矢量方程图解法对机构运动分析1

合集下载

第3.3节 用矢量方程图解法作运动分析

第3.3节 用矢量方程图解法作运动分析

c
速度多边形的用途 由两点的速度求构件上任意点的速度 C A 例如,求BC中间点E的速度VE 时,bc上 中间点e为E点的影像,连接pe就是VE a p ω E B
e b
c
2、同一构件上两点加速度之间的关系 设已知角速度ω ,A点加速度,求B点的加速度 A B两点间加速度之间的关系有: A
BA
C ω B aB
2 2 2
方向:顺时针
+ω +ω +ω
4 4 4
= μ aa’b’ = μ a a’c’ = μ a b’c’ A p’ ω α aA C
B
aB
得:a’b’/ lAB=b’c’/ lBC= a’ c’/ lCA
∴△a’b’c’∽△ABC
p’a’b’c’-加速度多边形(或速度 图解), p’-极点 加速度多边形的特性: ①联接p’点和任一点的向量代表该 点在机构图中同名点的绝对加速 度,指向为p’→该点。
VB B
2
VB B
2
1
1
VB
2
2
B(B1,B2)
vB2 vB1 vB2B1
VB
1
1
A
ω1
VB B
2
VB B
2
1
1
VB

aB2 aB1 a k B2B1 a r B2B1
2
2
B(B1,B2)
VB
aB1 a n B1 a t B1
等速
1
1
A
ω1
④极点p’代表机构中所有加速度为零的点。 用途:根据相似性原理由两点的加速度求任 意点的加速度。 例如,求BC中间点E的加速度aE 时,b’c’上中间

第3章机构的运动分析-1

第3章机构的运动分析-1
E
an EB
C 3 4
ω3
aE e'
b'
ω2
A
2
aB
1
w4
D
a
t EB
a
n EB
(P12 )
以曲柄滑块机构为例,进一步说明用矢量方程图 解法作机构的速度分析和加速度分析的具体步骤。
例 : 已知曲柄滑块机构原动件 AB 的运动规律和各构件尺寸。求: (1)图示位置连杆BC的角速度和 其上各点速度。 (2)连杆BC的角加速度和其上C点 加速度。 ω2 2
极点
C
vEC
vCB vEB
b
bc 代表 vCB 。
e
3)在速度多边形中,极点p 代表机构中速 度为零的点。 4)已知某构件上两点的速度 ,可用速度影 像法求该构件上第三点的速度。
速度多边形
E B
A
C
vC x
p
极点
C
vEC e
vCB
vB
vEB
b
△bce ~ △BCE
已知连杆上两点的速度vB 、vC 用速度影像法可以确定vE 。
④确定点的轨迹(连杆曲线)。
V型发动机运动简图
D
E
C B
A
3-1
机构运动分析的任务、目的及方法
1.机构运动分析的任务与目的
(2)速度分析
5 4
①掌握从动件的度变化规律 是否满足工作要求。如牛 头刨床; ②为加速度分析作准备。
2
1 3
6
3-1 机构运动分析的任务、目的及方法
1.机构运动分析的任务与目的
用三心定理可以确定ω3、ω4 的大小。
平面铰链四杆机构
例2:用三心定理分析凸轮机构速度 (v3)。 1

机械原理 第二章-2相对运动图解、解析

机械原理 第二章-2相对运动图解、解析

1
3
aC1n c2 (c3) aC1t 4 D
A
4 P c1
一步减少未知数的个数。
n t k r aC2 aC3D aC3D aC1 aC2C1 aC2C1
2 3 l3
大小: 方向:
? 3l3
√ √
21vC 2C 1 ?
√ ∥AB
C→D ⊥CD
2) 取速度比例尺a , 作 加速度多边形。
P
c1
( 顺时针 )
2. 加速度分析:
1) 依据原理列矢量方程式 分析:
aC2 = aC1 + aC2C1
B
2 C akC2C1
当牵连点系(动参照系)为 转动时,存在科氏加速度。 3
D 4
ω1
1
1
c2 (c3)
r k aC2C1 aC2C1 aC2C1
科氏加速度
A
4 P c1
k r a 2 v


