【高教版】4.4《对数函数》 优秀教案

合集下载

4.4对数函数-人教A版高中数学必修第一册(2019版)教案

4.4对数函数-人教A版高中数学必修第一册(2019版)教案

4.4 对数函数-人教A版高中数学必修第一册(2019版)教案教学目标1.了解对数函数的定义与性质;2.掌握对数函数与指数函数的互逆关系;3.掌握对数函数的常用计算方法;4.能够运用对数函数解决实际问题。

教学重点1.对数函数与指数函数的互逆关系;2.对数函数的计算方法;3.运用对数函数解决实际问题。

教学难点1.运用对数函数解决实际问题。

教学过程导入环节1.老师介绍对数函数的概念,引入大家对对数函数的初步认识;2.引导学生思考指数函数与对数函数的关系。

讲解环节1.带领学生探究对数函数的定义与性质;2.利用白板和课件展示对数函数与指数函数的互逆关系;3.讲解对数函数的计算方法。

拓展训练1.练习题。

课堂上对对数函数的计算方法进行拓展训练;2.实际问题运用。

引导学生解决一些实际问题,如:瓶子里有几颗芝麻?数颗芝麻太麻烦,现在我把这些芝麻放在一个桶里,顺手拧了几下,芝麻就乱了,这时候你就不得不手动数了,如果用各种技巧将芝麻分成若干堆,让每堆的芝麻颗数尽量相等,这时就需要运用对数函数了。

教学方式1.讲授和讲解相结合;2.以教师讲解引导为主,学生自主思考为辅助;3.在讲解中引导学生进行课堂练习和实际问题讨论。

教学措施1.制定教案,并准备好教学资料及课件;2.定时提问,引导学生思考;3.给予课堂练习和讨论的机会。

教学效果评估1.课堂发言的积极性及准确性;2.课堂练习的完成情况;3.讨论的理解度和深度;4.在实际问题中应用对数函数解决问题的能力。

教学反思本节课的设计在引导学生对对数函数的认识上有一定效果,但是在实际问题应用中学生的思考深度不够,需要引导学生多思考。

在下一节课中需对实际问题运用进行更多的训练和引导。

《对数函数》教学设计完美版

《对数函数》教学设计完美版

《对数函数》教学设计完美版【教学目标】1. 了解对数函数的定义、性质及其在数学和实际中的作用;2. 能够准确地表示对数函数及其反函数的图像;4. 培养学生逻辑思维能力、分析问题的能力和解决问题的能力。

1. 对数函数的定义及基本性质。

3. 对数函数的反函数的图像、定义域、值域以及单调性。

4. 指数函数与对数函数的关系。

5. 利用对数函数解决实际问题。

2. 对数函数图像的绘制。

1. 前置知识启发法借助生活实例及数学实例,引出对数函数的产生背景和基本意义,使学生从熟悉的生活现象及数学运算中获得对对数函数的初步理解。

2. 形象化教学法通过图像或示例说明对数函数的性质,图像生动形象,有利于学生直观的理解对数函数的性质。

3. 探究式教学法在教学中,通过引导学生对例题进行讨论,探究对数函数的问题,发现问题,解决问题,从而培养学生的分析问题、解决问题的能力。

4. 实践教学法通过解决实际问题,让学生主动参与到教学中,根据所学到的知识解决生活中遇到的实际问题,不仅能够增加学生的学习兴趣和动力,同时还能够让学生了解到对数函数对实际问题的解决具有重要作用。

引导学生了解对数函数的定义,并让学生理解对数函数的基本性质,包括定义域、值域、单调性等。

通过讨论,让学生掌握对数函数图像的特点,并通过绘制对数函数的图像,让学生加深对数函数图像的记忆和了解。

通过引导学生思考,让学生初步理解反函数的概念及性质,并用图像和示例进行说明,让学生了解反函数的图像及性质。

通过对指数函数和对数函数的定义、性质及其在数学和实际中的作用的讨论,让学生理解指数函数与对数函数之间的关系。

6. 总结回顾1. 每节课结束后进行问题的测试,检查学生是否掌握了主要内容。

2. 每节课结束后,通过讨论和笔记的方式,让学生对所学内容进行总结和回顾。

3. 通过布置作业,检查学生是否能够巩固和应用所学知识。

4. 通过考试进行评估,检查学生是否对对数函数的定义、性质、图像及其应用有所了解。

对数函数(优质课)教案

对数函数(优质课)教案

对数函数(优质课)教案教学目标:1、体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点.2、掌握对数函数的性质,并能应用对数函数解决实际中的问题. 知道指数函数 y =a x 与对数函数y =log a x 互为反函数. (a >0,a ≠1)教学过程:一、对数函数的定义:函数x y a log =)10(≠>a a 且叫做对数函数。

