塑性铰的定义及概念
2-3内力计算

3)塑性铰与理想铰的区别:前者能承受弯矩,并只 能沿弯矩作用发生一定限度的转动,而后者则不能 承受弯矩,但可自由转动。
4)塑性内力重分布的概念:塑性铰的出现将引起构 件各截面间的内力分布发生变化的现象,称为塑性内 力重分布。
5)塑性内力重分布的经济效应:按一般力学方法计 算出来的内力,其跨中与支座截面的弯矩比值为M1: MB=1:1.2,经过塑性内力重分布后,使其跨中与 支座截面的弯矩比值改变为M1:MB=1:1,从而 利用了跨中截面潜在的承载能力而取得经济效益。
项目二:肋梁楼盖设计 任务1 结构平面布置方案 任务2 计算简图及荷载计算 任务3 内力计算
任务4 正截面配筋计算
任务5 斜截面配筋计算 任务6 楼盖设计与构造要求 任务7 楼梯 单向板楼盖设计实例
双向板楼盖设计实例
任务3 单向板楼盖的内力计算
1.内力计算两种方法
钢筋混凝土连续板、梁的内力计算方法有两种: 即弹性计算法和塑性计算法。
剪力计算 : V ( g q )l n
0.4
0.5
0.5
0.5
0.6
-0.6
-0.5
-0.5
-0.5
-0.4
连 续 梁 的 剪 力 系 数
5、内力值的确定
1)单向板中内力值的确定
⑴支承在次梁或砖墙上的连续板,一般可按考虑塑性内 力重分布的方法计算。 ⑵板一般均能满足斜截面抗剪要求,设计时可不进行受 剪承载力计算。 ⑶一般规定,对四周与梁整体连接时,其中间跨板带的 跨中截面及中间支座截面的计算弯矩可折减20%,其他 截面则不予减少。
1)按弹性理论方法计算是假定结构构件为理想弹性材料,选 取计算简图后,其内力按结构力学的原理分析计算,一般 常用力矩分配法来求连续板、梁的内力。为计算方便,对 于常用荷载作用下的等跨连续梁板,均已编制成计算表格 可直接查用。 其计算结果比实际情况偏大,可靠度大。但其求得的支 座弯矩远大于跨中弯矩,这使得支座配筋拥挤,构造复杂, 施工不便。
钢筋混凝土塑性铰

钢筋混凝土塑性铰在建筑结构领域,钢筋混凝土塑性铰是一个十分重要的概念。
它对于理解和设计钢筋混凝土结构的抗震性能、承载能力以及变形能力都有着至关重要的作用。
要理解钢筋混凝土塑性铰,首先得明白什么是铰。
简单来说,铰就是一种能够让构件自由转动的连接装置。
在力学中,铰可以承受力,但不能传递弯矩。
而塑性铰则是一种特殊的铰,它是由于材料的塑性变形而形成的。
钢筋混凝土结构在承受荷载的过程中,当某些部位的应力超过了材料的屈服强度,就会产生塑性变形。
在这个过程中,如果变形集中在一个特定的区域,这个区域就形成了塑性铰。
塑性铰的出现意味着结构的受力状态发生了重大变化。
那么,钢筋混凝土塑性铰是如何形成的呢?这通常与结构中的梁、柱等构件有关。
以钢筋混凝土梁为例,当荷载逐渐增加,梁的受拉区钢筋首先达到屈服强度,开始产生塑性变形。
随着荷载的进一步增加,受拉区的混凝土逐渐开裂,受压区的混凝土也开始逐渐进入塑性状态。
当整个梁的变形达到一定程度时,在某个截面处就形成了塑性铰。
塑性铰的形成有几个显著的特点。
首先,它具有一定的转动能力。
这使得结构在受到较大变形时,能够通过塑性铰的转动来调整内力分布,从而避免结构的突然破坏。
其次,塑性铰具有一定的耗能能力。
在塑性铰转动的过程中,结构会吸收和消耗一部分能量,这对于减轻地震等动力荷载对结构的破坏具有重要意义。
钢筋混凝土塑性铰对于结构的性能有着多方面的影响。
从承载能力的角度来看,塑性铰的出现使得结构能够承受更大的变形,从而提高了结构的极限承载能力。
然而,这并不意味着可以无限制地依赖塑性铰来提高承载能力,因为过度的塑性变形可能会导致结构的使用功能受损甚至完全破坏。
在抗震设计中,钢筋混凝土塑性铰的作用更是不可忽视。
地震作用是一种动态的、反复的荷载,结构在地震作用下需要具备良好的变形能力和耗能能力。
