十字相乘法的方法

合集下载

十字相乘法的用法

十字相乘法的用法

十字相乘法“十字相乘法”虽然比较难学,但是学会了它, 用十字相乘法来解题的速度比较快,能够节约时间,而且运算量不大,不容易出错。

它在分解因式/解一元二次方程中有广泛的应用:十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

例1把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6所以m²+4m-12=(m-2)(m+6)例2把5x²+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。

当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为 1 25 ╳ -4所以5x²+6x-8=(x+2)(5x-4)例3解方程x²-8x+15=0分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。

解:因为 1 -31 ╳ -5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程 6x²-5x-25=0分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。

解:因为 2 -53 ╳ 5所以原方程可变形成(2x-5)(3x+5)=0所以 x1=5/2 x2=-5/3用十字相乘法解一些比较难的题目:例5把14x²-67xy+18y²分解因式分析:把14x²-67xy+18y²看成是一个关于x的二次三项式, 则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y解: 因为 2 -9y7 ╳ -2y所以 14x²-67xy+18y²= (2x-9y)(7x-2y)例6 把10x²-27xy-28y²-x+25y-3分解因式分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x²-27xy-28y²-x+25y-3=10x²-(27y+1)x -(28y²-25y+3)4y -37y ╳ -1=10x²-(27y+1)x -(4y-3)(7y -1)2 -(7y – 1)5 ╳ 4y - 3=[2x -(7y -1)][5x +(4y -3)]=(2x -7y +1)(5x +4y -3)说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为:[2x -(7 y -1)][5x +(4y -3)]解法二、10x²-27xy-28y²-x+25y-32 -7y5 ╳ 4y=(2x -7y)(5x +4y)-(x -25y)- 32 x -7y 15 x +4y ╳ -3=[(2x -7y)+1] [(5x +4y)-3]=(2x -7y+1)(5x +4y -3)说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x +4y)-3].例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0分析:2a²–ab-b²可以用十字相乘法进行因式分解解:x²- 3ax + 2a²–ab -b²=0x²- 3ax +(2a²–ab - b²)=01 -b2 ╳ +bx²- 3ax +(2a+b)(a-b)=01 -(2a+b)1 ╳ -(a-b)[x-(2a+b)][ x-(a-b)]=0所以 x1=2a+b x2=a-b两种相关联的变量之间的二次函数的关系,可以用三种不同形式的解析式表示:一般式、顶点式、交点式交点式.利用配方法,把二次函数的一般式变形为:Y=a[(x+b/2a)2-(b2-4ac)/4a2]应用平方差公式对右端进行因式分解,得Y=a[x+b/2a+√b2-4ac/2a][x+b/2a-√b2-4ac/2a]=a[x-(-b-√b2-4ac)/2a][x-(-b+√b2-4ac)/2a]因为一元二次方程ax2+bx+c=0的两根分别为x1,x2=(-b±√b2-4ac)/2a所以上式可写成y=a(x-x1)(x-x2),其中x1,x2是方程ax2+bx+c= 0的两个根因x1,x2恰为此函数图象与x轴两交点(x1,0),(x2,0)的横坐标,故我们把函数y=a(x-x1)(x-x2)叫做函数的交点式.在解决二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便。

