2020年中考复习——条件开放型问题专题训练(三)
中考数学复习开放性问题3[人教版]
![中考数学复习开放性问题3[人教版]](https://img.taocdn.com/s3/m/850be8781a37f111f0855b2c.png)
中考数学复习专题三 开放探究型问题

________________;
(2)如图②所示,如果 AB 是不过圆
心 O 的弦,且∠CAE=∠B,那么 EF
是⊙O 的切线吗?试证明你的判断.
单击此处编辑母版标题样式
解:(1)①∠BAE=90° ②∠EAC=∠ABC,理由是:①∵∠BAE= • 单击此处编辑母版文本样式 90°• 第,二∴级AE⊥AB,∵AB 是直径,∴EF 是⊙O 的切线 ②∵AB 是直
FH,∴四边形 BFCE 是平行四边形(对角线互相平分的四边形为平行
四边形),∵当 BH=EH 时,则 BC=EF,∴平行四边形 BFCE 为矩形
(对角线相等的平行四边形为矩形)
单击【例此2】处编(201辑6·临母沂)版如图标①,题在样正方式形 ABCD 中,点 E,F 分
别是边 BC,AB 上的点,且 CE=BF.连接 DE,过点 E 作 EG⊥DE,
• 第三级
73kk++bb==• 30第,,四• 解级第五得级kb= =34-,94,∴y=34x-94
(3)存在.点 P 与点 B 重合时,P1(3,0),点 P 与点 B 关于点 C 对
称时,P2(11,6)
单击[对此应训处练]编辑母版标题样式
3.(2016·新疆)如图,直线 y=2x+3 与 y 轴相交于 A 点,与反比
• 第三级
,
BF=CE, ∠FBC=∠ECD, BC=DC,
∴
△
CBF
≌
△
• 第四级
DCE(SAS),•∴第∠五级BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,
∵DE⊥EG,∴∠DEC+∠CEG=90°,∵∠CDE+∠DEC=90°,∴∠
CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形 CEGF 平行
2020年中考复习——条件开放型问题专题训练(二)(有答案)

1
19.
解:由符号
(
)的定义
(
) = 1+ 可得:
( 1 ) = 1+1 =
1,
+1
从而发现 ( ) + ( 1 ) = 1,
10 / 11
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。—— 达尔文
所以
(
1 2014
)
+
(
1 2013
)
+
(
1 2012
)
+
⋯
+
(
1 3
)
+
(
1 2
)
2. B
解:A、若添加 = ˊ ˊ,可利用 SAS 进行全等的判定,故本选项错误; B、若添加 = ′ ′,不能进行全等的判定,故本选项正确; C、若添加∠ = ∠ ′,可利用 ASA 进行全等的判定,故本选项错误; D、若添加∠ = ∠ ˊ,可利用 AAS 进行全等的判定,故本选项错误;
3. B
解:∵ ∠1 = ∠2 ∴∠ =∠ ∴ ,C,D 都可判定△ ∽△ 选项 B 中不是夹这两个角的边,所以不相似,
5. C
解:A、当∠ = ∠ 时,又∵ ∠ = ∠ ,∴△ ∽△ ,故此选项错误; B、当∠ = ∠ 时,又∵ ∠ = ∠ ,∴△ ∽△ ,故此选项错误; C、当 = 时,无法得到△ ∽△ ,故此选项正确; D、当 = 时,又∵ ∠ = ∠ ,∴△ ∽△ ,故此选项错误.
6. D
解:由图片可知,E 视点的盲区应该在三角形 ABD 的区域内.