通过合理地设计塑性铰的位置和数量,可以使结构在地震作用下能够有效地耗散能量,减少地震对结构的破坏。
为了保证钢筋混凝土塑性铰能够发挥其应有的作用,在设计和施工过程中需要采取一系列的措施。
楼板计算的塑性铰线理论原理与运用

楼板计算的塑性铰线理论原理与运用摘要现浇钢筋混凝土楼板的内力计算有弹性理论与塑性理论两种方法,已制成现成的图表、手册可供查用。
鉴于目前在现浇板的内力计算中,大部分人都采用弹性理论,塑性方法几乎弃置不用,而实际上大量的工程实践证明塑性理论的计算结果既是安全可靠的,又可以比弹性理论节约钢材25%左右。
本文通过对弹、塑性计算理论的分析、比较,以及其实用范围的选择,来说明大量的、一般性的结构构件,均可以按塑性理论计算。
这样的设计指导思想,更符合当前我国基本建设项目多、任务重而建设资金并不充足的国情。
由于经典弹塑性理论中不包含任何材料内尺度参数,无法解释材料在毫米(多孔固体)、微米和亚微米(金属材料)量级时表现出来的尺度相关现象以及在薄膜塑性中出现的包辛格效应。
本文基于连续介质力学框架下的微态弹塑性理论,研究了在毫米量级出现的弹性尺寸效应及在微米、亚微米量级出现的尺寸效应和包辛格效应。
基于微态弹性理论及二阶梯度弹性理论,得到了含约束薄层简单剪切和单轴拉伸以及双材料剪切的解析解,并研究了两种理论之间的内在联系。
微态理论中的耦合因子能扮演罚参数的角色,当其趋近于无穷大时,微态弹性理论退化至二阶梯度理论,但对于单轴拉伸问题,前者并不能在全域内完全退化至后者。
数值计算结果表明基于微态弹性理论开发的有限元格式,可通过选取特定材料参数作为罚因子,用于近似求解二阶梯度理论的复杂边值问题。
边界上施加的高阶边界条件及材料本身的不均匀性都能引起弹性尺寸效应。
基于小应变各向同性硬化的微态弹塑性模型,数值研究了平压头和楔形压头的微压痕问题。
推导了该模型的有限元计算格式,开发了二维平面应变单元,并嵌入有限元程序。
直接将经典塑性流动模型的径向返回算法加以推广,得到适用于该模型本构的应力更新算法。
关键词:现浇钢筋混凝土楼板计算;弹性理论塑性理论;经济比较目录一、钢筋混凝土双向楼板肋梁楼盖设计任务书 (4)1设计题目 (4)2设计目的 (4)3设计内容 (4)4设计资料 (4)γ(由于活荷载标准值可变荷载:楼面均布活荷载标准值6kN/m2,分项系数3.1=Qγ。
塑性铰知识讲解

塑性铰钢结构中的塑性铰及其应用综述姓名:严小伟学号:15121116北京交通大学2020年7月钢结构中的塑性铰及其应用综述摘要:结构构件在地震作用下产生塑性变形,在塑性铰形成的过程中能吸取大量的能量。
在设计中恰到好处地设计塑性铰形成的位里并加以应用,可有效降低震害,不至于出现迅速倒塌的后果。
关键字:塑性铰理论;塑性变形;破坏机制1.引言地震是一种具有突发性和毁灭性的自然灾害,它对当今人类社会的危害主要体现在两个方面:一是地震引起建筑物的破坏或倒塌将会导致严重的人身伤亡和财产损失,二是地震及其地震引起的水灾、火灾等次生灾害将破坏人类社会赖以生存的自然环境,造成严重的经济损失,产生巨大的社会影响。
我国地处世界上两个最活跃的地震带上,是世界上的多地震国家之一,强烈地震给我国人民带来的灾难尤为严重。
从历史上来看,我国的地震灾害面积己达到我国的国土面积的一半以上,尤其在近几年地震活动相当频繁。
因为很多特大地震给人类带来了巨大的经济损失,一些特大地震己给人类社会带来了不可估量的经济损失,这就使得我们要对深入研究土木工程结构的抗震设计理论和应用方法进行深入的研究。
不同阶段,客观因素和人类的认识水平是不一样的,这就形成了不同的抗震设计思想和方法。
通过工程技术措施,保证建筑物和工程设施的抗震安全,是减轻地震灾害的有效手段,作为抗震灾害的重要环节,结构抗震设计理论的不断完善是世界各国重点研究的课题之一。
结构在塑性变形中形成的塑性铰在抗震中能发挥重要作用,塑性铰能否在罕遇地震中出现,对结构安全和生命财产的安危是至关重要的。
