材料连接原理
材料连接的原理有哪些应用

材料连接的原理有哪些应用1. 引言材料连接是工程领域中的一项重要技术,它将不同材料的部分结构连接在一起,以实现更大的功能和应用。
在各种工程领域,材料连接技术被广泛应用,如机械制造、航空航天、建筑工程和电子设备制造等。
2. 常见的材料连接原理2.1 焊接•焊接是一种通过加热或压力将两个或多个材料部分连接在一起的技术。
•常见的焊接方法包括电弧焊、激光焊、气焊和电阻焊等。
•焊接可以实现强固的连接,适用于连接金属材料。
2.2 胶接•胶接是使用胶粘剂将两个或多个材料部分连接在一起的技术。
•胶粘剂可以填充材料表面的微小间隙,并形成坚固的连接。
•胶接适用于连接不同种类的材料,如金属、塑料和玻璃等。
2.3 螺纹连接•螺纹连接是使用螺纹将两个部件连接在一起的技术。
•螺纹连接提供了一种可拆卸的连接方式,方便维护和更换。
•螺纹连接适用于连接金属部件。
2.4 铆接•铆接是通过钉子和铆钉将两个或多个材料部分连接在一起的技术。
•铆接可以实现高强度和可靠的连接,适用于连接金属材料。
2.5 搭接连接•搭接连接是将两个部件重叠在一起,并用螺栓或铆钉等连接元素进行连接的技术。
•搭接连接适用于连接较厚的材料,如钢板等。
2.6 紧固连接•紧固连接是通过螺栓、螺母和垫圈等紧固件将部件连接在一起的技术。
•紧固连接提供了一种可拆卸的连接方式,并且可以调节连接的紧密度。
3. 材料连接的应用3.1 机械制造•在机械制造中,各种材料连接技术被广泛应用,如焊接、胶接、铆接和紧固连接等。
•这些连接技术可以用于制造机械设备的结构件、连接件和密封件等。
3.2 航空航天•在航空航天领域,材料连接技术对于飞机和航天器的安全和可靠性至关重要。
•航空航天中常用的连接技术包括焊接、铆接和胶接等。
3.3 建筑工程•建筑工程中,各种连接技术被用于连接建筑结构的部件,并提供结构的强度和稳定性。
•建筑工程中常见的连接技术包括焊接、螺纹连接和搭接连接等。
3.4 电子设备制造•在电子设备制造中,材料连接技术被用于连接电子元件和电路板,以实现电子设备的功能和性能。
材料连接原理

材料连接原理材料连接是指将两个或多个材料部件通过某种方法连接在一起,形成一个整体结构的过程。
材料连接在工程设计和制造中起着至关重要的作用,能够保证整体结构的稳定性和安全性。
本文将从材料连接的原理出发,介绍几种常见的材料连接方法。
一、机械连接机械连接是指通过机械元件将材料部件连接在一起的方法。
常见的机械连接方式有螺纹连接、销连接、键连接等。
螺纹连接是利用螺纹的互相咬合作用,将两个材料部件紧密连接在一起。
销连接是通过将销钉或销轴插入两个连接孔,实现连接的方式。
键连接是利用键与键槽的配合,使两个材料部件具有相对运动的连接方式。
机械连接具有结构简单、拆卸方便的优点,广泛应用于机械制造领域。
二、焊接连接焊接连接是指通过加热材料部件,使其熔化并与其他材料部件熔化后形成的固态连接。
常见的焊接方式有电弧焊、气体焊、激光焊等。
焊接连接具有连接强度高、连接密封性好的特点,常用于金属结构的连接。
然而,焊接过程中需要加热材料部件,可能会引起变形和应力集中等问题,因此在设计和制造中需要注意控制焊接过程的温度和变形。
三、胶粘连接胶粘连接是指通过涂覆或注入胶粘剂,将两个材料部件黏合在一起的连接方式。
胶粘连接具有连接面积大、连接均匀、重量轻等优点。
常见的胶粘剂有环氧树脂、聚氨酯、硅橡胶等。
胶粘连接适用于材料种类不同或形状复杂的连接,如金属与非金属、曲面与平面的连接。
然而,胶粘连接的强度受胶粘剂的性能和施工工艺的影响,需要合理选择胶粘剂和加工条件。
四、熔焊连接熔焊连接是指通过熔融材料并填充在连接处,使其冷却后形成固态连接的方式。
