七年级数学上册相反数基础巩固练习题
青岛版七年级数学上册相反数练习题

《相反数》同步练习一、随堂检测1、-(+5)表示 的相反数,即-(+5)= ; -(-5)表示 的相反数,即-(-5)= 。
2、-2的相反数是 ;75的相反数是 ; 0的相反数是 。
3、化简下列各数:-(-68)= -(+0.75)=-(-53)= -(+3.8)=+(-3)= +(+6)= 4、下列说法中正确的是( ) A 、正数和负数互为相反数B 、任何一个数的相反数都与它本身不相同C 、任何一个数都有它的相反数D 、数轴上原点两旁的两个点表示的数互为相反数 二、拓展提高1、-(-3)的相反数是 。
2、已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是 。
3、已知a 与b 互为相反数,b 与c 互为相反数,且c=-6,则a= 。
4、一个数a 的相反数是非负数,那么这个数a 与0的大小关系是a 0.5、数轴上A 点表示-3,B 、C 两点表示的数互为相反数,且点B 到点A 的距离是2,则点C 表示的数应该是 。
6、下列结论正确的有( )①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b 互为相反数,那么a+b=0;⑤若有理数a,b 互为相反数,则它们一定异号。
A 、2个 B 、3个 C 、4个 D 、5个7、如果a=-a ,那么表示a 的点在数轴上的什么位置? 三、体验中考 1、(河南)-5的相反数是( ) A 、51B 、51C 、-5D 、52、(杭州)如果a+b=0,那么a,b 两个有理数一定是( )A 、都等于0B 、一正一负C 、互为相反数D 、互为倒数(原题是“那么两个实数一定是”此处改为“两个有理数是”)参考答案一、随堂检测1、5,-5,-5,5;2、2,75,0; 3、68,-0.75,53,-3.8,-3,6; 4、C 考查相反数的代数意义和几何意义 二、拓展提高 1、-3 2、-3,3 3、-6 4、≥ 5、1或56、A 根据相反数的定义。
人教版七年级数学上册:1.2.3相反数--同步测试题

一.选择题
1.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是( )
A. B. C. D.
2.2的相反数是( )
A.− B. C.−2 D.2
3.− 的相反数是( )
A.3 B.−3 C. D.−
4.下列各组 数中,互为相反数是( )
A.3和 B.3和−3 C.3和− D.− 3和−
9.已知a与b互为相反数,b与c互为相反数,且c=−2,则a=.
10.化简:−[−(−4)]=.
三.解答题
11.写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.
4,− ,−(− ),+(−4.5),0,−(+3)
12 . 化简:
(1)+(−0.5);(2)−(+10.1);(3)+(+7)
− 的相反数是 ;
−(− ) 的相反数是− ;
+(−4.5)的相反 数是4.5;
0的相反数是0;
−(+3)的相反数是3;
12.解:(1)+(−0.5)=−0.5;
(2)−(+10.1)=−1 0.1;
(3)+(+7)=7;
(4)−(−20)=20;
(5)+
5. 计算−(−2016)的结果是( )
A.−2016 B.2016 C.− D.
6.下列各组数中互为相反数的是( )
A.+(+5)与−(−5) B.+(−5)与−(+5) C.+(+5)与−(− ) D.+(−5)与−(−5)
二.填空题
7.− 的相反数是,−(+20)是的相反数.