二、对数函数的图像和性质:a >1 01a <<图 像性 质定义域:()0,+∞值域:R过点()1,0,即当1x =时,0y =)1,0(∈x 时,0<y ;),1(+∞∈x 时, 0>y)1,0(∈x 时,0>y ;),1(+∞∈x 时,0<y在()0,+∞上是增函数在()0,+∞上是减函数三、比较对数值的大小,常见题型有以下几类:1、比较同底数对数值的大小:利用函数的单调性;当底数是同一参数时,要对对参数进行分类讨论;2、比较同真数对数值的大小:可利用函数图像进行比较;3、比较底数和真数都不相同的对数值的大小:可选取中间量如:“1”、“0”等进行比较。

四、对数不等式的解法:()()()()()()()()()()1 log log 0 01log log 0a a a a f x g x a f x g x f x f x g x a f x g x f x >⎧>>⎨>⎩<⎧<<>⎨>⎩当时,与同解。

当时,与同解。

五、对数方程常见的可解类型有:形如()()()()()log log 01,0,0a a f x g x a a f x g x =>≠>>且的方程,化成()()f x g x =求解;形如()log 0a F x =的方程,用换元法解;形如()()log f x g x c =的方程,化成指数式()()cf xg x =⎡⎤⎣⎦求解 指数、底数都不同:可利用中间量进行比较。

对数函数优秀教案

对数函数优秀教案

对数函数优秀教案《对数函数》优秀教案一、教材分析对数函数是在学习指数函数、对数的基础上引入的,由此我制定了这样的教学目标。

1通过指数与对数的联系,掌握对数函数的概念、图象、性质并能简单应用。

2、在教学过程中,通过数形结合、分类讨论等数学思想方法,发展学生的逻辑思维能力,提高他们的信息检查和整合能力。

教学重点:对数函数的概念、图象和性质.教学难点:由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。

二、指导思想和教学方法利用多媒体辅助教学,通过讨论启发学生归纳对数函数的概念图像及性质,同时在教学中渗透“类比联想”、“数形结合”及“分类讨论”的数学思想方法。

三、教学过程1、提出问题我们来看下上节课的2.1.2的例8:截止到1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%那么经过20年后,我国人口数最多为多少?1999年底,我国人口约13亿;经过1 年(即2000年),人口数为13+13*1%=13*(1+1%)(亿)经过2 年(即2001 年),人口数为13* (1+1% +13* (1+1% *1%=13* (1+1% 2(亿)2 2 a经过3 年(即2002 年),人口数为13* (1+1% +13* (1+1% *1%=13*(1+1%)(亿)00 000000 000000 00000所以经过x年,人口数为y=13*(1 1%)x=13*1.01x(亿)当x=20 时,y 13*1.012016 (亿)所以经过20年后我国人口数最多为16亿。

咱们上节课的例题,我们能从关系式y 13*1.01x中,算出任意一个年头x的人口总数,那反之,如果问,哪一年的人口数可达到18亿,20亿,30亿,该如何解决?上述问题实际上就是从18 1.01x,20 1.01x,^° 1.01x,...中分别求出x,即已知底13 13 13数和幕的值,求指数这是我们这节课将要学习的对数函数问题,通过我们学习的对数表示方法,咱们可以把上面的式子表示成:log 1.01 y x,其中y=人口数/13,y是自变量,x是y的函数,但习惯上,用x表示自变量,y表示它的函数,对数函数优秀教案因此对上式进行改写:y log1.01 x。

对数函数 优秀教案

对数函数 优秀教案

对数函数优秀教案对数函数优秀教案目标本教案的目标是通过教授对数函数的基本概念和性质,帮助学生掌握对数函数的基本概念和解题方法。

教学内容1. 对数函数的定义对数函数是指满足一定条件的函数,其定义如下:$$y = \log_b{x}$$其中,$y$ 表示对数函数的值,$b$ 表示底数,$x$ 表示真数。