22lBC
C→B

⊥BC
b) 根据矢量方程式,取加速度比例尺
a

实际加速度
c´ 图示尺寸
m/
s2
p
mm
, 作矢量多边形。
c e b
p
极点
n
b
由加速度多边形得:
aC a pc m / s2
t 2 aCB l BC a nc l BC
同样,如果还需求出该构件上E 点的加速度 aE,则
pe 则代表 aE

由加速度多边形得:
p c´ n
aE pea
△b’c’e’ ~ △BCE , 叫 做
△BCE 的加速度影像,字 母的顺序方向一致。

第三章平面机构的运动分析

第三章平面机构的运动分析
A。以转动副直接相联的---------在转动副中心 B。以移动副直接相联的---------在垂直于移动方向的无穷远处 C。以高副直接相联的:纯滚动----- --在接触点 非纯滚动-----在接触点的公法线上
•不以运动副直接相联的构件
三心定理:三个彼此作平面平行运动的构件共有
三个瞬心,且必在同一直线上。 例1:求图3-3所示机构的瞬心 N=n(n-1)/2 =4(4-1)/2 =6
上例中:构件4、5形成移动副,该两构件上的重合点D的 速度关系如下: VD5 = VD4+ VD5D4 大小 ? √ ? 方向 ⊥DF √ ∥移动方向
ω5= VD5/LDF
构件4、5形成移动副,该两构件上的重合点D的 加速度关系如下:
aD5 = aD5n + a D5t =aD4 + aD5D4k (哥氏加速度) + aD5D4r 大小 ω52* LDF ? √ 2ω4* VD5D4 ? 方向 D→F ⊥DF √ VD5D4方向沿ω4转过900 ∥移动方向 构件4、5形成移动副,两构件间无相对转动, 则: ω5= ω4
3-4 综合运用瞬心法和矢量方程图解法对复杂机构 进行速度分析
例3-2,求图示齿轮--连杆组合机构中构件6的角速度。 解:
K点为构件2、4的瞬心,VK= ω2*LOK E点为构件1、4的瞬心,VE=0 构件4上已知两点K、E的速度,第三点B的速度可用影象法求 用矢量方程VC = VB + VCB可求出VC,则ω6=VC/LCD
例2:求图3-4中从动件3的移动速度。
解:
1 .先求出构件2、3的瞬心 2.V3=VP23= ω2*P12P23 P13∞
例3:求图示机构中构件6的移动速度。 解:V6=VP26= ω2*P12P26

[机械原理]图解-平面机构的运动分析

[机械原理]图解-平面机构的运动分析

at 4 E2B
aC22

an EC
大方5小向)v角速得E速度,度, 方v可其向B 用指的构向判⊥v?EE件与定BB上速采任度用v意的矢C 两角量⊥点平标v?EE之相移CC 间反法的((将相v代对CBb表速该度A1b相除c对于)1速该。度两的点4矢之量间E 平的G移距3到离D对来应求
vE点上)v。 pe
vB
对Δ当67Δb))b应已cc构e当速e边称知图∽同度互为构中Δ一影相Δ件B对B构像C垂上CE应件原直E两且点已理的点字构知:速的母成两同度速顺的点一影度序多速构像时一边度件,致形求上可相第各以似三点用且点在速角速速度e标f度度影字cv时矢像C母B才量原绕能图理行使上求顺v用构出E序速成该相度的v构C同多影件g。边像上形原任与理意其一在点机的 P
1 P12
A
1
P14
VE 2 P24E
P24
2
P23 C
VE E
3
D
4
P34
§3-2 用速度瞬心法作机构速度分析
四、 用瞬心法作机构的速度分析
1. 铰链四杆机构
已知:各杆长及1 ,1。求:2 ,3 。 V E
N(N I) 43
P24
K
6
2
2
P14、P12、P23、P34位于铰链中心
取基点p,按比例尺v (m/s)/mm作速度图
A 1
4
D
b
VB
vC v pc vCB v bc
VCB
p
2

