膜技术用于水处理

合集下载

给排水工艺中的膜技术在水处理中的应用

给排水工艺中的膜技术在水处理中的应用

给排水工艺中的膜技术在水处理中的应用膜技术是给排水工艺中广泛应用的一种先进处理技术。

通过膜的微孔或选择性渗透作用,可以有效地去除水中的悬浮物、胶体、细菌、病毒等污染物质,实现高效的水处理和净化。

本文将探讨膜技术在给排水工艺中的应用及其优势。

一、膜技术在污水处理中的应用膜技术在污水处理中的应用主要包括微滤、超滤、纳滤和反渗透等过程。

具体应用如下:1. 微滤微滤是一种基于物理过滤机制的膜技术,通过微孔滤膜有效去除水中的悬浮物和部分胶体。

在给排水工艺中,微滤常用于预处理过程,起到初步去除大颗粒污染物的作用,可使后续处理过程更加高效。

2. 超滤超滤是一种基于物理过滤和分子筛选机制的膜技术,其膜孔径较微滤更小,可以有效去除水中的胶体、细菌和病毒等微生物污染物。

超滤在污水处理中被广泛应用于二次处理过程,可大幅降低水中微生物的浓度,保证出水的安全性和卫生性。

3. 纳滤纳滤是一种介于超滤和反渗透之间的膜技术,其膜孔径介于1nm至100nm之间。

纳滤膜可以除去水中的溶解性有机物质、重金属离子和微量营养物质等,同时保留水中的有益矿物质,获得更加纯净和健康的水质。

4. 反渗透反渗透是一种通过高压作用使水逆向渗透,通过反渗透膜有效去除水中的溶解性物质、无机盐和有机物质等。

反渗透在给排水工艺中主要用于海水淡化、饮用水净化和工业废水处理等领域,具有高效、经济、环保的特点。

二、膜技术的优势膜技术在给排水工艺中的应用具有以下优势:1. 高效性:膜技术可以去除水中的微小颗粒、微生物和溶解性物质,使水处理更加高效和彻底,获得更好的水质。

2. 选择性:膜技术可以根据需要选择合适的膜孔径,以实现对不同大小和种类污染物的选择性去除,保留有益物质。

3. 节能性:与传统的物理化学处理方法相比,膜技术所需的能量消耗较低,具有较高的能源利用效率。

4. 可控性:通过调整膜孔径、通量和截留效率等参数,可以实现对处理过程的精确控制,保证出水质量的稳定性。

膜技术在水处理中的应用与发展

膜技术在水处理中的应用与发展

膜技术在水处理中的应用与发展一、膜技术在水处理中的应用情况膜技术是利用半透膜对水进行过滤和分离的一种水处理技术。

它具有高效、节能、无化学品添加等优点,所以在水处理领域得到了广泛的应用。

目前,膜技术在水处理中主要包括以下几个方面的应用:1. 海水淡化:随着人口的增长和工业的发展,供水紧张问题日益严重。

海水淡化技术通过膜技术可以将海水中的盐分和杂质去除,得到符合饮用水标准的淡水。

在一些水资源紧缺的地区,海水淡化技术成为了解决供水问题的重要手段。

2. 污水处理:城市污水处理是保障城市环境卫生的重要措施。

膜技术在污水处理中可以用于去除污水中的有机物和微生物等有害物质,生产出清洁的再生水。

3. 饮用水处理:膜技术可以应用于自来水、地下水等饮用水源的处理,去除其中的细菌、微生物、重金属等有害物质,提高水质,保障居民的健康。

4. 工业废水处理:工业生产中产生的废水中往往含有大量的有机物质、重金属和化工原料等有害物质。

膜技术可以有效去除这些有害物质,达到排放标准,防止对环境造成污染。

5. 压力驱动与电动式反渗透膜除盐技术:电动反渗透技术是近年来膜技术的新发展趋势,它利用电能来提高膜的去除盐效率,成为一种极具潜力的技术。

膜技术在水处理中的应用正在不断发展和完善,未来的发展趋势主要包括以下几个方面:1. 技术革新:随着科技的不断进步,新型的膜材料、膜结构、膜模块等不断涌现,使得膜技术在水处理中的应用范围更加广泛、性能更加优越。