7. B
解:说法①符合平行四边形的定义;说法②符合平行四边形的判定定理 4;说法③由 // 和∠ = ∠ ,可判断出 = 或 // ,也正确;说法④可举出等腰梯形
中考数学专题复习题:开放性问题

2019-2020年中考数学专题复习题:开放性问题开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一条件开放型例1 (xx·巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE是平行四边形,然后根据矩形的判定方法,得出EH与BH应满足的条件.【解答】方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(xx·湘潭)如图,直线a、b被直线c所截,若满足,则a、b 平行.2.(xx·内江)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线).3.(xx·六盘水)如图,添加一个条件:,使△ADE∽△ACB.(写出一个即可)4.(xx·娄底)先化简,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.5.(xx·邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,请添加一个条件,使得四边形ABCD为矩形,并说明理由.题型之二结论开放型例2 (xx·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(xx·滨州)写出一个运算结果是a6的算式 .2.(xx·赤峰)请你写出一个大于0而小于1的无理数 .3.(xx·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(xx·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(xx·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:0.5 0.6 0.7 1.0 1.2 1.6 1.9质量/kg1 8 15 18 5 1 2数量/条然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号. (1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).题型之三综合开放型例3 (xx·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x,y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】、方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.请你就“甲从A地到B地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.33482 82CA 苊37332 91D4 釔/29826 7482 璂24021 5DD5 巕28933 7105 焅 34653 875D 蝝 20534 5036 倶32153 7D99 継 030090 758A 疊B。
2020年中考数学第一轮复习暨2019年全国中考试题分类汇编专题39开放性问题(含解析)(003)

开放性问题一.选择题1. ( 2019?广东省广州市 ?3 分)一副三角板如图搁置,将三角板ADE 绕点 A 逆时针旋转α( 0°<α< 90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为15°或45° .【剖析】分状况议论:①DE ⊥ BC;② AD⊥ BC.【解答】解:分状况议论:①当 DE ⊥BC 时,∠ BAD= 75°,∴ α= 90°﹣∠ BAD = 15°;②当 AD ⊥BC 时,∠ BAD= 45°,即α= 45°.故答案为: 15°或 45°【评论】本题主要观察了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的重点.2. (2019?甘肃省庆阳市 ?4 分)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特点值”.若等腰△ ABC 中,∠A= 80°,则它的特点值k=或.【剖析】可知等腰三角形的两底角相等,则可求得底角的度数.进而可求解【解答】解:①当∠A 为顶角时,等腰三角形两底角的度数为:= 50°∴特点值 k==②当∠A 为底角时,顶角的度数为: 180°﹣ 80°﹣80°= 20°∴特点值 k==综上所述,特点值k 为或故答案为或【评论】本题主要观察等腰三角形的性质,熟记等腰三角形的性质是解题的重点,要注意到本题中,已知∠ A的底数,要进行判断是底角或顶角,免得造成答案的遗漏.二.填空题1.三.解答题1.1. ( 2019?江西 ?9 分)数学活动课上,张老师指引同学进行以下研究:如图 1,将长为 12cm 的铅笔 AB 斜靠在垂直于水平桌面AE 的直尺 FO 的边缘上,一端 A 固定在桌面上,图 2 是表示图活动一如图 3,将铅笔 AB 绕端点 A 顺时针旋转, AB 与 OF 交于点 D ,当旋转至水平地点时铅笔 AB 的中点 C 与点 O 重合。
中考数学专题复习三 开放型问题_初三专题复习课件

开放型问题是中考题多样化和时代发展要求的产 物,是中考的热点题型,是考查学生探索能力、创新 能力的重要方式.开放型问题是相对于封闭型问题而 言,是指那些条件不完整、结论不确定、解法不限制 的数学问题,它的显著特点是正确答案不唯一,从所 呈现问题的方式看,有下列几种基本形式:
1.条件开放型:称条件不充分或没有确定已知条 件的开放型问题为条件开放题.由于满足结论的条件 不唯一,解题时需执果寻因,根据结论和已有的已知 条件,寻找使得结论成立的其他条件.
4.如图是由一些大小相同的小立方体组成的几何 体的主视图和左视图,则组成这个几何体的小立方体的 个数不可能是( D )
A.3 B.4 C.5 D.6
解析:根据主视图与左视图,第一行的正方体有 1(只有一边有)或 2(左右都有)个,第二行的正方体可能 有 2(左边有)或 3(左右都有)个,∵1+2=3,1+3=4,2+ 2=4,2+3=5,故不可能有 6 个.故选 D.
8.一个 y 关于 x 的函数同时满足两个条件:①图 象过(2,1)点;②当 x>0 时,y 随 x 的增大而减小.这个 函数的解析式为 y=2x(或 y=-x+3 或 y=-x2+5 等) (写出一个即可).
9.(2013·邵阳)如图所示,将△ABC 绕 AC 的中点 O 顺时针旋转 180°得到△CDA,添加一个条件 ∠B= 90°(或∠BAC+∠BCA=90°等) ,使四边形 ABCD 为 矩形.
2.结论开放型:称结论不确定或没有确定结论的 开放型问题为结论开放题.给出问题的条件,让解题 者根据给出的条件探索相应的结论,而符合条件的结 论往往呈现多样性,解题时需由因导果,由已知条件 导出相应的结论,并且得出的结论应尽可能地使用题 目给出的全部条件.