vCB lBC
3

vC l CD
c
VC
方向判定:采用矢量平移法
§3-2 用矢量方程图解法作机构的运动分析

机械原理_运动分析

机械原理_运动分析
大小: 大小: ? ω1 1 A
2 C 3 4 D
υC1 = ω1lAC
υC2 =υC1 +υC2C1

? 方向: 方向: CD ⊥AC ∥AB ⊥
c2(c3)
(3)画速度图 画速度图 µυ =υC1 / pc1 ,(m/ s)/ mm
p c1
υC2 = pc2 iµv ω3 =υC3 / lCD (顺时针)
2 C 3 4 D
●依据原理 构件2的运动可以认为是随同构件1 构件2的运动可以认为是随同构件1的牵连运动 和构件2相对于构件1的相对运动的合成。 和构件2相对于构件1的相对运动的合成。
1.速度分析 【解】1.速度分析
B
C点为构件1、2、3的重合点 点为构件1 (1)求已知速度 求已知速度 (2)列方程 列方程
3.3 机构运动分析的矢量方程图解法
所依据的基本原理: ●所依据的基本原理: 运动合成原理
一构件上任一点( 一构件上任一点(C)的运动υC ,可以看作是随同该构 件上另一点( 的平动(牵连运动) 和绕该点的转动( 件上另一点(B)的平动(牵连运动)υB和绕该点的转动(相 对运动) 的合成。 对运动)υCB的合成。
ω1
A
υB ac
【解】 1.速度分析 速度分析 (1)求已知速度 求已知速度
E B 1 2 4 A 3 C
υB = ω1lAB
(2)列方程 列方程 方向 大小 (3)画速度图 画速度图
ω1
υB a c
υC =

υB + υCB
⊥ CB
? p c √
水 平 ⊥ AB
p ─ 速度极点。 速度极点。 µυ =υB / pb ,(m/ s) / mm

机械原理-机构的运动分析

机械原理-机构的运动分析

3、加速度分析
aC aB aCB
a C a C aB a CB a CB
n t n t
a B 12l AB
F
1
1 A B 2 E C
大小 lCD32
?
→A
lCB22 C→B
? ⊥CB
·
G
3
方向 C→D ⊥CD
取极点p’ ,按比例尺a作加速度图
1
4
D
' aC a p 'c ' aCB a b 'cc´
思考题:
P44 3-1
作业:
P44 3-3、3-6、3-8(b)
§3-3 用矢量方程图解法作机构的运动分析
一、矢量方程图解法的基本原理及作图法
1、基本原理 —— 相对运动原理 B(B1B2) 1
B
A
同一构件上两点间的运动关系
2
两构件重合点间的运动方程
vB v A vBA
aB a A aBA aA a

aC a G e´
aCB
n2 ´ n2

n3
aF

加速度图分析小结: 1)p‘点代表所有构件上绝对加速度为零的影像点。 2)由p‘点指向图上任意点的矢量均代表机构图中对应点 的绝对加速度。 3)除 p′点之外,图中任意两个带“ ′”点间的连线 均代表机构图中对应两点间的相对加速度,其指向与加 速度的角标相反。 4)角加速度可用构件上任意两点之间的相对切向加速度 除于该两点之间的距离来求得,方向的判定采用矢量平 aCB b ' c ' 移法。 5)加速度影像原理:在加速度图上,同一构件上各点的 绝对加速度矢量终点构成的多边形与机构图中对应点构 成的多边形相似且角标字母绕行顺序相同。 6)加速度影像原理只能用于同一构件。

用矢量方程图解法作机构的速度及加速度分析

用矢量方程图解法作机构的速度及加速度分析

b2
ω3=v pb3/LBC,顺时针方向
加速度关系a ① 加速度关系
A
r B3B2
aB3 = a
大小 方向 ak
n B3
+a
t B3
= aB2 + a
+a
k B3B2
1 2 B
ω1
? ω23LBC ? ω21LAB ? 2vB3B2ω3 ? B→C ⊥CB B→A // //BC √ 转过90 沿ω3转过 °
方程不可解 方程可解 G C F E
D
vG = vB + vGB = vC + vGC = vG 大小 ? √ ? ? √ ? 方向 ? √ √ √ √ ?
● 重合点应选已知参数较多的点(一般为铰链点) 。 重合点应选已知参数较多的点(一般为铰链点) 选C点为重合点 点为重合点 v C 3 = v C 4 + v C 3C 4 ? ? 大小 ? 方向 ? √ √
c b
p
角速度 ω=vBA/LBA=v ab/l AB,顺时针方向 / , 同理 ω=v ca/l CA / ω=v cb/lCB / 因此 ab/AB=bc/BC=ca/CA / / / 于是 abc∽ABC
速度多边形 c b 速度极点 速度零点) (速度零点) C A
ω
a
B
p




