《圆柱和圆锥复习课》教学设计
苏教版六年级数学下册第二单元《圆柱和圆锥》教学分析及教案

苏教版六年级数学下册第二单元《圆柱和圆锥》教学分析及教案一. 教材分析苏教版六年级数学下册第二单元《圆柱和圆锥》是本册教材中的重要内容,它让学生在已有知识的基础上,进一步认识圆柱和圆锥的特征,掌握它们的体积计算方法,并了解它们在实际生活中的应用。
本单元包括圆柱和圆锥的定义、特征、展开图、体积计算以及应用等内容。
通过本单元的学习,学生能更好地理解立体图形,提高空间想象力。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面图形的认识较为深刻,但立体图形的学习还相对较弱。
因此,在教学过程中,教师要注重引导学生从平面图形过渡到立体图形,让学生在实际操作和观察中,理解和掌握圆柱和圆锥的特征和体积计算方法。
三. 教学目标1.知识与技能:学生能够准确地描述圆柱和圆锥的特征,掌握它们的体积计算方法,并能应用于实际问题中。
2.过程与方法:学生通过观察、操作、思考、讨论等方法,培养空间想象能力和解决问题的能力。
3.情感态度与价值观:学生对数学产生浓厚的兴趣,培养合作意识,提高自我探究的能力。
四. 教学重难点1.重点:圆柱和圆锥的特征,体积计算方法的掌握。
2.难点:圆锥体积计算公式的推导,以及体积公式的应用。
五. 教学方法1.情境教学法:通过生活情境,引导学生认识和理解圆柱和圆锥。
2.启发式教学法:引导学生思考问题,自主探究,发现和总结规律。
3.合作学习法:学生分组讨论,共同解决问题,提高合作能力。
4.实践操作法:让学生动手操作,增强直观感受,培养空间想象力。
六. 教学准备1.教具:圆柱和圆锥模型、卡片、课件等。
2.学具:学生用书、练习本、铅笔、直尺等。
七. 教学过程1.导入(5分钟)教师通过情境创设,如生活中的圆柱和圆锥物品,引导学生观察和思考,激发学生的学习兴趣。
2.呈现(10分钟)教师利用课件展示圆柱和圆锥的定义、特征,让学生初步认识这两种立体图形。
3.操练(15分钟)教师引导学生进行分组讨论,探究圆柱和圆锥的展开图,让学生动手操作,增强直观感受。
圆柱与圆锥教案(集锦7篇)

圆柱与圆锥教案(集锦7篇)篇1:圆柱与圆锥知识要点:圆柱:(1)特征:是由两个底面和一个侧面三部分组成的。
底面是两个完全相同的圆侧面是一个曲面。
(2)圆柱的侧面及其与底面之间的关系:沿高剪开的展开图是一个长方形(或正方形)这个长方形的长等于圆柱底面圆的周长,宽等于圆柱的高。
(3)圆柱的高:圆柱两个底面之间的距离叫做高,有无数条高。
(4)侧面积:圆柱的侧面积=底面周长某高,用字母表示为S侧?Ch(5)表面积:圆柱的表面积=侧面积+底面积某2(6)体积:圆柱的体积=底面积某高,用字母表示为V?Sh圆锥:(1)特征:由一个底面和一个侧面两部分组成,它的底面是一个圆,侧面是一个曲面。
(2)圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。
圆锥的体积等于和它等底等高的圆柱体积的?(3)体积:?11?公式:V?V?Sh圆锥圆柱?33?13解题大智慧一、用圆柱的特征解题1、填空(1)把圆柱的侧面沿高剪开,展开图是一个长方形,圆柱的底面周长就是它的(),圆柱的高就是它的()(2)当圆柱的()和()相等时,它的侧面展开图是一个正方形。
(3)把一个底面半径是 2 cm 的圆柱的侧面展开,得到一个正方形,这个圆柱的高是()cm。