2. 集成化发展:膜技术在水处理中将逐渐向集成化方向发展,即与生物反应器、化学氧化等其他水处理技术结合,形成多种技术协同作用,提高水处理效率。

3. 绿色环保发展:传统水处理工艺往往需要大量的化学药剂,而膜技术在水处理中不需要外加化学品,且能有效地减少二次污染,因此将是绿色环保水处理技术的重要组成部分。

4. 智能化应用:随着自动化技术和人工智能技术的不断发展,膜技术在水处理中将更加智能化,例如通过智能控制系统实现膜设备的自动运行和故障检测等功能,提高设备运行效率。

膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用
膜技术是一种利用半透膜分离物质的工艺技术,其应用十分广泛,尤其在饮用水处理
领域具有重要作用。

膜技术可以高效去除水中的悬浮固体、胶体物质、有机物质、微生物
和溶解离子等,是一种理想的水处理方法。

本文将介绍膜技术在饮用水处理中的应用。

膜技术在饮用水处理中的应用有三个主要方面:微滤膜、超滤膜和反渗透膜。

微滤膜是一种孔径较大的膜,其孔径范围在0.1-10微米之间,可以有效去除水中的悬浮固体颗粒、胶体物质和微生物等。

微滤膜具有操作简便、工艺流程简单、投资成本低等
优点,广泛应用于饮用水厂的预处理过程中。

可以用微滤膜对水中的泥沙、悬浮颗粒和藻
类等进行预处理,提高后续处理工艺的效果。

超滤膜的孔径范围在0.001-0.1微米之间,可以去除水中的胶体物质、有机物质和微
生物等。

与微滤膜相比,超滤膜对颗粒物质的去除效果更好,可以去除微米级别的颗粒物质。

超滤膜在饮用水处理中的应用非常广泛,可以用于富集、浓缩或分离水中的有机物质、细菌、病毒等。

超滤膜可以有效去除水中的有机物质和胶体物质,提高水处理的效果。

反渗透膜也是一种常用的膜技术,在饮用水处理中应用广泛。

反渗透膜的孔径非常小,只有纳米级别,可以去除细菌、病毒和溶解离子等。

反渗透膜可以实现对水中离子、有机
物质和微生物等的高效去除,提供高品质的饮用水。

可以用反渗透膜对水中的全氟化合物、重金属离子和有机物质等进行去除,提高饮用水的安全性和适用性。

反渗透膜工艺技术在
饮用水处理厂中广泛应用,成为一种理想的水处理方法。

水处理中的膜技术

水处理中的膜技术

水处理中的膜技术水处理是我们生活中必不可少的一环,早期传统的水处理方法往往采用化学药品来消除有害微生物和化学物质,但是这种方法处理出来的水品质不稳定,并且对环境造成严重的污染。