常见的熔焊方式有电阻焊接、摩擦焊接、热板焊接等。
熔焊连接具有连接强度高、连接密封性好的特点,适用于金属结构的连接。
然而,熔焊连接需要加热材料部件,可能会引起变形和应力集中等问题,因此在设计和制造中需要注意控制熔焊过程的温度和变形。
五、搭接连接搭接连接是指通过将两个材料部件的连接面重叠在一起,并通过螺栓、铆钉、焊接等方法将其固定在一起的连接方式。
材料连接原理

材料连接原理材料连接原理是指通过不同材料之间的连接方式,实现材料之间的结构性、功能性连接,以满足工程设计和制造的需求。
材料连接是工程设计中的重要环节,它直接影响着产品的性能、质量和可靠性。
在工程实践中,材料连接原理的应用涉及到多种材料和连接方式,需要根据具体的工程要求和材料特性进行合理选择和设计。
首先,材料连接原理需要考虑材料的特性和连接方式的选择。
不同材料具有不同的力学性能、化学性能和加工性能,因此在进行材料连接时需要充分考虑材料的特性。
例如,金属材料通常采用焊接、螺纹连接、铆接等方式进行连接,而塑料材料则通常采用胶接、热熔连接等方式进行连接。
在选择连接方式时,需要考虑材料的强度、刚度、耐热性、耐腐蚀性等特性,以及连接后的结构性能和使用环境。
其次,材料连接原理需要考虑连接的设计和制造。
连接的设计需要考虑连接的形式、尺寸、位置和数量,以及连接件的选择和制造。
在进行连接设计时,需要进行合理的强度计算和应力分析,确保连接的可靠性和安全性。
同时,连接件的制造需要考虑材料加工工艺、精度要求和表面处理,以确保连接件的质量和性能。
另外,材料连接原理还需要考虑连接的装配和使用。
连接的装配需要考虑连接件的安装方式、紧固力和装配工艺,以确保连接的质量和稳定性。
在使用过程中,连接需要考虑承受的载荷、振动、温度变化等因素,以确保连接的可靠性和耐久性。
总之,材料连接原理是工程设计中的重要内容,它涉及到材料选择、连接设计、制造和使用等多个方面。
在实际工程中,需要根据具体的工程要求和材料特性,合理选择和设计连接方式,以确保连接的质量和可靠性。
同时,材料连接原理也是工程材料学和机械设计的重要内容,对于提高产品性能、延长使用寿命具有重要意义。
sic陶瓷反应成型连接

sic陶瓷反应成型连接
SIC陶瓷反应成型连接是指利用化学反应原理在SIC陶瓷表面
形成一层连接层,从而实现SIC陶瓷的连接。
SIC陶瓷是一种高性
能陶瓷材料,具有优异的耐磨、耐高温、化学稳定性等特点,因此
在一些特殊工业领域得到广泛应用。
而SIC陶瓷的连接技术则是为
了满足其在实际工程中的连接需求而发展起来的。
首先,SIC陶瓷反应成型连接的原理是利用化学反应在SIC陶
瓷表面形成一层连接层,这种连接层可以增强SIC陶瓷的连接强度
和密封性能。
通常会选择一些特定的金属或化合物作为连接层的原料,在一定的温度和压力条件下,通过化学反应在SIC陶瓷表面形
成连接层,从而实现SIC陶瓷的连接。
其次,SIC陶瓷反应成型连接的优点包括连接强度高、耐高温、耐腐蚀性能好等特点。
这种连接方式可以有效地提高SIC陶瓷的连
接可靠性和密封性能,适用于一些高温、高压、腐蚀性强的工作环境。
另外,SIC陶瓷反应成型连接的应用领域广泛,包括但不限于
航空航天、化工、石油、冶金等领域。
在这些领域中,SIC陶瓷反
应成型连接可以用于制造高温炉、化工管道、泵阀零部件等,为工业生产提供了可靠的连接解决方案。
总的来说,SIC陶瓷反应成型连接是一种重要的连接技术,通过化学反应原理实现SIC陶瓷的连接,具有连接强度高、耐高温、耐腐蚀等优点,适用于多种工业领域的应用。
材料连接原理(邹家生主编)