所以,很有必要对其进行研究和探讨,并应充分利用塑性铰来消耗地震的能量,提高结构的抗震性能,降低地震灾害。
2、塑性铰的有关概念钢结构中的塑性铰在钢结构构件屈服的横截面处产生。
如果不考虑结构分析中钢材应变硬化,那么屈服的横截面会产生一个不确定的转动并能承受一定的约束弯矩即塑性弯矩Mp。
塑性铰是与理想铁相比较而言。
各国规范中等效塑性铰长度公式对比

各国规范中等效塑性铰长度公式对比摘要:塑性铰长度是进行结构弹塑性分析时的重要参数,是确定压弯钢筋混凝土柱塑性转动能力和极限位移能力的重要指标,对于分析结果有着重要影响。
本文介绍了塑性铰的形成机制以及等效塑性铰长度定义;各国规范有关塑性铰等效计算长度的规定,对比了各国规范公式以及学者提出公式对于同一实际工程构件的计算结果,发现计算结果差异较大。
关键词:塑性铰;抗震设计;延性钢筋混凝土压弯构件在强震的作用下,当纵向受拉钢筋在某截面达到屈服后,在弯矩增加不多的情况下,截面的变形和曲率急剧增大,表明截面已进入屈服阶段,转角急剧增大,相当于出现一个“铰”,即所谓的塑性铰,而塑性铰的长度往往与诸多参数相关,难以准确计算。
因此国外学者引入了等效塑性铰的概念,即假设在塑性铰长度范围内的曲率为常数,只要等效塑性铰长度能确定,钢筋混凝土压弯构件的极限位移能力就能通过等效塑性铰长度、构件高度、极限曲率等参数确定,从而对结构的变形能力和抗震性能进行整体评估。
1、桥墩塑性铰长度定义20 世纪六十年代,国外研究人员最先给出了用于估计钢筋混凝土梁弯曲转动变形的塑性铰长度。
Park 和 Paulay则将塑性铰长度的概念扩展到了悬臂墩,简化了曲率沿墩高的分布,给出了如下墩顶位移计算公式:式中: L为墩柱高度; 为墩顶极限位移; 为墩顶屈服位移; 为墩顶塑性位移; 为塑性铰区极限曲率; 为塑性铰区等效屈服曲率; 为塑性铰区塑性曲率。
上式常用于估计钢筋混凝土墩柱的塑性铰长度。
等效塑性铰长度概念的实质是在特定荷载作用下,用平均曲率来代替非线性曲率,使得两者在塑性铰长度上的积分结果相等。
2、各国规范及学者等效塑性铰长度公式2.1中国《公路桥梁抗震设计细则》规定中国《公路桥梁震设计细则》规定塑性铰长度Lp取方程组中两分式计算结果的较小值(1)式中: 悬臂墩的高度或塑性铰截面到反弯点的距离; 为纵筋直径; 为纵向钢筋抗拉强度标准值; 为矩形截面的短边尺寸或圆形截面直径。
混凝土结构设计题库答案 Word 文档(详细版)

第十章混凝土结构设计的一般原则和方法1、建筑结构分为上部结构和下部结构,上部结构有水平结构体系和竖向结构结构体系组成,常把竖向结构结构体系称为抗侧力结构体系,水平结构体系指梁板,竖向结构结构体系指柱或墙。
2、房屋的结构类型按结构材料不同分为砌体结构、混凝土结构、钢结构、组合结构和混合结构等类型;按竖向结构体系不同分为排架结构、框架结构、剪力墙结构、框架剪力墙结构和筒体结构等类型。
3、工程建设一定要遵循先勘察后设计、先设计后施工的程序。
4、建筑结构设计的一般原则是安全、适用、耐久和经济合理。
5、建筑结构设计主要有哪些原则?答:①详细阅读和领会地质勘察报告,把建筑场地的水文、地质等资料作为设计依据。
②把国家、地方和行业的现行设计法规、标准、规范和规程等作为设计的依据,切实遵守有关规定,特别是“强制性条文”的规定。
③采用高性能的结构材料、先进的科学技术、先进的设计计算方法和施工方法。
④结合工程的具体情况,尽可能采用并正确选择标准图。
⑤以优先采用有利于建筑行业的装配式结构和装配式整体式结构。
⑥与其他工种的设计,诸如建筑设计、给水排水设计、电气设计、空气调节和通风设计等互相协调配合。
P2-P36、使结构产生内力或变形的原因称为作用,分为直接作用和间接作用;荷载是直接作用,混凝土的收缩、温度变化、基础的差异沉降、地震是间接作用。