数轴与相反数(基础) 巩固练习

【巩固练习】一、选择题1.如图所示的数轴中,画得正确的是( )2.下列说法正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上的两个不同的点表示同一个有理数C .有的有理数不能在数轴上表示出来D .任何一个有理数都可以在数轴上找到与它对应的唯一点3.如图所示,在数轴上点A 表示( )A .-2B .2C .±2D .04.如图,有理数a ,b 在数轴上对应的点如下,则有( ).(A)a >0>b (B)a >b >0 (C)a <0<b (D)a <b <05. 一个数比它的相反数小,这个数是( ) A.正数 B.负数 C.非正数 D.非负数6. 如果0a b +=,那么,a b 两个数一定是 ( )A.都等于0B.一正一负C.互为相反数D.互为倒数二、填空题1.________________的两个数,叫做互为相反数;零的相反数是________.2.0.4与________互为相反数,________与-(-7)互为相反数,a 的相反数是________.3.(2011四川乐山)数轴上点A 、B 的位置如图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为4.数轴上离原点5个单位长度的点有______个,它们表示的数是 ,它们之间的关系是 .5.化简下列各数: (1)23⎛⎫--= ⎪⎝⎭________ ;(2)45⎛⎫-+= ⎪⎝⎭________ ;(3){[(3)]}-+-+=________. 【高清课堂:数轴和相反数 例4(5)】6.已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为__________.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?2.在数轴上点A 表示7,点B 、C 表示互为相反数的两个数,且C 与A 间的距离为2,求点B 、C 对应的数.3.化简下列各数,再用“<”连接. (1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭4.已知3m-2与-7互为相反数,求m 的值.【答案与解析】一、选择题1.【答案】B【解析】A 错,没有正方向;B 正确,满足数轴的三要素;C 错,负数排列错误;D 错,单位长度不统一.2.【答案】D【解析】A 、B 、C 都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理数;一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.3.【答案】A【解析】A 点在原点左边,所以A 点对应数是负数,又因为它距离原点是2个单位长度,所以A 点对应的数是2-.4. 【答案】C5. 【答案】B【解析】因为一个负数的相反数是一个正数,负数小于正数,所以选B6. 【答案】C【解析】若0a b +=,则,a b 一定互为相反数;反之,若,a b 互为相反数,则0a b +=.二、填空题1. 【答案】只有符号不同,零【解析】相反数的定义2. 【答案】0.4,7,a---【解析】求一个数的相反数,只要在它的前面添上“-”号即可,反之也对,即若去掉一个数前面的一个“-”号,则也得到这个数的相反数.3.【答案】-5【解析】首先确定C点应在原点的左边即为负数,又点A与点B之间的距离为4,再由对称性得:点C表示的数为-5.4.【答案】两个,±5,互为相反数5. 【答案】24 ;;3 35-【解析】多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正,;若“-”个数为奇数个时,化简结果为负.6.【答案】-b<-1<0<-a<1三、解答题1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.2. 【解析】由题意可以画出图形如下:C与A间的距离为2,C可能在点A左边,也可能在点A右边,故C为5或9;而B、C 互为相反数,故B为-5或-9.所以B对应-5或-9,C对应5或9 .3.【解析】(1)-(-54)=54(2)-(+3.6)=-3.6(3)5533⎛⎫-+=- ⎪⎝⎭(4)224455⎛⎫--=⎪⎝⎭,将化简后的数表示在数轴上,由图可得:52-(+3.6)<-(+)<4(54)35<--4.【解析】依题意:3m-2=7,故m=3.。
最新华东师大初中七年级上册数学数轴与相反数(提高)巩固练习