材料连接原理课后习题答案及期末复习资料简答:1.焊接热源有哪些共同要求?描述焊接热源主要用什么指标?答:能量密度高度集中、快速实现实现焊接过程、得到高质量的焊缝和最小的焊接热影响区。
主要指标:最小的加热面积、最大功率密度和正常焊接规范条件下的温度。
5.试简述不锈钢焊条药皮发红的原因?有何解决措施?答:原因:不锈钢焊芯电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。
解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。
7.从传热学角度说明临界板厚δcr 的概念?某16Mn 钢焊件,采用手工电弧焊,能量E=15KJ/cm 求δcr ?由传热学理论知道:在线能量一定的情况下,板厚增加冷却速度Wc 增大,冷却时间t8/5变短,当板厚增加到一定程度时,则Wc 和t8/5不再变化,此时板厚即为临界板厚δcr 。
1.95cr cm δ==8.手工电弧焊接厚12mm 的MnMoNbB 钢,焊接线能量E=2kj/cm,预热温度为50度,η取0.9.求t8/5?附λ=0.29J/(cm s ℃) CP=6.7 J/(cm s ℃)9.直流正接为何比直流反接时焊缝金属溶氢量高?答:(1)直流正接:工件接正极。
直流反接:工件接负极。
(2)带电质点H+在电场作用下只溶于阴极。
(3)处于阴极的熔滴不仅温度高而且比表面积大,其溶氢量大于熔池处于阴极时的溶氢量。
10简述氢对焊缝质量的影响?s T T t cmT T c E Ecr cr 88.0)80015001(:,75.0/69.0)80015001(20025/800=-+-=>=-+-=πληδδρηδ故采用厚板公式答:影响:氢脆、白点、气孔、冷裂纹、组织变化。
控制含氢量措施:1)限制氢的来源2)进行冶金处理3)控制焊接材料的氧化还原势4)在焊条药皮或焊芯中加入微量的稀土元素或稀散元素。
材料工程基础课件-第八章 材料的连接

①材料的焊接性
• 金属的可焊性是金属材料对焊接加工的适 应性。即金属在一定焊接方法、焊接材料、 工艺参数及结构型式条件下,获得优质的 焊接接头的难易程度。它主要包括两个方 面:
a.工艺性能,产生工艺缺陷的倾向。 b.使用性能,即焊接接头在使用中的可靠性。
• 从理论上讲任何材料都有通过焊接加工实 现的可能性,但就人类现在已掌握的技术 来看,大多数材料很难通过焊接加工实现 连接,只有少数金属材料适应焊接加工, 如铁、镍、铝、铜、钛等金属及其合金。 其中,低碳钢、低合金结构钢具有良好的 焊接性。
④焊接安全生产
• 预防弧光照射 • 预防触电 • 预防烫伤 • 防火、防爆 • 预防有害气体、烟尘的中毒
8.4 粘接的分类
三种粘接方法: • 胶粘剂粘接法 • 热熔粘接法 • 溶剂粘接法
胶粘剂粘接法
利用胶粘剂将各种材质、形状、大小、厚 薄、软硬相同或不同的胶接件连接成为连 续牢固稳定的整体的一种工艺方法。 胶接剂是一种靠界面的粘附和物质的内聚 等作用产生的粘合力,将各种材料牢固的 连接在一起的物质,也称为粘合剂、粘接 剂,可简称为胶。
②在可能允许的情况下,尽量增大粘接面积, 提高胶层承载能力;
③对木材和层压材料的粘接应防止层间剥离, 可采取斜接,提高粘接强度。
④粘接时可选与被粘接材料刚度相同或相似 的胶粘剂,最大限度减小应力集中。
⑤承受作用力较大的情况,可采用复接方式。
粘接接头的四种基本形式
对接
角接
T接
平接
对接
• 纯粹对接,粘接面积小,粘接强度低,应 尽量不使用,除非维修无法改变原形状。
• 不加热的压焊过程称为冷压焊 • 加热压焊过程称为热压焊