速度多边形( 速度多边形(Velocity polygon)的性质 ) 联接p点和任一点的向量代表该点在 联接 点和任一点的向量代表该点在 机构图中同名点的绝对速度, 机构图中同名点的绝对速度 , 指向 C 为p→该点。 →该点。 A 联接任意两点的向量代表该两点 ω 机构图中同名点的相对速度, 在 机构图中同名点的相对速度 , 指向与速度的下标相反。 指向与速度的下标相反 。 如 bc代 代 a 表 vCB 而不是vBC 。 常用相对速度 而不是 来求构件的角速度。 来求构件的角速度。 abc∽ABC,称abc为ABC的速 ∽ , 为 的速 c 度影像( ) 度影像(Velocity image),两者相似 b 且字母顺序一致, 且字母顺序一致 , 前者沿 ω方向转 过90。 速度极点 极点p代表机构中所有速度为 速度极点 代表机构中所有速度为 零的点的影像。 零的点的影像。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《机械原理》
第三章平面机构运动分析
——矢量方程图解法对机构运动分析(1)
矢量方程图解法(相对运动图解法)依据的原理理论力学中的运动合成原理
同一构件两点间的运动关系
两构件重合点间的运动关系ω1
A D C
143
2B C B CB v v v =+2121
C C C C v v v =+
矢量方程图解法(相对运动图解法)
依据的原理
理论力学中的
运动合成原理
同一构件两点
间的运动关系
两构件重合点
间的运动关系
1、根据运动合成原理列出矢量方程
2、根据矢量方程图解条件作图求解
基本作法
二、同一构件两点间的运动分析
运动合成原理:连杆上任一点(如
C 点)的运动,可以看作是随同该构件上另一点B 的平动(牵连运动)和绕该点的转动(相对运动)的合成。

已知图示曲柄滑块机构原动件AB 的运动规律和各构件尺寸。

求:①图示位置连杆BC 的角速度和其上各点速度。

②连杆BC 的角加速度和其上C 点加速度。

理论力学
大小:
方向:?ω1l AB ?∥xx ⊥AB ⊥BC c
p
★求V C
①由运动合成原理列矢量方程式CB B C v v v +=v B ω2②确定速度图解比例尺μv ( (m/s)/mm)
/B v pb v μ=b
2CB CB l ω=v (逆时针方向)
2CB CB
l ω=v C v v pc μ=CB v v bc μ=③作图求解未知量:
大小:方向:c p
★求V E
v B ω2
b
E v v pe
μ=?
√ ??⊥AB ⊥EB
E B EB v v v =+C EC v v =+∥xx ⊥EC √ ?e 速度多边形极点
m/s
c p
v B ω2
b
e 速度多边形极点
①由极点p 向外放射的矢量代表相应点的绝对速度,极点p 的速度为零;②连接极点以外其他任意两点的矢量代表构件上相应两点间的相对速度,其指向与速度的下角标相反;
③因为△BCE 与△bce 对应边相互垂直且角标字母顺序一致,故相似,所以图形bce 称之为图形BCE 的速度影像。

CB B C v v v +=C v v pc μ=速度影像。

小结
1、矢量方程图解法对机构运动分析的基本原理——运动合成原理;
2、同一构件上两点速度分析---速度多边形;
①由极点p 向外放射的矢量代表相应点的绝对速度,极点p的速度为零;
②连接极点以外其他任意两点的矢量代表构件上相应两点间的相对速度,
其指向与速度的下角标相反;
③速度影像只适用于同一构件上各点。

相关文档
最新文档