2. 对数函数的性质对数函数具有以下性质:- 对数函数与指数函数是互逆的关系;- 对数函数的图像与指数函数的图像关于直线 $y = x$ 对称;- 对数函数的定义域为正实数集,值域为实数集;- 对数函数在 $x$ 轴右侧单调递增,在 $x$ 轴左侧单调递减;- ...3. 对数函数的应用对数函数在实际问题中有广泛的应用,例如:- 指数增长和衰减问题;- 求解复利问题;- 求解相关系数问题;- ...教学步骤1. 引入对数函数的定义,通过实例和图像展示对数函数的基本特点;2. 讲解对数函数的性质,通过练题加深理解;3. 引入对数函数的应用,并通过实际问题进行演示和练;4. 总结对数函数的重要性和应用领域,鼓励学生多加练和思考。

教学评估为了评估学生对对数函数的掌握程度,可以采用以下评估方式:1. 练题:布置一些关于对数函数的练题,以检验学生对于对数函数的掌握和运用能力;2. 实际问题解答:给学生提供一些实际问题,并要求他们利用对数函数进行求解;3. 小组讨论:组织学生进行小组讨论,让他们就对数函数的应用提出自己的见解和观点。

通过以上评估方式,可以全面了解学生对对数函数的掌握程度,并及时进行教学调整和辅导。

参考资料- XXX教材第X章以上是本教案对数函数的基本内容和教学步骤,希望能对您有所帮助。

如果有任何问题,请随时与我联系。

《对数函数》教学设计(精品)

《对数函数》教学设计(精品)

《对数函数》教学设计(精品)对数函数教学设计(精品)1. 引言对数函数是高中数学教学中重要的内容之一。

它不仅在数学领域有广泛的应用,而且在其他学科中也扮演着重要的角色。

本教学设计旨在帮助学生全面理解和掌握对数函数的基本概念、性质和应用。

2. 研究目标- 了解对数函数的定义和基本性质- 掌握对数函数的图像、变换和反函数- 熟练运用对数函数解决实际问题3. 教学内容3.1 对数函数的定义和基本性质- 介绍对数函数的定义和符号表示方法- 阐述对数函数的基本性质,如对数函数的定义域、值域和增减性质等3.2 对数函数的图像和变换- 绘制对数函数的基本图像,解释图像的特点和变化规律- 引导学生分析对数函数的平移、伸缩、翻转等变换方式3.3 对数函数的反函数- 介绍对数函数与指数函数的关系- 推导对数函数的反函数,并解释反函数的性质和图像3.4 对数函数的应用- 阐述对数函数在实际问题中的应用,如指数增长、财务管理和科学计算等- 引导学生运用对数函数解决实际问题,并进行相关练和讨论4. 教学策略- 采用启发式教学方法,引导学生积极思考和发现对数函数的性质和规律- 结合具体实例和案例分析,加深学生对对数函数的理解和应用能力- 利用多媒体技术辅助教学,展示对数函数的图像和实际应用场景- 组织小组活动和讨论,促进学生合作研究和问题解决能力5. 教学评估- 设计对数函数的练和测验,测试学生对于对数函数概念和性质的理解程度- 观察学生在实际问题中运用对数函数解决能力的表现- 利用小组合作评价学生在讨论和合作研究中的参与和贡献程度6. 教学资源- 教科书:XXX- 多媒体教学软件:XXX- 实际应用案例:XXX7. 教学总结通过本次教学,学生将全面了解对数函数的定义、性质和应用,提升对数函数的理解和解决实际问题的能力。