• 根据加热热源各类不同,热压焊可以分为: • 电阻焊(点焊、缝焊、对焊) • 摩擦焊 • 超声焊 • 爆炸焊 • 真空扩散焊
材料连接原理(一)

材料连接原理(一)材料连接原理什么是材料连接材料连接是指将两个或多个材料通过一种连接结构固定在一起的过程。
它是工程领域中非常重要的技术,在各个行业都有广泛的应用。
材料连接通常包括焊接、螺纹连接、粘接等多种方式。
焊接连接原理焊接的基本原理焊接是指通过加热、熔化材料并加压,在两个或多个材料接触的部分形成永久性连接的方法。
焊接可以分为熔化焊和压力焊两种类型。
熔化焊的原理熔化焊是指通过加热材料将其熔化,并在熔化状态下使两个或多个材料融合在一起。
常见的熔化焊方法包括电弧焊、气焊、激光焊等。
这些方法通过加热电弧或高能激光束使材料熔化,并在熔化状态下形成永久性连接。
压力焊的原理压力焊是指通过施加压力将两个或多个材料连接在一起的方法。
常见的压力焊方法包括冷压焊、摩擦焊等。
这些方法通过施加压力,使两个或多个材料发生塑性变形并形成永久性连接。
螺纹连接原理螺纹连接的基本原理螺纹连接是指通过螺纹结构将两个或多个材料连接在一起的方法。
螺纹连接通常包括螺纹连接和螺栓连接两种类型。
螺纹连接的原理螺纹连接通过螺纹的互相咬合形成连接。
在螺纹连接中,一般会将螺纹结构设计为一对螺纹,一个为螺钉或螺纹孔,另一个为螺母或螺纹孔。
通过旋转螺钉或螺母,使两个材料通过螺纹互相咬合,并形成稳固的连接。
粘接连接原理粘接的基本原理粘接是指通过使用胶体、胶粘剂将两个或多个材料连接在一起的方法。
粘接具有连接效果好、连接面积大、能承受较大的力等优点。
粘接的原理粘接是通过将胶体、胶粘剂涂敷在连接面上,使其在接触与固化过程中产生物理或化学反应,形成坚固的连接。
常见的粘接方法包括胶水粘接、热熔胶粘接等。
结语材料连接是工程领域中非常重要的技术之一。
无论是焊接、螺纹连接还是粘接,都有其特定的原理和适用范围。
在实际工程中,我们需要根据具体情况选择适合的连接方式,以确保连接结构的牢固性和可靠性。
焊接原理及操作方法

焊接原理及操作方法焊接是一种常用的金属连接方法,通过加热和压力将两个或多个金属材料连接在一起。
本文将介绍焊接的原理和操作方法。
一、焊接原理焊接的原理是利用热能将金属材料加热至熔点或塑性状态,然后施加压力使其连接在一起。
焊接中使用的热源可以是火焰、电弧、激光等。
焊接时,热源产生的能量会使金属表面发生熔化或塑性变形,待冷却后形成坚固的连接。
焊接的原理主要包括以下几个方面:1. 热传导:热源将热能传导给金属材料,使其升温。
2. 熔化:金属材料在热源的作用下达到熔点并熔化。
3. 液态金属的流动:熔化的金属在热源和压力的作用下流动,填充焊接接头间的间隙。
4. 冷却凝固:金属材料在熔化后迅速冷却并凝固,形成焊接接头。
二、焊接操作方法1. 准备工作:首先要对待焊接的金属材料进行处理,包括除锈、清洁和切割等。
然后准备好焊接所需的工具和材料,如焊接机、焊丝、焊条等。
2. 设置焊接参数:根据焊接材料的种类和厚度,调整焊接机的电流、电压和焊接速度等参数。
同时,根据焊接位置和需求,选择合适的焊接方法,如手工焊、自动焊等。
3. 焊接准备:将焊接材料对齐并夹紧,确保焊接接头的固定性。
根据需要,可以使用夹具或支架来辅助固定。
4. 焊接操作:a. 电弧点燃:对于电弧焊接,需要使用电极将电弧点燃。
将电极与焊接接头相接触,然后快速拉离,产生电弧。
b. 焊接操作:将焊丝或焊条与焊接接头接触,将熔化的金属填充到焊接接头的间隙中。
同时,通过焊接枪或手持焊条作为导电道具,使电流通过焊接接头。
c. 移动焊枪或焊条:根据焊接的需要,逐渐移动焊枪或焊条,使焊接接头得到均匀的加热和填充。