中考数学复习专题3:开放性问题(含详细参考答案)

中考数学复习专题三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (•义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (•宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
2019-2020年中考数学复习 专题复习 开放性问题

2019-2020年中考数学复习 专题复习 开放性问题开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一 条件开放型例1 (2014·巴中)如图,在四边形ABCD 中,点H 是边BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E,F ,连接BE,CF.(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE 是平行四边形,然后根据矩形的判定方法,得出EH 与BH 应满足的条件.【解答】(1)添加条件:答案不唯一,如:BE ∥CF 或EH=FH 或∠EBH=∠FCH 或∠BEH=∠CFH 等.选择EH=FH ,证明如下:证明:∵点H 是边BC 的中点,∴BH=CH. 在△BEH 和△CFH 中,,,BH CH EHB FHC EH FH =⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△CFH(SAS).(2)如图,当BH=EH 时,四边形BFCE 是矩形.理由如下:∵BH=CH ,EH=FH,∴四边形BFCE 是平行四边形. 又∵BH=EH,∴EF=BC. ∴四边形BFCE 是矩形.方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(2014·湘潭)如图,直线a 、b 被直线c 所截,若满足 ,则a 、b 平行.2.(2014·内江)如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,AD ∥BC ,请添加一个条件: ,使四边形ABCD 为平行四边形(不添加任何辅助线).3.(2013·六盘水)如图,添加一个条件: ,使△ADE ∽△ACB.(写出一个即可)4.(2014·娄底)先化简241193x x x ⎛⎫⎪⎝-÷--⎭-,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.5.(2013·邵阳)如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,请添加一个条件,使得四边形ABCD 为矩形,并说明理由.题型之二结论开放型例2 (2013·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+12(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】(1)当p=12时,y=x+12(100-x).即y=12x+50.∴y随着x的增大而增大,即p=12时,满足条件(Ⅱ);又当20≤x≤100时,12×20+50≤y≤12×100+50.即60≤y≤100.即满足条件(Ⅰ).综上可知,当p=12时,这种变换满足要求.(2)由题意可知,只要满足:①h≤20;②若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求.如取h=20,y=a(x-20)2+k.∵a>0,∴当20≤x≤100时,y随着x的增大而增大,令x=20,y=60,得k=60.令x=100,y=100,得a×802+k=100.则a=1 160.∴y=1160(x-20)2+60.方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(2014·滨州)写出一个运算结果是a6的算式 .2.(2013·赤峰)请你写出一个大于0而小于1的无理数 .3.(2014·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(2013·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(2014·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).题型之三综合开放型例3 (2013·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x,y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】(1)本题答案不唯一,如下列解法:某市出租车计费方法是当载客行驶里程为x(千米),则车费为y(元).该函数图象就是表示y 随x的变化过程.(2)①出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;②若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.解:①由图象得:出租车的起步价是8元.设当x>3时,y与x的函数关系式为y=kx+b,由函数图象,得83,125.k b k b =+⎧⎨=+⎩解得2,2.k b =⎧⎨=⎩ 故y 与x 的函数关系式为:y=2x+2.②当y=32时,32=2x+2.解得x=15. 答:这位乘客乘车的里程是15千米.方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x 、y 满足图示的函数关系,要求:(1)指出变量x 和y 的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A ,B 两地间的距离为15千米,甲从A 地出发步行前往B 地,20分钟后,乙从B 地出发骑车前往A 地,且乙骑车比甲步行每小时多走10千米.