随着科技的不断发展,膜技术的出现逐渐改变了水处理方式的格局,特别是在海水淡化以及固废处理领域,膜技术已经成为了最受欢迎的一种水处理方式。

一、膜技术在水处理领域中的应用1. 海水淡化海水淡化是指通过处理海水,去除其中的盐分和其他有害物质,从而得到新鲜的淡水。

传统的海水淡化方法大多采用的是热扩散或蒸发技术,这些方法不仅成本高昂,而且对环境造成严重的影响。

而利用膜技术进行海水淡化,既能提高净水效率,同时也能显著地降低处理成本和对环境的污染程度。

2. 城市污水处理城市污水处理是指将市区污水经过预处理、深度处理、消毒等一系列流程,使其达到国家规定的排放标准。

膜技术在城市污水处理中扮演着重要的角色,使得处理出来的污水更加稳定和高效。

3. 工业废水处理工业废水中往往含有各种有毒有害的物质,传统的处理方式存在一些弊端,也不能达到理想的处理效果。

而膜技术因其高效、可靠、环保的特点,在工业废水处理中得到了广泛的应用。

二、膜技术的优点1. 高效性膜技术所采用的微孔膜可以过滤细小的微粒和水中的其他有害物质,使得处理后的水质更加纯净、更能符合国家规定的排放标准。

2. 低能耗相比传统的水处理方法,膜技术耗能较少,同时能够减少处理成本和对环境的污染程度。

3. 可控性强膜技术可以根据不同的用途和水质要求进行不同程度的调整,从而达到更好的处理效果,具有非常强的可控性。

三、膜技术的存在问题1. 膜污染膜技术在应用过程中可能会存在一定的膜污染问题,需要定期进行清洗和更换,从而确保处理效果。

2. 需要高水平的技术人员膜技术的处理过程相对较为复杂,需要有一定的专业知识和技术支持,对操作人员的技术要求也比较高。

3. 设备维护成本高膜技术所使用的设备比传统设备要复杂得多,因此对设备的维护和保养成本也会相应提高。

膜技术在水处理中的应用

膜技术在水处理中的应用

膜技术在水处理中的应用随着人们对环境保护意识的提高,水处理技术也得到了广泛的关注和推广。

而在众多的水处理技术中,膜技术因为其高效、可靠、环保的特点,成为了越来越多水处理领域的首选。

在本文中,我们将探讨膜技术在水处理中的应用。

一、膜技术的原理和优势膜技术是利用膜分离原理,以膜为过滤介质,将水中的杂质、微生物、病毒等有害物质分离出来的一种水处理技术。

膜技术主要分为微滤、超滤、纳滤和反渗透四种类型,其应用范围也不尽相同。

相比于传统水处理技术,膜技术有以下优势:1.高效。

膜孔径小,分离效果好,能有效地去除水中的有害物质。

2.环保。

膜技术不需要任何化学药剂,可以减少水处理过程中的污染。

3.省水。

膜技术可以回收处理后的水,达到节水效果。

4.便捷。

膜技术操作简单,不需要大量的人力和物力成本。

5.可持续。

膜技术可以循环利用,投资收益高,且使用寿命长。

二、膜技术在水处理中的应用1.饮用水处理膜技术在饮用水处理中的应用是最为广泛的。

膜技术可以有效地去除水中的重金属、有机物、微生物等有害物质,使水变得更加清澈、透明、安全。

膜技术可以借助反渗透膜加工饮用水,将水中的各种离子、微生物、悬浮物、色度等物质分离出来,制备出高质量的饮用水。

世界上很多国家、地区都采用了这种技术来提供高质量的饮用水。

2.污水处理膜技术在污水处理中的应用也越来越广泛。

膜技术可以有效地去除污水中的各种杂质、微生物和悬浮物,取代传统沉淀、过滤等处理方式,大大提高了污水处理效率和水质。

膜技术可以应用于城市污水处理厂、工业废水处理等领域,达到排放标准。

3.海水淡化随着全球人口的增长和干旱地区的扩大,海水淡化技术也越来越重要。

而膜技术可以应用于海水淡化领域,将海水中的盐、微生物等有害物质去除,制备出淡水。

海水淡化可以缓解干旱地区的用水问题,改善当地居民的生活条件,提高经济发展水平。

三、膜技术的发展前景膜技术作为一种高效、环保的水处理技术,已经快速发展和应用。

膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用膜技术是一种高效的饮用水处理技术,具有很多优点,如高效、可靠、节能等。