十字相乘法

十字相乘法

十字相乘法利用十字交叉线来分解系数,将二次三项式分解因式的方法叫做十字相乘法,主要分为以下两类:1.二次项系数是1的二次三项式的十字相乘法对首项是1的二次三项式的十字相乘法主要就是要能够运用公式进行因式分解.对于二次三项式,若存在则,即把常数项分解成两个数的积,且其和刚好等于一次项系数.技巧1:在对c的正负入手:若,则、同号,若,则、异号,然后根据一次项系数的正负进一步确定、的符号;技巧2:若中的b、c为整数时,要先将c分解成两个整数的积,然后再考虑这两个整数和能否等于一次项系数(再分解时,要考虑分解的多种可能,直至凑对为止).2.二次项系数不为1的十字相乘在二次三项式a可以分解成两个因数的积,常数项c也可以分解成两个因数的积,即,将、、、按照以下进行排列:按照斜线交叉相乘,再相加,得到若它正好等于二次三项式一次项系数b,即,那么二次三项式就可以分解成两个因式与之积,即.PS:若二次项系数是负数,可以先提个负号,分解括号里面的二次三项式,最后结果不要忘记添上负号.例1:二次项系数为1的二次三项式分解因式:(1)(2)(3)(4)见解析(1);(2)(3);(4)例2:二次项系数不为1的二次三项式分解因式:(1)(2)见解析(1);(2).例3:待定系数法求字母的值若能分解成两个一次因式的积,则的值为()A. 1B.C.D. 2C,,分以下两种情况考虑:由①可得m=1,故选C.例4:解决几何类问题已知长方形的长、宽分别为x、y,周长为16,求此长方形的面积.15或15.75又解得,∴长方形的面积为15或15.75.例5:十字相乘法综合求证:若是7的倍数,其中x、y都是整数,则是49的倍数.见解析证明:∵是7的倍数,设(m为整数),则,∵x、m也是整数,∴49的倍数.巩固练习一.选择题1.把多项式x2+x﹣2分解因式,下列结果正确的是()A.(x+2)(x﹣1)B.(x﹣2)(x+1)C.(x﹣1)2D.(2x﹣1)(x+2)Ax2+x﹣2=(x﹣1)(x+2),故选:A.2.下列因式分解正确的是()A.4m2﹣4m+1=4m(m﹣1)B.a3b2﹣a2b+a2=a2(ab2﹣b)C.x2﹣7x﹣10=(x﹣2)(x﹣5)D.10x2y﹣5xy2=5xy(2x﹣y)DA、4m2﹣4m+1=(2m﹣1)2,故本选项错误;B、a3b2﹣a2b+a2=a2(ab2﹣b+1),故本选项错误;C、(x﹣2)(x﹣5)=x2﹣7x+10,故本选项错误;D、10x2y﹣5xy2=xy(10x﹣5y)=5xy(2x﹣y),故本选项正确;故选:D.3.下列多项式不能分解的是()A.(ab+cd)2+(bc﹣ad)2B.x2﹣y2﹣6x+9C.x2﹣2xy﹣3y2+4x+8y﹣5D.x2+2x+4DA.(ab+cd)2+(bc﹣ad)2=(a2+c2)(b2+d2),故本选项能分解;B.x2﹣y2﹣6x+9=(x﹣3+y)(x﹣3﹣y),故本选项能分解;C.x2﹣2xy﹣3y2+4x+8y﹣5=(x+y﹣1)(x﹣3y+5),故本选项能分解;D.x2+2x+4不能分解,故本选项符合题意;故选:D.4.把多项式(x﹣y)2﹣2(x﹣y)﹣8分解因式,正确的结果是()A.(x﹣y+4)(x﹣y+2)B.(x﹣y﹣4)(x﹣y﹣2)C.(x﹣y﹣4)(x﹣y+2)D.(x﹣y+4)(x﹣y﹣2)C(x﹣y)2﹣2(x﹣y)﹣8,=(x﹣y﹣4)(x﹣y+2).故选:C.二.填空题5.若对于一切实数x,等式x2﹣px+q=(x+1)(x﹣2)均成立,则p2﹣4q的值是.9由题意得:﹣p=1﹣2,q=1×(﹣2),∴p=1,q=﹣2,∴p2﹣4q=1﹣4×(﹣2)=1+8=9.6.分解因式:x2﹣3xy﹣4y2=.(x﹣4y)(x+y)x2﹣3xy﹣4y2=(x﹣4y)(x+y),7.若x2+mx﹣15=(x+3)(x+n),则m﹣n的值为.3∵(x+3)(x+n)=x2+nx+3x+3n=x2+(n+3)x+3n,∴,解得:m=﹣2,n=﹣5,则m﹣n=﹣2+5=3.8.若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n的值为.﹣1∵x2+mx+n分解因式的结果是(x+2)(x﹣1),∴x2+mx+n=x2+x﹣2,∴m=1,n=﹣2,∴m+n=1﹣2=﹣1.9.阅读下列文字与例题:将一个型如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).例如(1)x2+3x+2=(x+1)(x+2)(2)x2﹣3x﹣10=(x﹣5)(x+2).要使二次三项式x2+mx﹣6能在整数范围内分解因式,则m可取的整数为.﹣5,﹣1,1,5∵﹣6=﹣1×6=﹣2×3=1×(﹣6)=2×(﹣3),∴m=﹣1+6=5或m=﹣2+3=1或m=1+(﹣6)=﹣5或m=2+(﹣3)=﹣1.10.多项式kx2﹣9xy﹣10y2可分解因式得(mx+2y)(3x﹣5y),则k=,m=.9,3∵kx2﹣9xy﹣10y2=(mx+2y)(3x﹣5y),∴kx2﹣9xy﹣10y2=3mx2﹣5mxy+6xy﹣10y2,∴,解得:.三.解答题11.分解因式:x2+12x﹣189,分析:由于常数项数值较大,则将x2+12x﹣189变为完全平方公式,再运用平方差公式进行分解,这样简单易行.x2+12x﹣189=x2+2*6x+62﹣36﹣189=(x+6)2﹣225=(x+6)2﹣152=(x+6+15)(x+6﹣15)=(x+21)(x﹣9)请按照上面的方法分解因式:x2﹣60x+884.(x﹣26)(x﹣34)x2﹣60x+884=x2﹣2×30x+900﹣900+884=(x﹣30)2﹣16=(x﹣30+4)(x﹣30﹣4)=(x﹣26)(x﹣34).12.李伟课余时间非常喜欢研究数学,在一次课外阅读中遇到一个解一元二次不等式的问题:x2﹣2x﹣3>0.经过思考,他给出了下列解法:左边因式分解可得:(x+1)(x﹣3)>0,或,解得x>3或x<﹣1.聪明的你,请根据上述思想求一元二次不等式的解集:(x﹣1)(x﹣2)(x﹣3)>0.x>3或1<x<2由题意知x﹣1、x﹣2、x﹣3中负数的个数为偶数个,则①,解得:x>3;②,解得:1<x<2;∴x>3或1<x<2.13.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),乙同学因看错常数项而将其分解为2(x﹣2)(x﹣4),请你写出这个二次三项式,并将其进行正确的因式分解.2x2﹣12x+18=2(x﹣3)2甲:2(x﹣1)(x﹣9)=2x2﹣20x+18,乙:2(x﹣2)(x﹣4)=2x2﹣12x+16,∵甲同学看错了一次项系数,但没有看错常数项,乙同学看错了常数项,但没有看错一次项系数,∴原多项式为2x2﹣12x+18,将其分解因式为:2x2﹣12x+18=2(x﹣3)2.14.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27(2)x2﹣2xy﹣3y2.(1)原式=(x+3)(x﹣9);(2)原式=(x+y)(x﹣3y)(1)原式=x2﹣6x+9﹣36=(x﹣3)2﹣36=(x﹣3+6)(x﹣3﹣6)=(x+3)(x﹣9);(2)原式=x2﹣2xy+y2﹣4y2=(x﹣y)2﹣4y2=(x﹣y+2y)(x﹣y﹣2y)=(x+y)(x﹣3y).15.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.见解析x2+x﹣6=(x+3)(x﹣2);x2﹣x﹣6=(x﹣3)(x+2);x2+5x﹣6=(x+6)(x﹣1);x2﹣5x﹣6=(x﹣6)(x+1).16.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.按照这个思路,试把多项式x4+x2y2+y4分解因式.见解析x4+x2y2+y4=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy).。

