: 时间均匀流逝,与物质运动无关,所 有惯性系有统一间隔的测量值是绝 对的。
牛顿力学相对性原理:运动的描述是相对的,不同参 照系下运动的描述不同
注意
牛顿力学的相对性原理,在宏观、低速的范围 内,是与实验结果相一致的。但在高速运动情况下 则不适用.
系
v(车厢参考系
)
事件 1 (x'1 , y'1 , z'1 ,t'1 ) 事件 2 (x'2 , y'2 , z'2 ,t'2 )
1
2
t ( t v x ) 洛伦兹变换
o' 12 93 6
12 x'
93 6
Δt
t2
c2
t1
( Δt
v c2
Δx
)
13
讨论 1
Δt t2 t1
4
2.伽利略速度变换式
x' x vt 对时间求
一阶导数
y' y
z' z
ux ux v uy uy uz uz
u
u
v
3.伽利略加速度变换式
ax ax a a
速度变换公式对时间求导
F
mam
m
F
ma
ay ay az az
S系 Δx 0 Δt 0 同时不同地
Δt1
(
Δt
v c2
Δx
)
S′系
------不同时
2
Δx 0 Δt 0
同地不同时
------不同时
3
Δx 0 Δt 0 同时同地
y y
z z
t
(t
v c2
x )
v c
1 1 2
注意
v c 时, v c 1
转换为伽利略变换式.
10
x ( x vt )
x ( x vt )
讨论
正 变 换
y y
z z
t (t
v c2
x)
逆 变 换
(1) 狭义相对论相对性原理是牛顿力学相对性原理的发展; (2) 光速不变原理与伽利略变换是完全不相容的; (3) 否定了绝对时空观,伽利略变换和经典力学规律有待修正。
8
洛伦兹变换式
——符合相对论理论的时空变换关系.
S' 系相对于S系以匀速沿x轴运动,观察两参照系
中同一事件的时空关系。
s y s' y' v
vt
x'
o
xo'
z z'
*P( x, y, z)
( x', y', z')
x'
x
t t 0
O和O´重合
1. 坐标变换 2. 速度变换
9
1 洛伦兹坐标变换式
x ( x vt )
正 变 换
y y
z z
t
(t
v c2
x)
x ( x vt )
逆 变 换
② 若麦克斯韦方程组正确,则伽利略速度变 换(绝对时空观)不适用于电磁理论(高 速现象),有待于修正。
7
狭义相对论的基本原理
1 相对性原理
物理定律在所有惯性系中都具有相同的表达形式.
2 光速不变原理
真空中的光速是常量,沿各个方向都等于c ,与光源或 观测者的运动状态无关.
关键概念:相对性和不变性 .
结论:绝对参考系以太不存在。
迈克耳孙-莫雷实验测到以太漂 移速度为零, 被称为笼罩在19 世纪物理学上空的一朵乌云.
6
由经典电磁场理论可知,光在真空中的传播 速度c是一常量(高速运动),与参考系的选择和传 播方向无关,不符合伽利略变换。
① 若伽利略速度变换正确,麦克斯韦方程组 则不符合力学相对性原理:不同参考系有 不同表达式,会导致特殊惯性系的存在。
11
2 洛伦兹速度变换式
正
ux
ux v
1
v c2
ux
变 换
uy
uy
1
v c2
ux
uz
uz
1
v c2
ux
逆
ux
ux v
1
v c2
ux
变 换
uy
uy
1
v c2
ux
uz
uz
1
v c2
ux
1
大学物理(下册)
第十四章 相对论
本章内容:
14-1 14-2 14-3
14-4 14-6
伽利略变换式 牛顿的绝对时空观 迈克耳孙-莫雷实验 狭义相对论的基本原理 洛伦兹变换式 狭义相对论的时空观 相对论性动量和能量
2014年11月
经典力学时空观-绝对性
• 空间是绝对的: 空间与运动无关,空间绝对静止.空 间的度量与惯性系无关,绝对不变.
3
1.伽利略坐标变换式
s' s y
y' S' 系相对于S系以匀速沿x轴运动
v
*P( x, y, z)
x' x vt
vt
o
xo'
x'
( x', y', z')
x'
x
z z'
y' y
z' z
t' t
t t 0 O和O´重合
上式可得,任意两点之间的距离和任意两事件之 间的时间间隔,两个参考系下测量值相等,这是显然的。
y y
z z
t
(t
v c2
x )
① 时、空坐标不再独立,而且都与物体的运动有关。
② 变换式是线性的,这是因为同一事件在两个参考系中的坐标 是一一对应的。
③ 伽利略变换是洛伦兹变换在惯性系间作低速相对运动的近似。
④ 当v>c时, 是虚数,无任何物理意义,故真空中的光速c是 一切物体运动速率的极限值。
牛 顿 力学 麦克斯韦电磁场理论 热力学与经典统计物理
19 世 纪 后 期 , 物 理 学 的 三 大理论体系使经典物理学已趋 于成熟。
两朵乌云
迈克耳孙—莫雷实验 黑体辐射实验
狭义相对论 量子物理
近代物理学两大支柱
强调 近代物理不是对经典理论的补充,而是全新的理论。 近代物理不是对经典理论的简单否定。
不同惯性系 下,描写同 一质点的加 速度相同。
对所有的惯性系,牛顿运动定律具有相同的形式.
5
* 迈克耳孙-莫雷实验(寻找“以太”)
“光波的传播需要介质”----以太(特殊惯性系)。
设“以太”参考系为S系 “以太”参考系
实验室为 S'系
是绝对静止系
GM2 GM1 l
M2
M1
sG
T
v
光相对于“以太”的速度为C 实验结果: 未观察到相对于“以太”的运动