【巩固练习】一、选择题1.(2014•衡阳一模)如图所示,在数轴上点A 表示的数可能是( )A .1.5 B.-1.5 C.-2.6 D.2.62.从原点开始向右移动3个单位,再向左移动1个单位后到达A 点,则A 点表示的数是( ).A.3B.4C.2D.-23.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB ,则线段AB 盖住的整点的个数是( )A .2002或2003B .2003或2004C .2004或2005D .2005或20064.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则( )A .首尔与纽约的时差为13小时B .首尔与多伦多的时差为13小时C .北京与纽约的时差为14小时D .北京与多伦多的时差为14小时5.一个数的相反数是非负数,则这个数一定是( )A.正数B.负数C.非正数D.非负数6.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是( )A. ①②B. ②③C. ③④D. ②④7.-(-2)=( )A.-2B. 2C.±2D.4二、填空题1.(2016春•新泰市校级月考)不大于4的正整数的个数为 .2.(2015春•岳池县期中)已知数轴上有A ,B 两点,A ,B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应的数是 .3. 若a 为有理数,在-a 与a 之间(不含-a 与a)有21个整数,则a 的取值范围是 .4.如图所示,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为 .5.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.6.已知x 与y 互为相反数,y 与z 互为相反数,又2z =,则z x y -+= .【高清课堂:数轴和相反数 例4(5)】7. 已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为 .【高清课堂:数轴和相反数 例5】8. 若a 为正有理数,在-a 与a 之间(不含-a 与a)有1997个整数,则a 的取值范围是 .若a 为有理数,在-a 与a 之间(不含-a 与a)有1997个整数,则a 的取值范围是 ___________.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?2.(2016春•北京校级模拟)化简:﹣{+[﹣(﹣|﹣6.5|)]}.3.化简下列各数,再用“<”连接. (1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭4.(2014秋•宜宾校级期中)若a 与b 互为相反数,c 与d 互为倒数,m 是最大的负整数.求代数式的值.【答案与解析】一、选择题1.【答案】C【解析】∵点A 位于﹣3和﹣2之间,∴点A 表示的实数大于﹣3,小于﹣2.2.【答案】C3.【答案】C【解析】若线段AB 的端点与整数重合,则线段AB 盖住2005个整点;若线段AB 的端点不与整点重合,则线段AB 盖住2004个整点.可以先从最基础的问题入手.如AB =2为基础进行分析,找规律.所以答案:C4.【答案】B【解析】本题以“北京等5个城市的国际标准时间”为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时.因此答案:B.5.【答案】C【解析】 负数的相反数是正数,0的相反数是0,而非负数就是正数和0,所以负数和0的相反数是非负数,即非正数的相反数是非负数.6.【答案】C【解析】先化简在判断,①+(+1)=1,-(-1)=1,不是相反数的关系;②-(+1)=-1,+(-1)=-1,不是相反数的关系;③+(+1)=1,-(+1)=-1,是相反数的关系;④+(-1)=-1,-(-1)=1,是相反数的关系,所以③④中的两个数是相反数的关系,所以答案为:C7. 【答案】B.二、填空题1.【答案】4.【解析】解:如图所示:由数轴上4的位置可知:不大于4的正整数有1、2、3、4共4个.故答案为:4个.2.【答案】±2,±4【解析】解:∵点A 和原点O 的距离为3,∴点A 对应的数是±3.当点A 对应的数是+3时,则点B 对应的数是1+3=4或3﹣1=2;当点A 对应的数是﹣3时,则点B 对应的数是﹣3+1=﹣2或﹣3﹣1=﹣4.3. 【答案】1011-1110a a <≤≤<-或4. 【答案】5【解析】CD =AB =6,即A 、B 两点间距离是6,故点B 对应的数为5.5. 【答案】1【解析】由题意可知:7,2m n ==,所以27321m n -=-⨯=6. 【答案】-2【解析】因为,x z 均为y 的相反数,而一个数的相反数是唯一的,所以z x =,2z =,而y 为z 的相反数,所以y 为-2,综上可得:原式等于-2.7. 【答案】-b <-1<0<-a <18. 【答案】998999a <≤;998999a <≤或999998a -<≤-三、解答题1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.2.【解析】解:﹣{+[﹣(﹣|﹣6.5|)]}=﹣[|﹣6.5|]=﹣6.5.3.【解析】(1)-(-54)=54 (2)-(+3.6)=-3.6 (3)5533⎛⎫-+=-⎪⎝⎭ (4)224455⎛⎫--= ⎪⎝⎭ 画出数轴即得:52-(+3.6)<-(+)<4(54)35<-- 4. 【解析】根据题意:a+b=0,cd=1,m=﹣1, 则代数式=2(a+b )﹣+m 2=0﹣+1=.。
人教版初中数学七年级上册第一章 相反数

(2) -( 1 )
5
是_+__15___的相反数,-(
1 5
)
=__- _15______.