十字相乘法公式技巧

十字相乘法公式技巧

十字相乘法公式技巧
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:
(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:
用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:
(1)、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

(2)、十字相乘法只适用于二次三项式类型的题目。

(3)、十字相乘法比较难学。

5、十字相乘法解题实例:
例1把m+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为1-21╳6所以m+4m-12=(m-2)(m+6)
例2:把5x+6x-8
分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。

当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为╳-4所以5x+6x-8=(x+2)(5x-4)
例3:解方程x-8x+15=0
分析:把x-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。

解:因为1-31╳-5所以原方程可变形(x-3)(x-5)=0所以x1=3x2=5。

因式分解-十字相乘法

因式分解-十字相乘法

因式分解-十字相乘法一、十字相乘法分解因式十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。

简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明:1、首项系数是1的二次三项式的因式分解,我们学习了多项式的乘法,即()()()x a x b x a b x ab ++=+++2将上式反过来,()()()x a b x ab x a x b 2+++=++得到了因式分解的一种方法——十字相乘法,用这种方法来分解因式的关键在于确定上式中的a 和b ,例如,为了分解因式x px q 2++,就需要找到满足下列条件的a 、b ;a b pab q +==⎧⎨⎩如把762-+x x 分解因式,首先要把二次项系数2x 分成x x ⨯,常数项-7分成)1(7-⨯,写成十字相乘,左边两个数的积为二次项,右边两个数的积为常数项。