2、把一个圆柱的侧面展开后得到一个正方形,那么这个圆柱的高与底面直径的比是多少?3、一个底面周长是9.42cm,高是5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?二、用圆柱的侧面积和表面积解题1、一个圆柱,底面周长是31.4dm,高是10dm,求它的侧面积?如果不是已知底面周长,而是已知底面半径或直径呢?2、一个圆柱的底面周长是94.2cm,高是25cm,求它的表面积。
3、一顶圆柱形厨师帽,高28cm,冒顶直径20cm,做这样10顶帽子需要多少面料?4、用铁皮制作1节通风管,它的长是60cm,底面圆的直径是10cm。
至少需要铁皮多少平方厘米?5、做一对无盖的圆柱形铁皮水桶,高是40cm,底面直径是30cm,至少需要铁皮多少平方厘米?6、把一张长16cm,宽6.5cm的长方形围成一个圆柱形纸筒,这个圆柱形纸筒的侧面积是多少平方厘米?7、挖一个圆柱形的蓄水池,已知它的底面直径是3m,池深2.5m。
圆柱与圆锥复习课

圆柱与圆锥复习课
学习目标:通过复习,使学生比较系统地掌握立体图形圆柱圆锥的相关知识,再次认识圆柱、圆锥的特征和它们的体积之间的联系与区别;掌握圆柱表面积、体积、圆锥体积的计算公式;并能正确计算、解决有关圆柱与圆锥的问题。
学习重点、难点:掌握圆柱表面积、体积、圆锥体积的计算公式;并能正确计算、解决有关圆柱与圆锥的问题。
学习过程:
一、回忆圆柱与圆锥的相关知识:
1.独立思考,写出你所学会到的有关圆柱的知识,并准备汇报自己的观点:
2. 独立思考,写出你所学会到的有关圆柱的知识,并准备汇报自己的观点:
二、计算:(学生独立完成,个别学生展台展示结果并讲解自己的做法)1.计算圆柱的侧面积与体积。
2.计算圆锥的体积。
三、圆柱圆锥知识的应用。
(先独立完成,然后个别学生展示、讲解)
1.大厅里有8根圆柱形木桩要刷油漆,木桩底面周长
2.5米,高4.2米,1千克的油漆可以漆6平方米,那么刷这些木桩要多少油漆?
2.将长为4cm,宽2cm的长方形旋转后,得到一个立体圆形,求该文体圆形的体积。
3.一个圆锥形沙堆,高是1.5米,底面半径是4米,每立方米沙约重1.7吨。
这堆沙约重多少吨?(得数保留整吨数)
4.一个谷仓如右图所示,底部由一个圆柱与顶部的圆锥组合而成,测得谷仓底面圆柱的周长为12.56m,底部由一个圆柱高2m,顶部的圆锥高1m。
(1)求该谷仓的占地面积?(2)如果谷仓壁的厚度忽略不
计,则该谷仓空间有多大?。
六年级下册数学教案《 第3单元 圆柱与圆锥 整理和复习 》 人教版

六年级下册数学教案《第3单元圆柱与圆锥整理和复习》人教版一. 教材分析本节课为人教版六年级下册数学第3单元“圆柱与圆锥”的整理和复习。
本单元的主要内容是圆柱和圆锥的特征、体积计算以及应用。
教材通过复习和整理,使学生对圆柱和圆锥的概念、性质、计算方法等有一个清晰、系统的认识,提高学生的空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习了圆柱和圆锥的基本知识,对圆柱和圆锥的特征、体积计算有一定的了解。
但部分学生对一些概念和公式的理解不够深入,应用能力有待提高。
此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中加以关注和培养。
三. 教学目标1.知识与技能:通过对圆柱和圆锥的复习,使学生掌握圆柱和圆锥的基本概念、性质和体积计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神,使学生感受到数学与生活的密切联系。