(3) -(-7.1) 是_-_7_._1___的相反数,--7.1 =__7_.1______.
(4) -(-100) 是_-_1_0_0___的相反数,-(-100) = _1_0_0_____.
链接中考
探究新知
知识点 2
1.2 有理数/
多重符号的化简
问题1:a的相反数是什么?
a的相反数是–a , a可表示任意有理数.
问题2:如何求一个数的相反数? 在这个数前加一个“–”号.
探究新知
1.2 有理数/
问题3:若把a分别换成+5,–7,0时,这些数的 相反数怎样表示?
a = +5, a = –7, a = 0,
人教版 数学 七年级 上册
1.2 有理数/
1.2 有理数
1.2.3 相反数
导入新知
1.2 有理数/
成语故事“南辕北辙”讲了一个人……
如果点O表示魏国的位置,点A表示楚国的位置,假设楚
国与魏国相距30 km,以魏国为原点0,我们规定向南为正方
向,而此人从魏国出发向北到点B也走了30 km,请同学们
把这3个点在数轴上表示出来.
2. 一般地,a和–a互为相反数.特别地,0 的相反数是0,这里,a表示任意一个数, 可以是正数、负数,也可以是0.
代数意义
探究新知
素养考点 1
指出有理数的相反数
例1 写出下列各数的相反数.
9,
-0.3, -2,
1.2 有理数/
1
3.
-9
0.3
2
1
1.2.3 相反数(课件)七年级数学上册(人教版2024) (2)

.若两个数可表示 a与b ,则 a+b=0或a=-b,b=-a .
4.如图所示,表示互为相反数的两个点是(
C )
A.A 和 C
B.A 和 B
C.B 和 C
D.B 和 D
5.数轴上与原点的距离是 5 个单位长度的点表示的数是 5或-5 ,这两个
数的关系是 互为相反数
.
分层练习-基础
知识点三:多重符号的化简
2
1
2
解:它们的相反数分别是:-4, ,- ,4.5,0,3.
2
3
在数轴上表示如图所示:
练一练
2.数轴上,点A表示+4,点B和点C关于原点对称,且点C到点
A的距离为2,则点B和点C各对应的是什么数?
B
–7
–6
B
–5
–4
6
–3
–2
A
C
–1
2
O
1
2
3
4
C
5
6
点C到点A的距离为2
解:点B对应的数是-2或-6,点C对应的数是2或6.
反数怎样表示?
a = +5,
- a = -(+5)
a = -7,
- a = -(-7)
a = 0,
-a = 0
-(+1.1)表示什么?-(-7)呢?
-(-9.8)呢?它们的结果应是多少?
练一练
+4 的相反数,
(1) 4 是____
4 ______
-4
1
1
1
1
5 .
(2) ( ) 是______
D.若-a 为负数,则 a 为正数
13.数轴上-2019 的点的相反数与-2019 之间的距离是 4038 .