7、结构上的作用使结构产生内力(弯矩、剪力、轴力、扭矩)、变形、裂缝统称为作用效应。
8、结构自重属于永久荷载,又称恒荷载;楼面活荷载、吊车荷载、风荷载、雪荷载、积灰荷载属于可变荷载,又称活荷载;爆炸力、撞击力属于偶然荷载。
9、结构设计基准期为50年。
10、不同荷载的实际取值称为荷载代表值,分为标准值、组合值、频遇值、准永久值四种;对永久荷载应采用标准值作为代表值,对可变荷载应采用标准值、组合值、频遇值、准永久值作为代表值。
11、永久荷载标准值可按结构构件的设计尺寸与材料单位体积的自重计算确定,可变荷载标准值可按统计值取上限或根据经验确定。
极限弯矩塑性铰和极限状态

A1 A2 A / 2 1800mm2
Mu s S1 S2
A
63.3 27.35kN.m
s2
20mm
FPu
Mu
Mu
θ
Δ
θ
2
l
FPu
Mu
2
4Mu l
虚位移方向与荷载一致 MU 的方向按正向规定
结束
(第二版)作业: 16—思考题2、3
16—1a
[例1] 已知材料的屈服极限 s 240,M求P图a 示截面
的极限弯矩。
80mm
解: A 20 80+20 100=3600mm2
100mm 20mm 45 18.3
结构处于极限状态时所承受的荷载。 (2)计算方法 —— 根据塑性铰截面的弯矩等于极限弯矩值
(平衡法M)u的条件,利用平衡方程求得。
(机动法在例题中介绍)
[例2] 设有矩形截面梁承受如图所示荷载,
试求其极限荷载FPu。
解:方法一:平衡法
FP
A
B
●
(1)作M图
C
l/2
l/2
由M图可知:在逐渐加载下,
塑性铰将在C处形成。
—— 截面整个应力都达到 屈服值时的弯矩。
s
(3)塑性铰 ——达到Mu的截面所在的一小段内,梁将产生 有限的转角,该处称为塑性铰。
塑性铰特点:
● 塑性铰能承受有限弯矩,即极限弯矩Mu ;(普通铰不能承受弯矩)
● 塑性铰是单向铰,只能沿着弯矩增大方向发生有限转角, 如果沿相反方向变形(卸载),则恢复弹性,不再具有铰的性质。
即 A 1 s A2 s
A 1 A2 A / 2
(2)极限弯矩公式 (仅与材性和截面形状有关)
Mu s A1 y1 s A2 y2 s S1 S2
对于塑性铰如何理解

对于塑性铰如何理解,塑性转角又该何解,中性轴是横截面与中性层的交线,中和轴又该何解,形心轴与中性轴,中和轴的关系如何?经常被这几个概念弄混,还望大家不赐吝教!塑性铰粗俗的说就是构件受力的过程中最先受不了的那部分,受不了了,变形就大了,变形由弹性变形转为了塑性变形,那部分就变成了塑性铰。
中性轴,构件受力中,有的部分受拉,有的部分受压,两者之间总有过度的,即不受压也不受拉的截面就是中性截面。
形心,什么形状对应什么样的形心,与受力无关。
1.塑性铰是由于截面材料屈服,产生转角形成的铰。
它与普通的铰的区别是,普通的铰不承受弯矩,塑性铰承受弯矩。
而且在施加反向弯矩后,塑性铰可以恢复。
2。
中和轴是截面受压和受拉的分界面3。
形心轴和中和轴是完全不相同的概念。
形心轴是通过形心与x,y轴平行的轴。
个人愚见1.中和轴是和弯曲主轴平行的截面面积平分线,中和轴两边的面积相等,对双轴对称截面积为形心主轴,是截面受压和受拉的分界面。
2.形心轴是通过形心与x,y轴平行的轴。
3.中性轴,构件受力中,有的部分受拉,有的部分受压,两者之间总有过度的,即不受压也不受拉的截面就是中性截面,是截面受压和受拉的分界面。
区别:弹性阶段,中性轴就是形心轴。
进入部分塑性时中性轴位置将偏离形心轴,当弯矩达极限弯矩,截面进入塑性流动阶段时,中性轴将平分截面面积,此时中性轴为截面的等分面积轴,即中和轴。
也就是说中性轴是在弹性阶段说的,而中和轴是在塑性阶段说的。
关于塑性铰我想说几句。
当梁的最大受力点(弯矩最大)的截面的最外边纤维达到极限应力,此时梁所承受的外力为弹性极限荷载Fel。