四. 教学重难点1.重点:圆柱和圆锥的基本概念、性质和体积计算方法的掌握。
2.难点:对圆柱和圆锥体积公式的理解与应用,以及空间想象能力的培养。
五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现和总结圆柱和圆锥的特点和规律。
2.合作交流:鼓励学生与他人分享学习心得,互相讨论,共同解决问题。
3.探究发现:引导学生动手操作,观察分析,发现圆柱和圆锥的体积计算方法。
4.启发引导:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.教具:圆柱和圆锥模型、图片、课件等。
2.学具:学生每人准备一个圆柱和圆锥模型,以及相关计算工具。
七. 教学过程1.导入(5分钟)利用课件展示生活中的圆柱和圆锥物体,引导学生回顾已学的知识,为新课的复习打下基础。
2.呈现(10分钟)教师通过讲解和示范,呈现圆柱和圆锥的基本概念、性质和体积计算方法。
2023-2024学年六年级下学期数学二圆柱与圆锥《圆柱的侧面积》(教案)

20232024学年六年级下学期数学二圆柱与圆锥《圆柱的侧面积》(教案)作为一名经验丰富的教师,我深知教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思及拓展延伸的重要性。
在20232024学年六年级下学期的数学课上,我将围绕圆柱与圆锥这一主题,详细讲解圆柱的侧面积相关知识。
一、教学内容本节课的教学内容主要包括教材第六章第三节《圆柱的侧面积》的内容。
具体包括圆柱侧面积的定义、计算方法以及应用。
二、教学目标通过本节课的学习,使学生能够理解并掌握圆柱侧面积的概念及计算方法,能够运用所学知识解决实际问题。
三、教学难点与重点重点:圆柱侧面积的计算方法。
难点:圆柱侧面积公式的推导过程以及如何在实际问题中灵活运用。
四、教具与学具准备教具:黑板、粉笔、圆柱模型、直尺、剪刀。
学具:每人一份圆柱侧面积的练习题。
五、教学过程1.实践情景引入:让学生观察教室中的圆柱形物体,如垃圾桶、圆柱教具等,引导学生发现圆柱的侧面。
2.讲解圆柱侧面积的概念:在黑板上画出一个圆柱,并用粉笔标注出圆柱的底面、侧面和高。
通过讲解,使学生理解圆柱侧面积的含义。
3.讲解圆柱侧面积的计算方法:利用圆柱模型,展示圆柱侧面展开的过程,引导学生发现圆柱侧面积与底面周长和高之间的关系。
给出圆柱侧面积的计算公式,并进行解释。
4.例题讲解:出示一些关于圆柱侧面积的例题,引导学生运用所学知识解决问题。
5.随堂练习:让学生独立完成练习题,巩固所学知识。
6.板书设计:将圆柱侧面积的计算公式及推导过程板书在黑板上,方便学生回顾和记忆。
7.作业设计:布置一些有关圆柱侧面积的家庭作业,包括计算题和应用题。
作业题目:1.计算一个底面半径为5cm,高为10cm的圆柱的侧面积。
2.一个圆柱的底面周长是31.4cm,高是6cm,求这个圆柱的侧面积。
答案:1. 侧面积= 2 × π × 5cm × 10cm = 314cm²2. 侧面积= 31.4cm × 6cm = 188.4cm²六、课后反思及拓展延伸课后,我将对本节课的教学进行反思,看是否达到了预期的教学目标。
小学数学六年级下册《圆柱与圆锥》整理与复习教案

第三单元圆柱与圆锥第9课时整理与复习【学习目标】1.能够系统清晰地梳理本单元所学知识,正确理解知识间的联系与区别。
2.正确灵活地运用所学知识解决简单实际问题。
【学习过程】一、知识梳理在本单元我们都学习了哪些知识?用你喜欢的方法整理出来吧!我的问题:。
二、专项训练1.计算下面个图形的体积。