同时,学生将培养合作研究和问题解决的能力,为后续数学研究打下良好基础。

以上为《对数函数》教学设计(精品)的纲要,具体教学细节可以根据实际情况进行调整和补充。

高中优秀教案高一数学教案:《对数函数》教学设计

高中优秀教案高一数学教案:《对数函数》教学设计

高一数学教案:《对数函数》教学设计高一数学教案:《对数函数》教学设计教学目标1.把握对数函数的概念,图象和性质,且在把握性质的基础上能进行初步的应用.(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.(2) 能把握指数函数与对数函数的实质去讨论熟悉对数函数的性质,初步学会用对数函数的性质解决简洁的问题.2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类商量等思想,注意培育同学的观查,分析,归纳等规律思维力量.3.通过指数函数与对数函数在图象与性质上的对比,对同学进行对称美,简洁美等审美训练,调动同学学习数学的主动性.教学建议教材分析(1) 对数函数又是函数中一类重要的基本初等函数,它是在同学已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述学问的应用,也是对函数这一重要数学思想的进一步熟悉与理解.对数函数的概念,图象与性质的学习使同学的学问体系更加完整,系统,同时又是对数和函数学问的拓展与延长.它是解决有关自然科学领域中实际问题的重要工具,是同学今后学习对数方程,对数不等式的基础.(2) 本节的教学重点是理解对数函数的定义,把握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,同学不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.(3) 本节课的主线是对数函数是指数函数的反函数,全部的问题都应围围着这条主线绽开.而通过互为反函数的两个函数的关系由已知函数讨论未知函数的性质,这种方法是第一次使用,同学不适应,把握不住关键,所以应是本节课的难点.教法建议(1) 对数函数在引入时,就应从同学熟识的指数问题动身,通过对指数函数的熟悉逐步转化为对对数函数的熟悉,而且画对数函数图象时,既要考虑到对底数的分类商量而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观查图象的特征,找出共性,归纳性质.(2) 在本节课中结合对数函数教学的特点,肯定要让同学动手做,动脑想,大胆猜,要以同学的讨论为主,老师只是不断地反函数这条主线引导同学思索的方向.这样既增加了同学的参加意识又教给他们思索问题的方法,获取学问的途径,使同学学有所思,思有所得,练有所获,,从而提高学习爱好.教学设计示例对数函数教学目标1. 在指数函数及反函数概念的基础上,使同学把握对数函数的概念,能正确描绘对数函数的图像,把握对数函数的性质,并初步应用性质解决简洁问题.2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类商量的思想.3. 通过对数函数有关性质的讨论,培育同学观查,分析,归纳的思维力量,调动同学学习的主动性.教学重点,难点重点是理解对数函数的定义,把握图像和性质.难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.教学方法启发研讨式教学用具投影仪教学过程让同学先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最终让同学以其中一组为例写出具体的比较过程.三.巩固练习练习:若,求的取值范围.四.小结五.作业略板书设计2.8对数函数一. 概念1.定义2.熟悉二.图像与性质1.作图方法2.草图图1 图23.性质(1) 定义域(2)值域(3)截距(4)奇偶性(5)单调性三.应用1.相关函数的讨论例1 例2练习探究活动。

高中数学必修一 《4 4 对数函数》公开课优秀教案教学设计

高中数学必修一 《4 4 对数函数》公开课优秀教案教学设计

【新教材】4.4.2 对数函数的图像和性质(人教A 版)本节课在已学对数函数的概念,接着研究对数函数的图像和性质,从而深化学生对对数函数的理解,并且了解较为全面的研究函数的方法,为以后在研究函数增长类型打下基础。