(图a)如果荷载继续增大,则截面出现塑化,塑化的范围将向截面深度以及杆件纵向发展。
当这个截面完全塑化时,那么这个截面也就达到它的最大弯矩Mpl。
此时外荷载大小为(Fpl,I)(图b,c)如果梁还继续加载(Fpl,I + delta F),那么刚才完全塑化的截面则被视为塑性铰,它只承担它最大能承受的塑性弯矩Mpl。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑性铰得定义及概念
1、适筋梁(或柱,当主要就是梁)受拉纵筋屈服后,截面可以有较大转角,形成类似于铰一样得效果。
称作塑性铰。
2、塑性铰就是一种特殊得铰,它能承受一定方向得弯矩,这就是它区别于一般铰最本质得特征。
在抗震设计中,做到强柱弱梁就就是为了保证让梁出现塑性铰,此时梁得变形较大,但就是还能受力。
塑性铰对抗震设计来说,就是一个重要得概念,因为在塑性铰形成得过程中能吸取大量得地震能量,所以在设计中恰到好处地设计塑性铰形成得位置(比如在梁端而不就是柱),可有效降低震害,不至于出现迅速倒塌得后果(满足抗震设防要求)
3、塑性铰与一般理想铰得区别在于:塑性铰不就是集中在一点,而就是形成一小段局部变形很大得区域;塑性铰为单向铰,仅能沿弯矩作用方向产生一定限度得转动,而理想铰不能承受弯矩,但可以自由转动;塑性铰在钢筋屈服后形成,截面能承受一定得弯矩,但转动能力受到纵筋配筋率、钢筋种类与砼极限压应变得限制。
配筋率越大或截面相对受压区高度越大,塑性铰得转动能力却越小。
对于直接承受动荷载得构件,以及要求不出现裂缝或处于侵蚀环境等情况下得结构,不应采用考虑塑性内力充分布得分析方法。
《高规》5、23、3条指出,在竖向作用下,可考虑框架梁端塑性变形内力重分布,对梁端负弯矩乘以调幅系数进行调幅。
为什么要进行支座负弯矩调幅呢?
弯矩调幅来源于受力全过程与截面得塑性特性。
要理解弯矩调幅首先要知道塑性铰得概念,塑性铰主要来源于钢筋屈服以及混凝土塑性变形所产生得塑性,它得力学特征就是在截面所承受得弯矩不变得情况下有一定得转动能力,(类似于铰,区别在于铰不能承受弯矩,而塑性铰可以承受弯矩)。
塑性铰得得出现导致了连续梁得内力重分布,负弯矩得弯矩保持不变,而跨中弯矩增大,最终跨中也达到极限承载力而破坏!
所以考虑塑性内力重分布得受力过程就是:第一阶段:首先荷载较小,跨中支座弯矩线形增加,支座弯矩大于跨中弯矩(支座弯矩始终就是大于跨中弯矩得)。
随着荷载增大,支座达到承载能力极限,形成塑性铰。
进入第二阶段:此时支座弯矩不变(事实上还有小许增加),跨中弯矩继续增加,最后跨中也出现塑性铰,结构成为机动体系,结构破坏。
在工程设计中,每次按两阶段来设计不仅繁琐,而且增加难度;因此引入了弯矩调幅这个方法,弯矩调幅,通过调低支座弯矩,来实现内力重分布得目得,但就是调幅得目得不就是简单得调低弯矩,而就是调整跨中与支座得负弯矩!因此可以不变支座配筋通过增加跨中配筋来提高构件得极限承载力,也可以
通过减少支座配筋(同时可能要增加跨中配筋)来保持按弹性计算所需得承载力。
总结:弯矩调幅法就是考虑塑性内力重分布得分析方法,就是与弹性设计相对得。
其目得就是增加构件得承载能力,充分发挥材料(混凝土)得能力。
所以用了弯矩调幅法,不一定要减少支座配筋。
这里得关键就是塑性铰与内力重分布。
这跟抗震里得“强柱弱梁”没有本质得联系,千万不要再说强柱弱梁,事实上对负弯矩调幅后就是有利于抗震得。
对于弯矩调幅法也不就是到处能用得,对于承受动力荷载,使用上要求不出现裂缝得以及处于腐蚀性环境得都不能用该方法。
支座负弯矩调幅得优点:
1、求得结构得经济。
充分挖掘混凝土结构得潜力与利用其优点。
增加支座得配筋不如增加跨中得配筋来得经济,因为跨中还可以利用T形截面得优势,而支座不能。
2、增加结构得抗震性能及可靠度。
3、使得内力均匀。
框架结构得边框架柱子顶层,这里如果不调幅得话,柱子得配筋就是比较大得。