2.解决问题。
三、课堂达标1.填空。
你可以采用画图,列表格等不同方法哦!整理过程中你有什么问题吗?记录下来吧!计算中用到了哪些知识?说说你的思路!(1)一个圆柱和一个圆锥等底等高,圆锥的体积是24立方米,圆柱的体积是(),如果圆柱的体积比圆锥的体积大18立方米,圆柱的体积是(),圆锥的体积是()。
(2)用一张长15厘米,宽12厘米的长方形纸围成一个圆柱,这个圆柱的侧面积是()平方厘米。
(3)一个圆柱体削成一个与它等底等高的圆锥体, 削去的部分是圆锥体的( )%.2.同学们用彩纸制作了20个圆柱形灯罩,每个灯罩高35cm,底面圆的周长是47.1cm 。
至少需要用多少彩纸?想一想是要求圆柱的什么呀?3.一个圆锥形沙堆,底面积是28.26㎡,高是2.5m。
用这堆沙在10m宽的公路上铺2cm厚的路面,能铺多少米?计算时要注意单位哦!4.一块蜂窝煤大约需要用煤多少立方分米?(得数保留整数)四、课外拓展压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,前轮每分钟转动10周,每分钟前进多少米?每分钟压路多少平方米?为什么要规定“先乘除后加减”?对于这个问题,我们分两层来谈。
第一层先谈谈规定运算顺序的必要性,第二层再谈谈为什么要规定“先乘除后加减”。
(1)规定运算顺序的必要性。
先举两个例子予以说明。
例1 小勇买了一块橡皮,价18分,又买了3支铅笔,每支12分,一共多少钱?综合算式18+12×3=18+36=54(分)=5角4分根据题意,这道题先算乘法后算加法是合情合理的。
例2 小春有18分钱,小敏有12分钱,小冬的钱数是他们俩人钱数之和的3倍,问小冬有多少钱?解答这道题的时候应该先求出小春与小敏两人钱数之和,即求出(18+12=)30分,然后再求出30分的3倍,即(30×3=)90分。
人教版六年级下册数学第三单元《圆柱和圆锥》教案

探索交流,分1.整体感知圆柱(1)课件出示岗亭,客家围屋,比萨斜塔,灯笼,蜡烛等实物图。
提问这些物体的形状有什么共同的特点?教师小结:这里的岗亭,客家围屋,比萨斜塔,灯笼,蜡烛的形状都是圆柱体,简称圆柱。
人们把许多建筑物设计成圆柱形状,以增加立体感和美感。
(2)投影出示上述实物图形中抽象出的圆柱几何图形。
(3)交流生活中的圆柱形的物体。
2.认识圆柱的底面,侧面和高。
(1)观察一个圆柱形的物体,看一看它是由哪几部分组成的,有什么特征。
同桌讨论:圆柱由哪几个部分组成,有什么特征。
(2)组织交流通过交流得出:圆柱是由3个面围成的,圆柱的上下两个面叫底面,圆柱周围的面叫做侧面,圆柱的两个底面之间的距离叫做高。
教师投影出示圆柱的几何图,并在图中显示底面,侧面和高。
(3)请学生说说手中圆柱各部分的名称。
(4)感知圆柱上下两个底面的关系和侧面的特征。
教师引导学生小结,圆柱的上下两个底面是完全相同的两个底面完全相同的两个圆。
学生可能会通过以下几种方法得出圆柱上下两个底面是完全相同的两个圆:a.可以剪下来比较;b.量半径、量直径;c.量周长;d.把模型的底面固定再纸上沿着它的周边再纸上从现实生活中具有圆柱特征的建筑物和生活用品的图片上抽象出圆柱的立体图形,整体感知圆柱形,通过动手操作认识圆柱的组成及其特征,以及圆柱侧面,底面及其之间的关系。
学生观察一个圆柱形的物体并同桌讨论、交流结果。
引导学生观察,议论,圆柱的上下两个底面有什么关系,么发现的?画出一个圆,再把模型倒换过来比较。
(5)做一做,把一张长方形的硬纸板贴在木棒上,快速转动木棒,看看转出来的是什么?(6)完成教材第18页的第1题。