乙到达A 地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B 地.请你就“甲从A 地到B 地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x 的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.参考答案题型之一 条件开放型1.答案不唯一,如∠1=∠22.(答案不唯一)AD =BC(或AB ∥DC)3.∠ADE=∠C(答案不唯一)4.原式=()()431333x x x x x ---÷+--=()()43·334x x x x x --+--=13x +. 解不等式2x-3<7得x<5. 取x=1时,原式=113+=14. 提示:本题最后答案不唯一,x 不能取±3,4.5.本题答案不唯一,如:∠B=90°或∠BAC+∠BCA=90°,或OB=OA=OC 或AB 2+BC 2=AC 2等. 以∠B=90°为例说明.理由: ∵AB=CD,AD=BC ,∴四边形ABCD 是平行四边形. 又∵∠B=90°,∴□ABCD 为矩形.题型之二 结论开放型1.答案不唯一,如:2a 6-a 6,a 2×a 4,(a 2)3,a 8÷a 2(a ≠0)2.4π 3.(1)△ABE ≌△CDF ,△ABC ≌△CDA.(2)∵AF =CE ,∴AE =CF. ∵AB ∥CD ,∴∠BAE =∠DCF.又∵∠ABE =∠CDF ,∴△ABE ≌△CDF.4.根据题意,函数可以是一次函数,反比例函数或二次函数.例如:此函数的解析式为y=kx(k >0), ∵此函数经过点(1,1),∴k=1.∴此函数可以为:y=1x;②设此函数的解析式为y=kx+b(k<0),∵此函数经过点(1,1),∴k+b=1,k<0.∴此函数可以为:y=-x+2,y=-2x+3,…;③设此函数的解析式为y=a(x-m)2+n(a<0,m≤0),∵此函数经过点(1,1),∴a(1-m)2+n=1(a<0,m≤0).∴此函数可以为:y=-x2+2,y=-2x2+3,y=-(x+1)2+5,….5.(1)如图所示.(2)其质量落在0.5 kg~0.8 kg范围内的可能性最大;(3)质量落在0.8~1.1 kg范围内;(4)方法一:用去尾平均数估计:去尾平均数x=0.680.715 1.018 1.25 1.6147⨯+⨯+⨯+⨯+⨯≈0.87(kg).50×50×0.87=2 175(kg).水库中成品鱼的总质量约为2 175 kg.方法二:平均数x=(0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×2)×1 50=0.904(kg).50×50×0.904=2 260(kg).水库中成品鱼的总质量约为2 260 kg.方法三:利用组中值计算平均数:x=0.65240.9518 1.255 1.551 1.85250⨯+⨯+⨯+⨯+⨯=0.884(kg).50×50×0.884=2 210(kg).水库中成品鱼的总质量约为2 210 kg.方法四:用众数(中位数)估计水库中成品鱼的总质量:50×50×1.0=2 500(kg).水库中成品鱼的总质量约为2 500 kg.题型之三综合开放型1.答案不唯一,如:(1)该函数图象表示小明开车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系;(2)小明以0.4 km/min的速度匀速开了5 min,在原地休息了6 min,然后以0.5 km/min 的速度匀速开车回出发地.2.答案不唯一,如:甲从A地到B地步行所用时间是多久?设甲从A地到B地步行所用时间为x小时,由题意得301x-=15x+10.化简得2x 2-5x-3=0,解得x 1=3,x 2=-12. 经检验知x=3符合题意,∴x=3.∴甲从A 地到B 地步行所用时间为3小时. 3.(1)设y=k x, ∵A(1,10)在图象上,∴10=1k.即k=10. ∴y=10x(1≤x ≤10). (2)答案不唯一.例如:小明家离县城10 km ,某天小明骑自行车以x km/h 的速度去县城,那么小明从家去县城所需的时间y=10x(h ).2019-2020年中考数学复习 专题复习 数学思想方法数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.类型之一 整体思想例1 (2014·内江)已知1a +12b =3,则代数式254436a ab bab a b-+--的值为 .【思路点拨】要求分式的值,必须要知道分式中所有字母的取值,从条件看无法解决;观察分式的结构发现分子与分母都是m(a+2b)+n(ab)的形式,所以从条件中找出(a+2b)与ab 之间的关系,即可解决问题. 【解答】∵1a +12b=3, ∴22a bab+=3,即a+2b=6ab. ∴254436a ab b ab a b -+--=225324a b ab a b ab +--++()()=125184ab abab ab --+=714ab ab -=-12. 方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.1.(2014·安徽)已知x 2-2x-3=0,则2x 2-4x 的值为( )A.-6B.6C.-2或6D.-2或302.(2014·乐山)若a=2,a-2b=3,则2a 2-4ab 的值为 .3.(2014·宿迁)已知实数a,b满足ab=3,a-b=2,则a2b-ab2的值是 .4.( 2014·菏泽)已知x2-4x+1=0,求()214xx---6xx+的值.类型之二分类思想例2 (2013·襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .【思路点拨】从图中看有两个直角,这两个直角都有可能是原直角三角形的直角,分两种情况将原图补充完整,即可求出原直角三角形的斜边长.【解答】如图1,以点B为直角顶点,BD为斜边上的中线,在Rt△ABD中,可得BD∴原直角三角形纸片的斜边EF的长是如图2,以点A为直角顶点,AC为斜边上的中线,在Rt△ABC中,可得AC=∴原直角三角形纸片的斜边EF的长是故填方法归纳:在几何问题中,当图形的形状不完整时,需要根据图形的已知边角及图形特征进行分类画出图形,特别注意涉及等腰三角形与直角三角形的边和角的分类讨论.1.(2014·凉山)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为()cm或或cm2.(2014·凉山)已知一个直角三角形的两边的长分别是3和4,则第三边长为 .3.已知点D与点A(8,0),B(0,6),C(3,-3)是一平行四边形的顶点,则D点的坐标为 .4.(2014·株洲调研)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .5.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2 cm,QM=4 cm.动点P从点Q出发,沿射线QN以每秒1 cm的速度向右移动,经过t秒,以点Pcm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒).6.(2013·呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为 .7.(2014·襄阳)在□ABCD中,BC边上的高为4,AB=5,,则□ABCD的周长等于 .类型之三转化思想例3 (2014·滨州)如图,点C在⊙O的直径AB的延长线上,点D在⊙O上,AD=CD,∠ADC=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【思路点拨】(1)因为D点在圆上,连接OD,证明OD与CD垂直即可;(2)连接OD,将图中不规则的阴影部分面积转化为三角形与扇形的面积之差.【解答】(1)证明:连接OD.∵AD=CD,∠ADC=120°,∴∠A=∠C=30°.∵OA=OD,∴∠ODA=∠A=30°,∴∠ODC=120°-30°=90°, ∴OD ⊥CD.又∵点D 在⊙O 上,∴CD 是⊙O 的切线. (2)∵∠ODC=90°,OD=2,∠C=30°,∴OC=4,∴S △COD =12OD ·CD=12×2×, S 扇形OCB =2602360π⨯⨯=23π,∴S 阴影=S △OCD -S 扇形OCB 23π. 方法归纳:化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.1.(2014·泰安)如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( ) A.(2π-1)cm 2 B.(2π+1)cm 2 C.1 cm 2 D. 2π cm 22.(2013·潍坊)对于实数x,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[410x +]=5,则x 的取值可以是( ) A.40 B.45 C.51 D.563.(2014·菏泽调考)将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线段记成a bc d,定义a b c d =ad-bc ,上述记号就叫做二阶行列式,若11x x +- 11xx -+=8,则x= . 4.(2014·白银)如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .5.(2014·凉山)如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底 4 cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为 cm.6.(2014·枣庄)图1所示的正方体木块棱长为6 cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A爬行到顶点B 的最短距离为 cm.类型之四数形结合思想例4 (2014·黄州模拟)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1 cm/s,设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5 cm;②当0<t≤5时,y= 25t2;③直线NH的解析式为y=-52t+27;④若△ABE与△QBP相似,则t=294秒.其中正确的结论个数为( )A.4B.3C.2D.1【解答】①根据图2可得,当点P到达点E时点Q到达点C,BC=BE,故①小题正确;②当0<t≤5时,设y=at2,将t=5,y=10代入求得a=25,故②小题正确;③根据题意可得N(7,10),H(11,0),利用待定系数法可以求出一次函数解析式y=-52t+552,故③小题错误;④∵∠A=90°,而点P在运动过程中,∠BPQ≠90°,∠PBQ≠90°,∴△ABE与△QBP相似,Q点在C点处,P点运动到CD边上,∠PQB=90°.此时分△ABE∽△QBP和△ABE∽△QPB两种情况,当△ABE∽△QBP时,则ABQB=AEQP可知QP=154,可得t=294,符合题意;当△ABE∽△QPB时,ABQP=AEQB,可知QP=203>4,不符合题意,应舍去.故④小题正确.因此答案选B.方法归纳:数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.1.(2014·菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )2.