七年级数学基础巩固与拓展提优:第二章 第5课时 绝对值与相反数(1)

第5课时绝对值与相反数(1)(附答案)【基础巩固】1.在数轴上离原点距离是3的数是________.2.绝对值等于本身的数是________,绝对值小于2的整数是________.3.数轴上与表示1的点的距离是2的点所表示的数有________.4.+6的符号是________,绝对值是________,56-的符号是_______,绝对值是_______.5.计算:2 3.6 1.6-+--=_______.6.绝对值等于10的数是________.7.下列说法中,错误的是 ( )A.+5的绝对值等于5 B.绝对值等于5的数是5 C.-5的绝对值是5 D.+5、-5的绝对值相等8.绝对值最小的有理数是 ( )A.1 B.0 C.-1 D.不存在9.绝对值等于本身的数有 ( )A.1个 B.2个C.4个 D.无数个10.绝对值小于3的负数有 ( )A.2个 B.3个 C.4个 D.无数个11.化简3--等于 ( )A.-3 B.-13C.13D.312.求下列数的绝对值,并用“<”号把这些绝对值连接起来.-1.5,-3.5,2,1.5,-2. 75.13.正式足球比赛时所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果:-25、+10、-20、+30、+15、-40.请指出哪个足球的质量好一些,并用绝对值的知识进行说明.【拓展提优】14.在数轴上表示-2的点离开原点的距离等于 ( )A.2 B.-2 C.±2 D.415.下列各式中,正确的是 ( )A.若a=b,则a=b B.若a>b,则a>bC.若a<b,则a<b D.若a=b,则a=±b16.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是 ( )A.a+b>0 B.ab>0 C.a-b>0 D.->017.实数a、b在数轴上的位置如图所示,则a、b的大小关系是_______.18.大家知道550=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是________.19.已知a=5,b=8,且a<b,则a+b=_______.20.计算:1111111122334910-+-+-++-.21.阅读下面的例题:解方程:15x-=.解:由绝对值的定义,得 x-1=5或x-1=-5.所以x=6或x=-4.仿照上面的思路,解下列方程:(1)3x=6;(2)17x+=22.若x<0,y>0,求x y xyx y xy++的值.23.(1)比较下列各式的大小(用“>”“=”或“<”连接).23_______23-+-+;35_______35+--;1111_______2323-+---;05_______05+--;……(2)通过(1)的比较,请你分析,归纳出当a、b为有理数时,a+b与a b+的大小关系.(3)根据(2)中你得出的结论,当x+2012=2012x-时,求x的取值范围.24.数形相伴.(1)如图,点A 、B 所代表的数分别为-1,2,在数轴上画出与A 、B 两点的距离和为5的点(并标上字母).(2)若数轴上点A 、B 所代表的数分别为a 、b ,则A 、B 两点之间的距离可表示为AB =a b -,那么,12x x ++-=7时,当=7时,x =_______;当12x x ++->5时,数x 所对应的点在数轴上的位置是在_______.参考答案【基础巩固】1.±3 2.非负数±1,0 3.3,-1 4.正号 6 负号565.4 6.±107.B 8.B 9.D 10.D 11.A 12. 1.52 2.75 3.5±<<--13.+10的绝对值最小,质量好些【拓展提优】14.A 15.D 16.C 17.a b> 18.表示a的点与表示-5的点之间的距离 19.13或3 20.91021.(1)x=±2 (2)x=6或x=-8 22.-1 23.(1)> > ==(2)a b a b+≥+ (3)x≤024.(1)如图,C、D两点即为所求. (2)-3或4点C的左边或点D的右边。
《2.3相反数》作业设计方案-初中数学华东师大版12七年级上册

《相反数》作业设计方案(第一课时)一、作业目标通过本次《相反数》的作业设计,使学生能够:1. 理解相反数的概念,并能正确判断一个数的相反数;2. 掌握相反数在数轴上的表示方法;3. 运用相反数进行简单的计算和实际问题解决。
二、作业内容作业内容主要包括以下几个方面:1. 基础知识巩固:- 填写下列数的相反数:______,______,______(答案:负数、正数、0的相反数)。
- 简述相反数的定义及性质。
2. 概念应用:- 在数轴上标出指定数的相反数,如标出-5的相反数。
- 通过实例说明相反数在日常生活中的应用。
3. 计算练习:- 完成以下算式并说明为何要变号:5 + (-3) = _____;3 + (-2) = _____。