学生独立完成,填写在教材上。
3.认识圆柱侧面展开图投影出示第19页的例2。
(1)圆柱的侧面展开后是什么形状?把罐头盒的商标如下图所示那样剪开,再展开。
学生观察猜测,它会是什么形状?剪一剪:请大家拿出贴有商标纸的饮料罐,沿着它的一条高剪开,然后展开摊平,会得到一个长方形。
《圆柱与圆锥》教学设计

《圆柱与圆锥》教学设计第一篇:《圆柱与圆锥》教学设计教学目标:1、梳理圆柱与圆锥的特征、面积、体积计算公式,能灵活地根据问题情境,选择合理的方法进行计算。
2、沟通立体图形之间的内在联系,构建图形网格,使所学知识进一步条理化和系统化。
3、引导学生以类的观点去观察与分析图形,体会解决问题的乐趣,发展空间观念教学重点、难点:重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
难点:通过对知识进行整理,提高学生自主获取知识与概括知识的能力。
教学准备:多媒体课件,圆柱、圆柱图片教学过程:一、梳理知识,构建体系1、导入师:认识这个图形吗?如果它的一个底面向圆心无限缩小到一个点的时候,它变成了什么图形?生:圆锥师:圆柱和圆锥之间有什么关系?圆柱和圆锥之间还有很多的奥秘和联系,今天我们继续学习圆柱和圆锥。
板书:圆柱与圆锥2、梳理汇报圆柱圆锥的知识(1)特征(观察平面图形与立体图形的关系)(2)表面积、侧面积(3)体积【设计意图:为了让学生整体、系统地感悟知识,形成良好的认知结构,疏通环节很重要,通过圆柱变圆锥,及平面图形与圆柱圆锥的关系,唤醒已有的知识、方法及经验,以“平移”“旋转”等方式在再现与强化立体图形的运动,很好地完成了对单元知识纵向和横向的结构化】二、变式应用1、根据情境选择合适的解决策略师:运用我们所整理的这些知识,能够解决很多生活中的实际问题。
请看下图:师:这是一个圆柱形的木桶。
根据图中的信息,你能不能提出一些实际问题呢?生提问题师总结问题,并解决问题师:生活中能不能直接使用这些数据来准备材料?小结:解决问题时要结合生活实际确定最合适的取值2、根据圆柱的动态变化解决问题师:我们继续奔跑,都说孩子们有天生的创造力,我给你们一个圆柱,你想怎样加工和创造呢?生罗列加工方法师根据加工方法提出数学问题师:联系我们解决的问题,你有什么体会小结:复杂的数学问题都是有简单的数学问题演变而来的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆柱和圆锥复习课》教学设计
一、课时目标:
(1)知识目标:引导学生通过回忆、整理、拓展等实践活动,掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
(2)能力目标:通过让学生对知道的整理提高学生的自主获取知识与概括知识能力。
在练习、讨论、合作中发展学生的空间观念,并进一步提高运用知识解决实际问题的能力。
(3)情感目标:通过整理、交流、合作、探究、体验探究的乐趣,感受数学的价值,培养学生“学数学、用数学”的意识和创新的精神。
二、教学重点、难点:
重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
难点:通过对知识进行整理,提高学生自主获取知识与概括知识的能力。
三、教学准备:课件
四、教学过程:
(一)梳理知识,构建体系。
1.让同学们自主整理本章知识。
2.小组内交流,补充完善。
3.小组展示,讨论、完善,形成基本的知识网络。
〔教师点拨:〕
(1)圆柱的侧面怎样剪展开图是平行四边形?
(2)圆柱展开图与圆柱有什么关系?