(2014·内江)若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解为( )A.x1=-6,x2=-1B.x1=0,x2=5C.x1=-3,x2=5D.x1=-6,x2=23.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④4.(2014·黄石调考)如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a ,b(a>b),则a-b 等于( )A.7B.6C.5D.45.(2014·枣庄)如图,在边长为2a 的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A.a 2+4B.2a 2+4aC.3a 2-4a-4D.4a 2-a-2类型之五 方程、函数思想例5 (2014·泰安调考)将半径为4 cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是 cm.【思路点拨】设圆柱的底面半径为r ,圆柱的侧面积为S ,建立S 与r 之间的函数关系式,利用函数的性质确定S 取最大值时r 的值.【解答】∵将半径为4 cm 的半圆围成一个圆锥,∴圆锥的母线长为4,底面圆的半径为2,高为设圆柱底面圆的半径为r,高为h ,侧面积为S ,根据题意,得2r =h=.∴S=2πr (-)(r-1)2.∴当r=1时, S取最大值为.方法归纳:在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.1.(2014·安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC 的中点D重合,折痕为MN,则线段BN的长为( )A.53B.52C.4D.52.(2014·武汉)如图,若双曲线y=kx与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为 .3.(2014·广州)若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为 .4.(2014·鄂州)如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为 .参考答案类型之一整体思想1.B2.123.64.原式=()()()()21464x x x xx x---+-=224244x xx x-+-.∵x2-4x+1=0,∴x2-4x=-1.∴原式=224244x xx x-+-=1241-+-=-23.类型之二分类思想1.C2.53.(5,9)或(11,-9)或(-5,3)4.(3,4)或(2,4)或(8,4)5.t=2或3≤t≤7或t=86.(0,12)或(0,-12)提示:当点C在y轴的上方时,如图,作BD⊥AC于D,与y轴交于点E.∵∠BCA=45°,∴∠CBD=∠BCA=45°,∴BD=CD.∵∠CDE=∠ADB=90°,∠CED=∠BEO,∴∠ECD=∠ABD,∴△CED≌△BAD,∴EC=AB=10.设OE=x,∵∠COA=∠BOE=90°,∴△BEO∽△CAO,∴104x+=6x,x=2或x=-12(舍去),∴OC=OE+CE=2+10=12,∴点C(0,12).当点C在y轴的下方时,同理可求得点C(0,-12).故答案为(0,12)或(0,-12).7.12或20提示:如图1所示.∵在□ABCD中,BC边上的高为4,AB=5,,∴,AB=CD=5,,∴AD=BC=5,∴□ABCD的周长等于20.如图2所示.∵在□ABCD中,BC边上的高为4,AB=5,,∴EC=AC2-AE2=2,AB=CD=5,BE=AB2-AE2=3, ∴BC=3-2=1,∴□ABCD 的周长等于1+1+5+5=12. 则□ABCD 的周长等于12或20. 故答案为:12或20.类型之三 转化思想1.A2.C3.24.125.206.( 提示:如图所示.△BCD 是等腰直角三角形,△ACD 是等边三角形,在Rt △BCD 中,cm ),∴BE=12,在Rt △ACE 中,cm ),∴从顶点A 爬行到顶点B 的最短距离为(故答案为:(类型之四 数形结合思想1.A2.B3.B4.A5.C类型之五 方程、函数思想1.C提示:设BN=x,则依据折叠原理可得DN=AN=9-x.又D 为BC 的中点,∴BD=3.在Rt △NBD 中,利用勾股定理,可得BN 2+BD 2=DN 2,则有32+x 2=(9-x)2,解得x=4,即BN=4.故选择C.2.4提示:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,设OC=3x ,则BD=x ,在Rt △OCE 中,∠COE=60°,则OE=32x ,CE=2x ,则点C 坐标为(32x ,2x),在Rt △BDF 中,BD=x ,∠DBF=60°,则BF=12x ,DF=2x ,则点D 的坐标为(5-12x ,将点C 的坐标代入反比例函数解析式可得x 2,将点D 的坐标代入反比例函数解析式可得k=2x-4x 2,则4x 2=2x-4x 2,解得x 1=1,x 2=0(舍去),故k=4×12=4. 3.54提示:由根与系数的关系得到:x 1+x 2=-2m ,x 1x 2=m 2+3m-2, 原式化简=3m 2-3m+2=3(m-12)2+54. ∵方程有实数根,∴Δ≥0,m ≤23. 当m=12时,3m 2-3m+2的最小值为54.提示:延长MB 至G 使GB=DN ,连接AG.∴△ADN ≌△ABG.∵CN+CM+MN=2,CN+CM+DN+BM=2, ∴MN=MG.∴△AMN ≌△AMG.要使△AMN的面积的最小,即△AGM的面积最小.∵AB=1,所以MG最小,即MN最小.在Rt△CMN中,周长一定,当△CMN为等腰直角三角形时,斜边MN最小.设CM=x,则,∴∴∴△AMN。