交叉相乘的和为x x x 67)1(=⨯+-⨯,正好是一次项。

从而)1)(7(762-+=-+x x x x 。

2、二次项系数不为1的二次三项式的因式分解二次三项式ax bx c 2++中,当a ≠1时,如何用十字相乘法分解呢?分解思路可归纳为“分两头,凑中间”,例如,分解因式2762x x -+,首先要把二次项系数2分成1×2,常数项6分成()()-⨯-23,写成十字相乘,左边两个数的积为二次项系数。

右边两个数相乘为常数项,交叉相乘的和为()()13227⨯-+⨯-=-,正好是一次项系x =-+762x )1)(7(-+x x xx⇓⨯⇓71-xx x 67=+-数,从而得()()2762232x x x x -+=--。

十字相乘法技巧

十字相乘法技巧

十字相乘法技巧
十字相乘法是因式分解中十四种方法之一。

十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。

原理就是运用二项式乘法的逆运算来进行因式分解。

十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。

对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。


么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。

在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。

当首项系数为1时,可表达为
x2+(p+q)x+pq=(x+p)(x+q);当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

如需了解更多信息,建议查阅数学书籍或咨询专业人士。

快速学习十字相乘法

快速学习十字相乘法

做一做
十字相乘法解题实例: 十字相乘法解题实例:
-12可以分为分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2, 可以分为 12, 12×1.当 12分成 分成-12×1.当-12分成-2×6时,才符合本题 解:因为 1 -2 ╳ 1 6 所以m +4m 12=( +4m)(m+6 m+6) 所以m²+4m-12=(m-2)(m+6) 例2、 、
解法一、10x -27xy-28y²-x+25y解法一、10x²-27xy-28y -x+25y-3 =10x²- 27y+1) 28y²-25y+3) =10x -(27y+1)x -(28y -25y+3) =10x²- 27y+1) 4y- )(7y =10x -(27y+1)x -(4y-3)(7y -1) +( =[2x -(7y -1)][5x +(4y -3)] +1)( )(5x =(2x -7y +1)(5x +4y -3) 说明:在本题中先把28y 25y+3用十字相乘法分解为 4y28y²用十字相乘法分解为( 说明:在本题中先把28y -25y+3用十字相乘法分解为(4y-3) ),再用十字相乘法把10x²- 27y+1) 再用十字相乘法把10x 4y- )(7y (7y -1),再用十字相乘法把10x -(27y+1)x -(4y-3)(7y 分解为[2x +( 1)分解为[2x -(7y -1)][5x +(4y -3)]
回顾思考
• 十字相乘法虽然比较难学,但是─旦学会了它,用它来解题, 十字相乘法虽然比较难学,但是─旦学会了它,用它来解题,会给外们带来 非常多方便,以下是对十字相乘法提出的一些见解。 非常多方便,以下是对十字相乘法提出的一些见解。 十字相乘法的方法:十字左边相乘等于二次项系数, 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于 常数项,交叉相乘再相加等于一次项系数。 常数项,交叉相乘再相加等于一次项系数。 十字相乘法的用处:( :(1 用十字相乘法来分解因式。( 。(2 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字 相乘法来解一元二次方程。 相乘法来解一元二次方程。 十字相乘法的优点:用十字相乘法来解题的速度比较快, 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约 时间,还运用算量不大,不容易出错。 时间,还运用算量不大,不容易出错。 十字相乘法的缺陷:( )、有些题目用十字相乘法来解比较简单 :(1 有些题目用十字相乘法来解比较简单, 4、十字相乘法的缺陷:(1)、有些题目用十字相乘法来解比较简单, 但并不是每一道题用十字相乘法来解都简单。( )、十字相乘法只适 。(2 但并不是每一道题用十字相乘法来解都简单。(2)、十字相乘法只适 用于二次三项式类型的题目。( )、十字相乘法比较难学 。(3 十字相乘法比较难学。 用于二次三项式类型的题目。(3)、十字相乘法比较难学。