(3)说出圆柱体积公式的推导过程。
(迁移运用圆面积推导的转化思想)
(4)回忆说出圆锥体积公式推导的实验过程。
(二)创设问题情境,在解决实际问题中复习应用所学知识。
1.屏幕呈现:一个圆柱体木料,底面直径20厘米,高30厘米。
(1)根据已知条件,结合已学圆柱、圆锥的知识,提出问题,看谁的更有创意?(2)学生思考后提出问题。
〔预设问题:〕
①木料的侧面积是多少?表面积是多少?
②木料的体积是多少?
③把木料削成一个最大的圆锥,它的体积是多少?
④……
2.“刷”出表面积有关的知识。
〔教师引导:〕针对这一圆木,生活中在什么情况下需要求表面积?
〔预设回答:〕给圆木涂油漆求涂漆面积的时候需要用表面积的知识。
〔教师追问:〕给圆木涂油漆有几种情况?都发生在什么条件下?
〔预设回答:〕①如果是柱子时,只刷侧面。
②如果是个木桩,只涂一个侧面和一个上面。
③如果是个圆木料,可涂整个表面。
3.“切”出新的表面,求增加的表面积。
〔教师引导:〕有同学说可以把圆木切开,求表面积增加了多少平方厘米,那同学们说说可以怎样来切?
〔预设回答:〕
①可以横切,分两段切一刀,增加两个底面大小的面,分三段切两刀,增加4
个底面大小的面,以此类推。
②还可以沿直径纵切,增加两个长方形的面,长和圆柱的高相等,宽和直径相等。
〔课件演示:〕横切和纵切
4.“削”出圆锥,讨论圆柱与对应圆锥的关系。
〔教师引导:〕除了对圆木“涂”“切”以外,有同学说还可以“削”成一个最大的圆锥。
那怎样“削”才算是最大呢?你能用四句话说出它们之间的关系吗?〔预设回答:〕等底等高的圆柱和圆锥:圆柱体积是圆锥体积的3倍,圆锥体积是圆柱体积的三分之一,圆柱体积比圆锥体积多2倍,圆锥体积比圆柱体积少三分之二。
〔教师引导:〕如果圆柱和圆锥等底等积,那你能说出它们之间的关系吗?
〔预设回答:〕圆柱和圆锥等底等积:圆柱高是圆锥高的三分之一,圆锥高是圆柱高的3倍。
〔教师引导:〕如果圆柱和圆锥等高等积,那你能说出它们之间的关系吗?
〔预设回答:〕圆柱和圆锥等高等积:圆柱底是圆锥底的三分之一,圆锥底是圆柱
底的3倍。
5.“挖”出容积。
〔教师引导:〕我们还可以对圆木如何加工呢?
〔预设回答:〕可以挖成一个木桶,求求它的容积,内外涂清漆,求涂漆的面积是多少。
〔教师追问:〕容积和体积有何联系和区别?
(三)联系实际,解决实际问题。
学校要修建一个圆形水池,池内安装喷泉,水池直径5米,深1.5米。
你能提出哪些数学问题?
〔预设问题:〕
①水池的占地面积是多少平方米?
②挖这个水池要挖出多少立方米的土?
③如果给水池贴瓷砖,贴瓷砖的面积是多少?
④水池装满水,能装多少立方米?
〔教师提问:〕
⑤如果给水池接一圈水管,并4米安装一个喷头,需要按几个?
⑥池内如果注入1.2米深的水,那将有多少立方米的水?
〔教师追问:〕每一个问题都涉及哪些方面的知识?
(四)解决问题后,补充完善知识网络图。
(五)课堂小结:同学们畅所欲言,谈收获和感受。
附:板书设计
圆柱和圆锥
基本特征基本公式
圆柱两个底面,侧面积=底面周长×高
一个侧面表面积=侧面积+底面积×2
体积=底面积×高
圆锥一个底面,
一个侧面体积=底面积×高÷3。