它被广泛应用于饮用水处理中,包括直接饮用水处理、水源污染处理、反渗透技术、海水淡化等。

膜技术在直接饮用水处理中发挥了重要作用。

膜过滤技术能够有效去除水中的细菌、病毒、有机物、重金属等有害物质,提供安全、卫生的直饮水。

膜过滤膜的孔径非常小,可以过滤掉微小的污染物质,保证水质达到国家标准。

膜技术还具有高效、节能的特点,可以大幅降低能源消耗和人工成本。

膜技术在水源污染处理中也具有广泛应用。

随着工业化和城市化进程的加速,水资源污染日益严重,有效地处理水源污染成为亟待解决的问题。

膜技术能够有效去除水中的微生物、有机物、重金属等污染物质,使污染水源得到有效治理,恢复水体生态环境,保护人类健康。

反渗透技术是膜技术在饮用水处理中的重要应用之一。

反渗透技术是利用半透膜对水进行过滤,将水中的溶解固体、重金属、有机污染物等去除,实现水的浓缩和纯化。

这种技术可以应用于海水淡化、高盐水处理等场景,使海水等不可利用的水资源得到有效利用。

膜技术还可以应用于饮用水处理厂和家庭用水净化设备中。

在饮用水处理厂中,膜技术可以与传统的混凝沉淀、过滤等处理工艺相结合,形成高效的综合处理系统。

在家庭用水净化设备中,膜技术可以应用于自来水的净化和过滤,提供安全、卫生的家庭饮用水。

膜技术在饮用水处理中的应用非常广泛,可以应对不同水质和不同污染源的处理需求。

它不仅可以提供安全、卫生的直饮水,还能够有效处理水源污染和海水淡化等问题,为人们提供高质量的饮用水资源。

膜技术在水处理领域的应用

膜技术在水处理领域的应用

膜技术在水处理领域的应用随着全球水资源的日益紧缺以及水污染问题的愈加严重,膜技术越来越成为水处理领域中的一项重要技术。

它通过利用特殊的膜,将水中的杂质与纯净的水分离,实现水资源的合理利用。

本文将着重探讨膜技术在水处理中的应用及其优缺点。

一、膜技术的基本原理膜技术是一种基于屏障作用的分离技术,其基本原理是利用膜的孔隙大小和特殊的化学或物理性质,在一定的压力作用下,将水中的杂质与纯净水分离。

膜的材料种类千变万化,常见的有聚丙烯、聚氯乙烯、聚酰胺等。

根据分离机制不同,膜可以分为微孔膜、超滤膜、纳滤膜及反渗透膜等多种类型。

二、膜技术在水处理领域的应用1. 给水处理利用膜技术对自来水进行预处理,可以去除水中的胶体、微生物、悬浮物等杂质,保证给水的质量。

同时,在城市水资源短缺的情况下,膜技术可以将海水、河水等地表水转化为淡水,成为大型饮用水处理设备的重要组成部分。

2. 污水处理膜技术可以去除污水中的有机物、氨氮、微生物等污染物,实现水资源的再利用。

当前,以工业废水处理为主的膜技术已经成为常见的工业废水处理工艺之一,有效解决了冶金、化工、印染等行业处理难度大的污水处理问题。

3. 浓缩处理膜技术还可以用于萃取和浓缩,通过逆向渗透将水中的溶解性物质浓缩至一定程度,减少了化工、制药等工业生产过程中的废液排放,降低了企业生产成本。

三、膜技术的优缺点1. 优点(1)高效:膜技术可实现精细微观分离,过滤效率高。

(2)节能:相比常规处理技术,膜技术能够降低能源消耗。

(3)环保:膜技术不需要使用化学药剂,对环境污染小。

2. 缺点(1)成本高:膜技术所需材料较为昂贵,设备价格较高。

(2)污染问题:膜在使用过程中易产生污染,需要定期更换。

(3)水质要求高:使用膜技术时,水质必须要达到一定程度,否则会影响膜的使用寿命。

四、后续发展趋势膜技术在水处理领域的应用越来越广泛,随着科学技术的不断发展,膜技术也在不断升级。

将来,膜材料将更加耐用、环保;膜的筛选、分离效果会更精确;在能源消耗方面,膜技术也将不断优化和节约。

膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用膜技术是通过选择性渗透原理,利用膜作为介质将水和污染物分离的技术。