5. 焊接结束:焊接完成后,断开电源并等待焊接接头冷却。
根据需要,可以进行后续的处理,如打磨、清洁和防腐等。
总结:焊接是一种常用的金属连接方法,通过加热和压力将金属材料连接在一起。
焊接的原理是利用热能将金属加热至熔点或塑性状态,然后施加压力使其连接在一起。
焊接操作主要包括准备工作、设置焊接参数、焊接准备、焊接操作和焊接结束等步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.试简述焊条的工艺性能?焊接电弧的稳定性;焊缝成型;各种位置焊接的适应性;飞溅;脱渣性;焊条熔化速度;焊条药皮发红;焊接烟尘。
2.试简述药芯焊丝的特性?(1) 熔敷速度快,因而生产效率高;(2) 飞溅小;(3) 调整熔敷金属成分方面;(4) 综合成本低。
3.试简述低氢焊条熔敷金属含氢量低的原因?(1)药皮中不含有机物,清除了一个主要氢源;(2)药皮中加入了大量的造气剂CaCO3、降低了PH2;(3)CaF2的去氢作用;(4)焊条的烘干温度高。
4.试简述不锈钢焊条药皮发红的原因?有什么解决措施?药皮发红的原因:不锈钢寒心电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。
解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。
5.CO2焊接低合金钢一般选用何种焊丝?试分析其原因?答:应选用Si、Mn等脱氧元素含量较高的焊丝,常用的如:H08Mn2SiA。
(1)CO2具有较强的氧化性,一方面使焊丝中有益的合金元素烧损,另一方面使熔池中【FeO】含量升高。
(2)如焊丝中不含脱氧元素或含量较低,导致脱氧不足,熔池结晶后极易产生CO气孔。
(3)按一定比例同时加入Mn、Si联合脱氧,效果较好。
6.试分析说明钛钙型(J422)焊条与碱性低氢型(J507)焊条,在使用工艺性和焊缝力学性能方面有哪些差别?其他工艺性能如全位置焊接性,融化系数等差别不大机械性能对比:钛钙型(J422)(1)S、P、N控制较差,冷脆性、热裂纹倾向大(2)【O】高,氧化夹杂多,韧性低(3)【H】高,抗冷裂能力差碱性低氢型(J507)(1)杂质S、P、N低(2)【O】低,氧化夹杂少(3)【H】低故低氢型焊条的塑性,韧性及抗裂性较酸性的钛钙型大大提高,但其焊接工艺性能较差,对于铁锈,油污,水份等很敏感。
7熔合比的表达式和影响因素?多层焊时,如果各层间的熔合比是固定的,试推导第n层金属的成分。
(考研试题)在焊缝金属中局部熔化的母材所占的比例称为熔合比θ。
θ=(Cw-Cd)/(Cb-Cd)Cw——焊缝金属中合金元素的实际浓度Cb——该元素在母材中的质量百分浓度Cd——熔敷金属中该元素的质量百分浓度。
影响因素:焊接方法、焊接工艺参数、接头尺寸形状、坡口形状、焊道数目及母材的热物理性质、焊接材料种类、焊条(焊丝)的倾角等。
因为C1=θCb+(1-θ) CdC2=θC1+(1-θ) Cd=Cb+(1-)CdC3=Θc2+(1-θ) Cd=Cb+(1-)Cd……Cn=Cb+(1-)Cd即第n层金属的成分为Cn=Cb+(1-)Cd8、直流正接为何比直流反接时焊缝金属熔氢量高?(1)直流正接:工件接正极。
直流反接:工件接负极。
(2)带电质点H+ 在电场作用下只溶于阴极(3)处于阴极的熔滴不仅温度高而且比比表面积大,其溶氢量大于熔池处于阴极时的溶氢量。
9、简述氮对低碳合金钢焊缝金属性能的影响?1、N引起焊缝金属时效脆化,使焊缝金属强度提高,塑性、韧性降低,尤其是低温韧性;2、使焊缝金属产生时效脆化。
3、促使焊缝产生氮气孔;4、N有时是有益的,但必须有弥散强化元素存在并在正火条件下使用。