- 解决类似“某数加上它的相反数等于多少”的练习题。
4. 实际问题解决:- 设计一个与相反数相关的实际问题,如温度变化中的相反数应用等,并解决之。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案;2. 基础知识巩固部分需全面掌握,准确填写答案;3. 概念应用部分需结合实际,用具体例子说明相反数的应用;4. 计算练习部分需注意运算顺序和符号的正确性;5. 实际问题解决部分需有明确的解题思路和步骤,并能够准确表达出答案及解题过程。
四、作业评价1. 教师将根据学生作业的完成情况,对每位学生的掌握程度进行评估;2. 评价标准包括准确率、解题思路的清晰度、作业的整洁度等;3. 对于表现优秀的学生给予表扬和鼓励,对于存在问题的学生进行指导并要求其改正。
五、作业反馈1. 教师将在课堂上对作业进行讲解和点评,重点讲解学生普遍存在的问题及解题方法;2. 对于学生的疑问,教师需耐心解答,并给予适当的引导和启发;3. 鼓励学生之间相互交流学习,分享解题经验和技巧;4. 作业反馈将作为学生后续学习的重要参考,帮助其查漏补缺,提高学习效果。
通过以上就是本次《相反数》作业设计方案的主要内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23-1-2-30D C B A b a §2.3 相反数
基础巩固训练
一、选择题
1.下列说法正确的是( )
A .带“+号”和带“-”号的数互为相反数
B .数轴上原点两侧的两个点表示的数是相反数
C .和一个点距离相等的两个点所表示的数一定互为相反数
D .一个数前面添上“-”号即为原数的相反数
2.如图所示,表示互为相反数的点是( )
A .点A 和点D
B .点B 和点C;
C .点A 和点C
D .点B 和点D
3.下列说法错误的是( )
A .+(-3)的相反数是3;
B .-(+3)的相反数是3
C .-(-8)的相反数是-8;
D .-(+18
)的相反数是8 4.若a 的相反数是b ,则下列结论错误的是( )
A .a=-b
B .a+b=0;
C .a 和b 都是正数
D .无法确定a ,b 的值
5.一个数的相反数大于它本身,这个数是( )
A .有理数
B .正数
C .负数
D .非负数
6.a-b 的相反数是( )
A .a+b
B .-(a+b )
C .b-a
D .-a-b
7.下列各数+(-4),-(14),-[+(-14)],+[-(+14
)],+[-(-4)]中,正数有( ) A .0个 B .2个 C .3个 D .4个
二、填空题
1.23的相反数是________,-15
的相反数是______,0的相反数是________. 2.若a=8.7,则-a=_______,-(-a )=________,+(-a )=________.
3.-(-6.3)的相反数是________.
4.化简(1)-(-32)=________;(2)+(+15
)=_______; (3)+[-(+1)]=________; (4)-[-(-5)]=_________.
5.若-a=13
,则a=_______,若-a=-7.7,则a=________. 6.若4x-5与3x-9互为相反数,则x=________.
7.若-(b-2)是负数,则b-2________0.
8.如图所示,有理数a ,b 的位置. (1)a______b ; (2)-a________-b ;
(3)-a_______b ; (4)-b______+a .
9.在数轴上到原点距离等于2的点所对应的数是_________,•这两点之间的距离是______.
三、解答题
1.把下面列为相反数的两个数用线连起来.
-a ,0,-3.5,-a 2+1,-2,-8.7,a 2+1,3.5,a 2-1,2,a ,0,-a 2-1,8.7.
2.在数轴上标出2,-1.5,1
3
,-3及它们的相反数,观察每对相反数所对应的点到原点的
距离有什么关系.
3.若A,B两点表示的数是相反数,且这两点相距8个单位长度,在数轴上标出A,•B两点,并指出A,B两点所表示的数.
综合创新训练
四、学科内综合题
1.如果a,b表示有理数.
(1)在什么条件下a+b与a-b互为相反数;
(2)在什么条件下a+b与a-b和为2.
2.(1)若a>b,则它们的相反数哪一个比较大?
(2)若a是不小于-3且又不大于1的数,那么它的相反数与-1和3有怎样的关系?
五、竞赛题
1.a的相反数是2b+1,b的相反数是3a+1,则a2+b2=________.
2.在1到100的整数中,求出10个数,使它们的倒数和等于1.
中考题回顾
六、中考题
1.(2002·深圳)-3的相反数是()
A.3 B.-3 C.1
3
D.-
1
3
2.(2003·南京)如果a与-3互为相反数,那么a等于()
A.3 B.-3 C.1
3
D.-
1
3
3.(2002·河北)-2
3
的相反数是________.