膜材料通常可以分为有机膜和无机膜两大类。

有机膜包括聚醚酯膜、聚胺酯膜、聚碳酸酯膜等;无机膜包括陶瓷膜、炭化膜、金属膜等。

这些膜材料具有不同的孔径、渗透性和分离效果,可以根据不同的水质要求进行选择。

膜技术在饮用水处理中具有很多优点。

膜技术可以有效去除水中的悬浮物、胶体、有机物、无机盐和微生物等污染物。

膜技术对水质要求较低,可以适用于各种不同的水源,如表面水、地下水、海水等。

膜技术具有操作简单、能耗低、占地面积小的特点,可以实现连续处理和自动化控制,减轻人工操作负担,降低运行成本。

1. 微滤和超滤:微滤和超滤是膜技术的基础应用。

微滤和超滤膜具有较大的孔径,可以去除水中的悬浮物、胶体、细菌等微生物,有效提高水质。

微滤和超滤广泛应用于净水厂、给水设备、水源污染治理等领域。

2. 反渗透:反渗透是膜技术在饮用水处理中的重要应用之一。

反渗透膜具有极小的孔径,可以有效去除水中的溶解性无机盐、重金属、有机物等。

反渗透技术可以广泛应用于海水淡化、地下水处理、饮用水净化等领域。

3. 纳滤:纳滤是一种介于微滤和超滤之间的膜分离技术。

纳滤膜的孔径较小,可以去除水中的有机物、胶体、微生物等,同时保留溶解性无机盐。

纳滤技术可以应用于矿泉水处理、工业废水处理等领域。

4. 电渗析:电渗析是利用电场和离子选择性膜对水中的离子进行选择性分离和浓缩的技术。

电渗析技术可以有效去除水中的重金属离子、无机盐等。

电渗析技术广泛应用于工业废水处理、电镀废液处理等领域。

除了以上几个方面,膜技术还可以与其他水处理技术相结合,如吸附、氧化、高级氧化等,形成多种复合膜技术,提高饮用水的处理效果。

膜技术在饮用水处理中的应用具有广泛的前景和巨大的潜力。

随着技术的不断发展和成熟,膜技术将在解决饮用水资源短缺和水污染问题方面发挥越来越重要的作用。

我们还应加强相关研究,不断创新和完善膜技术,促进其更好地在饮用水处理领域的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表2
膜过程 推动力
微滤 超滤 压力差
几种主要分离膜的分离过程
透过物 截留物 膜类型
纤维多孔膜 非对称性膜
传递机理
颗粒大小形状
水、溶剂溶解物 悬浮物颗粒 胶体和超过截留 分子量的分子
压力差 分子特性大小形状 水、溶剂小分子
纳滤
压力差
离子大小及电荷 溶剂的扩散传递
水、一价离子、 有机物 多价离子 水、溶剂 溶质、盐
Advantages - Resistance for fouling - Easy to cleaning
Disadvantages
- Low packing density (300m2/m3) - Expensive
Reverse osmosis, ultrafiltration
MEMBRANE MODULES
分析:自来水如果消毒不严,则可能会含少量细菌及 相对较多的病毒;如果消毒严格,则会含较多余氯。
微生物分类及其个体大小
微生物按个体大小分为9类: 名称 酵母菌 霉菌 螺旋体 细菌 支原体 个体大小 5-150m 2-10m 5-10m 0.5-5m 0.2-0.25m 梅毒/回归热 痢疾等 胸膜炎/肺炎 病名
Plate-and-frame module
Advantages - High allowable work pressure (high viscosity liquids) - Easy to clean - Easy to replace membranes Disadvantages - Low membrane area per volume (100-400 m2/m3)