十字相乘法口诀是什么乘法公式技巧

十字相乘法口诀是什么乘法公式技巧

十字相乘法口诀是什么乘法公式技巧十字相乘法口诀十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数具体步骤:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数原理:运用了乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

十字相乘法能把二次三项式分解因式(不一定在整数范围内)。

对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式计算步骤:⑴把二次项系数a分解成两个因数a1,a2的积a1·a2⑵把常数项c分解成两个因数c1,c2的积c1·c2⑶使a1c2+a2c1正好等于一次项的系数b⑷结果:ax²+bx+c=(a1x+c1)(a2x+c2)实质:二项式乘法的逆过程。

当首项系数不是1时,需注意各项系数的符号。

基本式子:x²+(p+q)x+pq=(x+p)(x+q)。

十字相乘顺口溜竖分常数交叉验,横写因式不能乱。

步骤注释①竖分二次项与常数项②交叉相乘,积相加③检验确定,横写因式十字相乘法对于二次三项式的分解因式,借用一个十字叉帮助我们分解因式,这种方法叫做十字相乘法。

【十字相乘法的方法】十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

【十字相乘法的用处】(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

因式分解的一般步骤(1) 如果多项式的各项有公因式时,应先提取公因式;(2) 如果多项式的各项没有公因式,则考虑是否能用公式法来分解;(3) 对于二次三项式的因式分解,可考虑用十字相乘法分解;(4) 对于多于三项的多项式,一般应考虑使用分组分解法进行。

在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。

以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。

解二元一次方程“十字交叉法”

解二元一次方程“十字交叉法”

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

2、十字相乘法只适用于二次三项式类型的题目。

3、十字相乘法比较难学。

5、十字相乘法解题实例:例1把m²+4m -12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6所以m²+4m -12=(m-2)(m+6)例2把5x²+6x -8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。

当二次项系数分为1×5,常数项分为-4×2时,才符合本题解: 因为 1 25 ╳ -4所以5x²+6x -8=(x+2)(5x-4)例3解方程x²-8x+15=0分析:把x²-8x+15看成关于x 的一个二次三项式,则15可分成1×15,3×5。

解: 因为 1 -31 ╳ -5所以原方程可变形(x-3)(x-5)=0所以1x =3 2x =5例4、解方程 6x²-5x-25=0分析:把6x²-5x-25看成一个关于x 的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

2、十字相乘法只适用于二次三项式类型的题目。

3、十字相乘法比较难学。

5、十字相乘法解题实例:
1)、用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为1 -2
1 ╳6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。

当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解:因为1 2
5 ╳-4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。

解:因为1 -3
1 ╳-5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。

解:因为2 -5
3 ╳5
所以原方程可变形成(2x-5)(3x+5)=0
所以x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为2 -9y
7 ╳-2y
所以14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3)4y -3
7y ╳-1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳4y
=(2x -7y+1)(5x -4y -3)2 x -7y 1
5 x - 4y ╳-3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳+b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳-(a-b)
所以x1=2a+b x2=a-b
两种相关联的变量之间的二次函数的关系,可以用三种不同形式的解析式表示:一般式、顶点式、交点式
交点式.
利用配方法,把二次函数的一般式变形为
Y=a[(x+b/2a)^2-(b^2-4ac)/4a^2]
应用平方差公式对右端进行因式分解,得
Y=a[x+b/2a+√b^2-4ac/2a][x+b/2a-√b^2-4ac/2a]
=a[x-(-b-√b^2-4ac)/2a][x-(-b+√b^2-4ac)/2a]
因一元二次方程ax^2+bx+c=0的两根分别为x1,2=(-b±√b^2-4ac)/2a
所以上式可写成y=a(x-x1)(x-x2),其中x1,x2是方程ax^2+bx+c=0的两个根
因x1,x2恰为此函数图象与x轴两交点(x1,0),(x2,0)的横坐标,故我们把函数y=a(x-x1)(x-x2)叫做函数的交点式.
在解决与二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便.
二次函数的交点式还可利用下列变形方法求得:
设方程ax^2+bx+c=0的两根分别为x1,x2
根据根与系数的关系x1+x2=-b/a,x1x2=c/a,
有b/a=-(x1+x2),a/c=x1x2
∴y=ax^2+bx+c=a[x^2+b/a*x+c/a]
=a[x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2)。

相关文档
最新文档