4.(2002·福州)-5的相反数是________.
答案:
一、1.D 2.C 3.D 4.C 5.C 6.C 7.B
二、1.-2
3
1
5
0 2.-8.7 8.7 -8.7 3.-6.3
4.(1)3
2
(2)
1
5
(3)-1 (4)-5 5.
1
3
7.7 • 6.2 7.>
8.(1)< (2)> (3)< (4)< 9.±2 4
三、1.略
2.图略每对相反数表示的点到数轴原点的距离相等.3.如图所示.
4
四、1.解:(1)若a+b与a-b互为相反数,则a+b+a-b=0,即a=0;(2)若a+b,a-b•和为2,则a+b+a-b=2,即a=1.
2.解:(1)可以从三个方面分别讨论,若a>b>0,则-a<-b,
若0>a>b,则-a<-b,若a>•b,a>0,b<0,则-a<-b;
(2)它的相反数不大于3,不小于-1,即-1≤-a≤3.
五、1.1 5
2.解:1=(1-1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)+(
1
5
-
1
6
)+(
1
6
-
1
7
)+(
1
7
-
1
8
)
+(1
8
-
1
9
)+(
1
9
-
1
10
)+
1
10
=
1
2
+
1
6
+
1
12
+
1
20
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90
+
1
10
.1,2,6,10,
12,20,30,42,56,72,90.
六、1.A 2.A 3.2
3
4.5.
2.3相反数
一、判断
1、互为相反的数一定是两个不同的数。
( )
2、互为相反的数符号一定相反。
( )
3、-(+2)表示负数,-(-2)也表示负数。
( )
4、+(+2) = 2 ,-(-2) =-2 ( )
二、填空
5、-3和3的符号一个是____,一个是_______。
-3和3到原点的距离都是_______。
像这样只有____________的数,称他们为互为相反数。
在数轴上,可发现互为相反的两个数到原点的距离__________;
6、2
3
和______互为相反数,
2
3
和_______互为倒数;
7、0的相反数是___________;
8、___________的相反数是负数;
9、______________的相反数是大于0的数;
10、如果两个数的积是1,那么这两个数是__________;
11、倒数等于本身的数是_________,一个数的相反数等于它本身的是___________;
12、_________是-19相反数,-19是_________相反数,19和________相反数;
13、在个数的前面添上一个“-”后,就表示是原来那个数的________________;
14、在一个数的前面添上一个“+”后,就表示是原来那个数的_________________;
15、_________的相反数比它的本身大,____________的相反数比它的本身小。
三、选择
16、相反数等于它本身的数一共有( )个
(A)0 (B)1 (C)2 (D)3
17、倒数等于它本身的数一共有( )个
(A)0个 (B)1个 (C) 2个 (D) 3个
18下列说法错误的是( )
(A)6是-6的相反数; (B)-6是-(-6)的相反数;
(C)-(+8)与+(-8)互为相反数; (D)+(-8)与-(-8)互为相反数
19、+(-3)的相反数是 ( )
(A) -(+3) (B) -3 (C) 3 (D) +(
1
3 -)
四、解答
20、化简下列各数:
⑴-(
1
3
-)=____;⑵-(+
3
5
)=______;⑶+(+10)=____;(4)+(-2
2
3
)=_____;
⑸+(+0.05)=_____; (6)-(-3.1415)=________;⑺-(+3.03)=______;
⑻-(-2002)=____.
21、在数轴表示出2,-2,-4,0,-0.5的相反数;
22、在下图所示的数轴上:
⑴分别指出表示-2,3,-4的相反数的点;⑵A、H、D、O各点分别表示什么数的相反数。
23、做一做,并判断:A
B C
D E
F G
H O
⑴点A在原点左边,离开原点4个单位,如果把A沿着数轴向右移动8个单位,到达B点,那么B点表示的什么样的数?
⑵2和它的相反数之间的距离是多少个单位?。