10、试简述氢对结构钢焊接质量的影响?氢脆;白点;气孔;冷裂纹;组织变化。
11.试简述氧对焊接质量的影响?(1)影响焊缝机械性能:塑性、韧性下降;引起热能、冷脆,时效硬化;(2)影响焊缝金属的物理、化学性能。
如降低导电性、导磁性、耐蚀性等;(3)形成CO气孔;(4)造成飞溅,影响焊接过程的稳定性;(5)焊接过程中导致合金元素的氧化损失将恶化焊接性能;(6)氧在特殊情况下是有益的,如为了改善电弧特性。
降低焊缝金属中的含氢量等。
12.为什么碱性焊条对铁锈和氧化皮的敏感性大?而碱性焊条焊缝含氢量比酸性焊条低?碱性焊条熔渣中含SiO2、TiO2等酸性氧化物较少,FeO的活度大,易向焊缝金属扩散,是焊缝增氧。
因此在碱性焊条药皮中一般不加入含FeO的物质,并要求清除焊件表面的铁锈和氧化皮,否则不仅会增加焊缝中的氧,还可能产生气孔等缺陷,所以碱性焊条对铁锈和氧化皮的敏感性大。
碱性焊条焊缝含氧量比酸性焊条低,是因为碱性焊条的药皮氧化势小的缘故。
13.用某两种焊条焊接,焊条中含硫量相同。
为什么焊后渣为碱性的焊缝含硫量小于渣为酸性的焊缝含硫量?碱性渣中碱性氧化物的活度大,而碱性氧化物有利于脱硫:[FeS]+(CaO)= [CaS]+(FeO)[FeS]+(MnO)= [MnS]+(FeO)故渣为碱性的焊缝含硫量小于渣为酸性的焊缝含硫量。
14.试以硅的沉淀脱氧为例,叙述提高脱氧效果的途径?答:(1)硅的百分含量升高,氧化亚铁的百分含量降低(2)B增加和减少渣中的二氧化硅,二氧化硅的百分含量降低,氧化亚铁的百分含量降低(3)温度降低,反应向右进行,氧化亚铁的百分含量降低15.为何酸性焊条宜用锰铁脱氧?而碱性焊条宜用硅锰联合脱氧?为什么要控制W[Mn]/W[Si]的比值?增加锰在金属中的含量,或减少MnO的活度,都可以提高脱氧效果。
酸性焊条宜用锰铁脱氧:[Mn]+[FeO]=[Fe]+(MnO),在酸性渣中含SiO2和TiO2较多,脱氧产物转化为MnO·SiO2和MnO·TiO2复合物,减少了MnO的活度系数,提高了脱氧效果。
碱性焊条宜用硅锰联合脱氧:在碱性渣中MnO活度系数较大,不利于Mn的脱氧,而且碱度越大,脱氧效果越差。
故碱性焊条不宜用锰铁脱氧。
[Si]+2[FeO]=2[Fe]+(SiO2),SiO2与MnO生成复合物MnO·SiO2,使MnO活度系数降低。
而MnO·SiO2密度小、熔点低,易易于上浮到渣中,故碱性焊条宜用硅锰联合脱氧。
W[Mn]/W[Si]过大,出现固态MnO;W[Mn]/W[Si]过小,出现固态SiO2;均会导致焊缝中夹杂物过多,只有W[Mn]/W[Si]合理时,才会生成低熔点的不饱和液态硅酸盐,使焊缝中的含氧量降低。
16.试简述用冶金方法脱硫的措施答:(1)用合金元素锰脱硫(2)用渣中碱性氧化物脱硫(3)增加熔渣的碱度(4)渣中氟化钙也有利于脱硫17.酸型焊条熔敷金属为何氧含量较高?答:(1)酸型焊条采用锰脱氧不如碱性焊条锰硅联合脱氧效果好(2)酸型焊条碱度B 小,有利于渗硅反应的进行,使焊缝含氧较高(3)酸型焊条为了控氢的目的,导致焊缝含氧18.手工电弧焊接厚12mm 的MnMoNbB 钢,焊接线能量E=2kj/cm,预热温度为50度,求t8/5?附λ=0.29J/(cm s ℃) CP=6.7 J/(cm s ℃)85000.731.20.750.55,0.982-T 800-T cr cr cm cm cm E t s δδδπλ===>==11(+)=50019.从传热学角度说明临界板厚δcr 的概念?某16Mn 钢焊件,采用手工电弧焊,能量E=15KJ/cm 求δcr ?由传热学理论知道:在线能量一定的情况下,板厚增加冷却速度Wc 增大,冷却时间t8/5变短,当板厚增加到一定程度时,则Wc 和t8/5不再变化,此时板厚即为临界板厚δcr 。