将制膜材料用溶剂形成均相制膜液,在模具中
流涎成薄层,然后控制温度和湿度,使溶液缓缓蒸
发,经过相转化就形成了由液相转化为固相的膜,
其工艺框图可表示如下:
聚合物
溶剂
均质制膜液
添加剂
流涎法制成平板型、圆管型;纺丝法制成中空纤维
蒸出部分溶剂 凝固液浸渍 水洗 后处理
非对称膜 图2 L-S 法制备分离膜工艺流程
水处理中膜的分类 电渗析 反渗透 其他膜分离类型
纳滤
超滤 微滤
离子交换膜
各种分离膜的特征
分离膜的基本功能是从物质群中有选择地透过或输送特定的物 质,如颗粒、分子、离子等。或者说,物质的分离是通过膜的选择 性透过实现的。几种主要的膜分离过程及其传递机理如表2所示。
目前,国内外的制膜方法很多,其中最实用的
是相转化法(流涎法和纺丝法)和复合膜化法。
2. 相转化制膜工艺
相转化是指将均质的制膜液通过溶剂的挥发或 向溶液加入非溶剂或加热制膜液,使液相转变为固 相的过程。相转化制膜工艺中最重要的方法是L—S 型制膜法。它是由加拿大人劳勃(S. Leob)和索里 拉金(S. Sourirajan)发明的,并首先用于制造醋 酸纤维素膜。
用作膜材料的乙烯基聚合物包括聚乙烯醇、聚乙 烯吡咯烷酮、聚丙烯酸、聚丙烯腈、聚偏氯乙烯、 聚丙烯酰胺等。共聚物包括:聚丙烯醇/苯乙烯磺酸、 聚乙烯醇/磺化聚苯醚、聚丙烯腈/甲基丙烯酸酯、聚 乙烯/乙烯醇等。聚乙烯醇/丙烯腈接枝共聚物也可用
作膜材料。
常见材料的最高允许使用温度
名 称 温度(℃)
CA(Cellulose Acetate) 聚酰胺 聚苯并咪唑 聚苯并咪唑酮 磺化聚苯醚 磺化聚砜 聚醚砜酮
被用于工业和实验室中。以日本为例,纤维素酯类 膜占53%,聚砜膜占33.3%,聚酰胺膜占11.7%,其 他材料的膜占2%,可见纤维素酯类材料在膜材料中 占主要地位。
1. 纤维素酯类膜材料
纤维素是由几千个椅式构型的葡萄糖基通过1, 4-β-
甙链连接起来的天然线性高分子化合物,其结构式为:
H O H H OH H
冷冻会使膜膨胀而破坏膜的结构。
2.膜分离装置
平板膜(板框式) 卷式膜(螺旋卷式) 管式膜 毛细管膜 中空纤维膜
MEMBRANE MODULES
Plate-and-frame module
PLATE-AND-FRAME MODULE
The number of sets needed for a given membrane area furnished with sealing ring and two end plates then builds up to a plate-and-framestack
多孔支持膜
形成超薄膜的溶液
涂覆
交联
交联剂
加热
形成超薄膜
亲水性高分子溶液的涂覆
复合膜
图3
复合制膜工艺流程框图
膜的保存
分离膜的保存对其性能极为重要。主要应防止
微生物、水解、冷冻对膜的破坏和膜的收缩变形。
微生物的破坏主要发生在醋酸纤维素膜;
水解和冷冻破坏则对任何膜都可能发生。温度、
pH值不适当和水中游离氧的存在均会造成膜的水解。
膜分离技术及其在 水处理中的应用
内 容
膜技术概述 膜分离装置 MBR及设计方法 相关研究热点
1.膜技术概述
1.1基本概念
膜,是指在一种流体相内或是在两种流体相 之间有一层薄的凝聚相,它把流体相分隔为互不 相通的两部分,并能使这两部分之间产生传质作 用。 膜的特性: 不管膜多薄,它必须有两个界面。这两个界面 分别于两侧的流体相接触。 膜传质有选择性,它可以使流体相中的一种或 几种物质透过,而不允许其他物质透过。
CH2OH
H
CH2OH
H OH OH H
O H
OH H O H O
H
CH2OH
H OH H
O H H
H O H
n_ 2 2
OH H H
OH H
CH2OH