1.95cr cm δ==20.试简述接头偏析的种类和产生原因?答:显微偏析:由于结晶有先后所产生的微观区域化学成分的不均匀性。
区域偏析:由于结晶有先后所产生的宏观区域化学成分的不均匀性,一般在焊接熔池的最后凝固部位由于杂质浓度升高产生区域偏析。
层状偏析:由于结晶过程周期性变化而引起的化学成分分布不均匀所造成。
熔合线偏析:焊接过程中由于焊接热作用使熔合线附近产生碳和合金元素浓度明显变化的现象,形成熔合线偏析。
21.简述焊接熔池的凝固特点?答:1,熔池体积小,加热温度高,冷却速度快;2,热源移动结晶过程连续进行并随熔池前进;,3,液态金属中不同部位其温度不均匀性巨大,中心过热;,4,原始成分不均匀,因熔池存在时间短而来不及均匀化。
22焊接热循环与热处理相比有何特点?试用这些特点分别比较45钢和40Cr 在热处理条件下近缝区的淬透性大小?焊接热循环特点:①加热温度高 ②加热速度快 ③高温停留时间短④自然冷却 ⑤局部加热淬透性比较:45钢------焊接条件下近缝区的淬透性大于热处理的淬透性,40Cr------相反 45钢由于不含碳化物形成元素,焊接条件下近缝区峰值温度高,使奥氏体晶粒粗化,增大奥氏体稳定性,故淬透性和热处理相比反而大。
40Cr 在焊接快速加热条件下,高温停留时间短,碳化物形成元素不能充分溶解到奥氏体中,奥氏体的稳定化程度不如热处理条件,故淬透性小。
23 简要说明不易淬火钢和易淬火钢粗晶区的组织特点和对性能的影响?答:不易淬火钢:组织特点:晶粒粗大,易出现魏氏组织性能:塑性,韧性低,易产生脆化和裂纹易淬火钢:组织特点:粗大的马氏体性能:该区脆硬,易产生延迟裂纹24.试分析钢种淬硬倾向的影响因素?用什么指标来衡量高强钢的淬硬倾向比较合理?(1)化学成分:碳当量升高,淬硬倾向升高(2)冷却条件:t8/5降低,淬硬倾向升高用HAZ的最高硬度Hmax来评定钢的淬硬倾向比较合理,因为它综合反映了化学成分和冷却条件的影响。
25试简述焊接HAZ区韧化的途径有哪些?(1)控制组织:在组织上能获得低碳马氏体、下贝氏体和针状铁素体等韧性较好的组织。
(2)合理制定焊接工艺,正确地选择焊接线能量和预热,后热温度,既不致过热脆化,又不致淬硬脆化。
(3)采用焊接后热处理来接头的韧性。
(4)研制发展新的钢种,进一步细化品粒,降低钢中的杂质S、P、O、N等的含量,使钢材的韧性大为提高,也提高了焊接HAZ的韧性。
26、试分析不易淬火钢热影响区中正火区的组织特点?该区的母材金属被加热到Tg—AC3温度范围,铁素体和珠光体将发生重结晶,全部转变为奥氏体,形成的奥氏体晶粒尺寸小于原铁素体和珠光体,然后在空气中冷却就会得到均匀而细小的珠光体和铁素体,相当于热处理时的正火组织,故亦称正火区。
27、试分析不易淬火钢热影响区中不完全重结晶区的组织特点?焊接时处于AC1—AC3之间范围内的热影响区属于不完全重结晶区。
因为处于AC1—AC3范围内只有一部分组织发生了相变重结晶过程,成为晶粒细小的铁素体和珠光体,而另一部分是始终未能溶入奥氏体的剩余铁素体,由于未经重结晶仍保留粗大晶粒。
所以,此区特点是晶粒大小不一,组织不均匀。
28.试分析易淬火钢热影响区中完全淬火区的组织特点?焊接时热影响区处于AC3以上的区域,与不易淬火钢的过热区和正火区相对应,铁素体和珠光体全部转变为奥氏体,由于这类钢的淬硬倾向较大,焊后冷却时很易得到淬火组织(马氏体),故称淬火区。
在紧靠焊缝相当于低碳钢的过热区的部位,由于晶粒严重粗化,故得到粗大的马氏体,而相当于正火区的部位则得到细小的马氏体。