OH
OH
O OH
从结构上看,每个葡萄糖单元上有三个羟基。在催化剂
(如硫酸、高氯酸或氧化锌)存在下,能与冰醋酸、醋酸酐进行 酯化反应,得到二醋酸纤维素或三醋酸纤维素。
复合膜 非对称性膜 复合膜
反渗透 压力差
膜过程 渗析 电渗析
推动力
传递机理
透过物
Hale Waihona Puke 截留物续上表 膜类型 非对称性膜
浓度差 溶质的扩散传递
低分子量物、 大分子物 离子 电解质离子
电解质离子的 电位差 选择传递
非电解质, 大分子物 离子交换膜 质
难渗透性 气体或蒸 汽 难渗透性 溶质或溶 剂 待分离物 均相膜、复 合膜,非对 称膜 均相膜、复 合膜,非对 称膜
Capillary module
MEMBRANE MODULES
Hollow-fiber module
C6H7O2 + (CH3CO)2O = C6H7O2(OCOCH3)2 + H2O C6H7O2 + 3(CH3CO)2O = C6H7O2(OCOCH3)3 + 2 CH2COOH
醋酸纤维素是当今最重要的膜材料之一。 醋酸纤维素性能 稳定,但在高温和酸、碱存在下易发生水解。 纤维素醋类材料易受微生物侵蚀,pH值适应范围较窄,不 耐高温和某些有机溶剂或无机溶剂。因此发展了非纤维素酯类 (合成高分子类)膜。
气体和蒸汽的 气体分离 压力差 扩散渗透
气体或蒸汽
渗透蒸发 压力差 选择传递
易渗溶质或 溶剂 杂质
反应促进和 液膜分离 浓度差 扩散传递
乳状液膜、 支撑液膜
电渗析运行时可能发生的过程
RO、 NF、UF、MF的区别
项目
孔径(nm) 截留粒径
RO
0.3-0.7 >0.06nm
NF
1-2
UF
1-100
35 35 90 70 70 120 160
无机膜多以金属及其氧化物、多孔玻璃、
陶瓷为材料。从结构上可分为致密膜、多
孔膜和复合非对称修正膜三种。
膜的制备
1. 分离膜制备工艺类型
膜的制备工艺对分离膜的性能十分重要。同样 的材料,由于不同的制作工艺和控制条件,其性能 差别很大。合理的、先进的制膜工艺是制造优良性 能分离膜的重要保证。
ml/cm2· h。
以后发展了芳香族聚酰胺,用它们制成的分离膜,
pH适用范围为3~11,分离率可达99.5%(对盐水), 透水速率为0.6 ml/cm2· h。长期使用稳定性好。由于 酰胺基团易与氯反应,故这种膜对水中的游离氯有 较高要求。
聚酰亚胺具有很好的热稳定性和耐有机溶剂
能力,因此是一类较好的膜材料。例如,下列结
The feed solution always flows through the centre of the tubes while the permeate flows through supporting tube into the module housing .
管 式 膜
Tubular module
聚砜类树脂具有良好的化学、热学和水解稳定性,
强度也很高,pH值适应范围为1~13,最高使用温度
达120℃,抗氧化性和抗氯性都十分优良。因此已成
为重要的膜材料之一。
早期使用的聚酰胺是脂肪族聚酰胺,如尼龙-4、
尼龙-66等制成的中空纤维膜。这类产品对盐水的分
离率在80%~90%之间,但透水率很低,仅0.076
3. 复合制膜工艺
由L-S法制的膜,起分离作用的仅是接触空气 的极薄一层,称为表面致密层。它的厚度约0.25~ 1 m ,相当于总厚度的1/100左右。理论研究表明可 知,膜的透过速率与膜的厚度成反比。而用L-S法 制备表面层小于0.1 m的膜极为困难。为此,发展 了复合制膜工艺,其方框图如图3所示。
大肠杆菌 (个/L) 细菌 (cfu/ml)
原水含量
700-1600 100-4000
相关文档
最新文档