另外,我们日常生活中的很多方面都涉及到了对数函数的知识,例如溶液酸碱度的测量,所以学习这一节具有很大的现实价值。

课程目标1、掌握对数函数的图象和性质,培养学生实际应用函数的能力;2、通过观察图象,分析、归纳、总结对数函数的性质;3、在对数函数的学习过程中,体验数学的科学价值并养成勇于探索的良好习惯.数学学科素养1.数学抽象:对数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用对数函数的性质比较两个函数值的大小及解对数不等式;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.重点:对数函数的图象和性质;难点:对底数的分类,如何由图象、解析式归纳对数函数的性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、 情景导入请学生用三点画图法画212log ,log y x y x ==图像,观察两个函数图像猜测对数函数有哪些性质?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本132-133页,思考并完成以下问题1. 对数函数的图象是什么,通过图象可观察到对数函数具有哪些性质?2. 反函数的概念是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.对数函数的图象及性质a的范围0<a<1a>1图象a的范围0<a<1a>1性质定义域(0,+∞)值域R定点(1,0),即x=1时,y=0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数[点睛]底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.2.反函数指数函数y=a x和对数函数y=log a x(a>0且a≠1)互为反函数.四、典例分析、举一反三题型一对数函数的图象例1函数y=log2x,y=log5x,y=lg x的图象如图所示.(1)说明哪个函数对应于哪个图象,并说明理由;(2)在如图的平面直角坐标系中分别画出y=lo g12x,y=lo g15x,y=lo g110x的图象;(3)从(2)的图中你发现了什么?【答案】见解析【解析】(1)①对应函数y=lg x,②对应函数y=log5x,③对应函数y=log2x.这是因为当底数全大于1时,在x=1的右侧,底数越大的函数图象越靠近x轴.(2)在题图中的平面直角坐标系中分别画出y=lo g12x,y=lo g15x,y=lo g110x的图象如图所示.(3)从(2)的图中可以发现:y=lg x与y=lo g110x,y=log5x与y=lo g15x,y=log2x与y=lo g12x的图象分别关于x轴对称.解题技巧:(对数函数图象的变化规律)1.对于几个底数都大于1的对数函数,底数越大,函数图象向右的方向越接近x轴;对于几个底数都大于0且小于1的对数函数,底数越大,函数图象向右的方向越远离x轴.以上规律可总结成x>1时“底大图低”.实际上,作出直线y=1,它与各图象交点的横坐标即为各函数的底数的大小,如图所示.2.牢记特殊点:对数函数y=log a x(a>0,且a≠1)的图象经过(1,0),(a,1),(1a,-1).跟踪训练一1、作出函数y=|lg(x-1)|的图象,并根据图象写出函数的定义域、值域以及单调区间.【答案】其定义域为(1,+∞),值域为[0,+∞),单调递减区间为(1,2],单调递增区间为(2,+∞).【解析】先画出函数y=lg x的图象(如图①).再将该函数图象向右平移1个单位长度得到函数y=lg(x-1)的图象(如图②).图①图②图③最后把y=lg(x-1)的图象在x轴下方的部分对称翻折到x轴上方(原来在x轴上方的部分不变),即得出函数y=|lg(x-1)|的图象(如图③).由图易知其定义域为(1,+∞),值域为[0,+∞),单调递减区间为(1,2],单调递增区间为(2,+∞).题型二 比较对数值的大小例2 比较下列各组数中两个值的大小:(1)log 23.4,log 28.5;(2)log 0.31.8,log 0.32.7;(3)log a 5.1,log a 5.9(a >0,且a ≠1).【答案】(1) log 23.4<log 28.5 (2) log 0.31.8>log 0.32.7 (3)当a >1时,log a 5.1<log a 5.9;当0<a <1时,log a 5.1>log a 5.9.【解析】(1)考察对数函数y =log 2x ,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log 23.4<log 28.5.(2)考察对数函数y =log 0.3x ,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是log 0.31.8>log 0.32.7.(3)当a >1时,y =log a x 在(0,+∞)上是增函数,于是log a 5.1<log a 5.9;当0<a <1时,y =log a x 在(0,+∞)上是减函数,于是log a 5.1>log a 5.9.解题技巧:(比较对数值大小时常用的4种方法)(1)同底的利用对数函数的单调性.(2) 同真的利用对数函数的图象或用换底公式转化.(3) 底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论. 跟踪训练二1.比较下列各题中两个值的大小:(1)lg 6,lg 8;(2)log 0.56,log 0.54; (3)log 132与log 152;(4)log 23与log 54.【答案】(1)lg 6<lg 8(2)log 0.56<log 0.54(3)log 132<log 152(4)log 23>log 54.【解析】(1)因为函数y =lg x 在(0,+∞)上是增函数,且6<8,所以lg 6<lg 8.(2)因为函数y =log 0.5x 在(0,+∞)上是减函数,且6>4,所以log 0.56<log 0.54.(3)由于log 132=1log 213,log 152=1log 215. 又∵对数函数y =log 2x 在(0,+∞)上是增函数,且13>15, ∴0>log 2 13>log 2 15,∴1log 213<1log 215. ∴log 132<log 152.(4)取中间值1,∵log 23>log 22=1=log 55>log 54,∴log 23>log 54.题型三 比较对数值的大小例3 (1)已知log a 12>1,求a 的取值范围; (2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围.【答案】(1)⎝⎛⎭⎫12,1; (2) (1,+∞).【解析】(1)由log a 12>1得log a 12>log a a . ①当a >1时,有a <12,此时无解. ②当0<a <1时,有12<a ,从而12<a <1. ∴a 的取值范围是⎝⎛⎭⎫12,1.(2)∵函数y =log 0.7x 在(0,+∞)上为减函数,∴由log 0.72x <log 0.7(x -1)得⎩⎪⎨⎪⎧ 2x >0,x -1>0,2x >x -1,解得x >1.∴x 的取值范围是(1,+∞).解题技巧:(常见对数不等式的2种解法)(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解. 跟踪训练三1.已知log a (3a -1)恒为正,求a 的取值范围.【答案】⎝⎛⎭⎫13,23∪(1,+∞)【解析】由题意知log a (3a -1)>0=log a 1.当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a >23,∴a >1; 当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧ 3a -1<1,3a -1>0,解得13<a <23.∴13<a <23. 综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).题型四 有关对数型函数的值域与最值问题例4 求下列函数的值域.(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).【答案】(1) [2,+∞); (2)[-2,+∞).【解析】(1)y =log 2(x 2+4)的定义域是R.因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2,所以y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2=-(x -1)2+4≤4.因为u >0,所以0<u ≤4.又y =log 12u 在(0,+∞)上为减函数,所以log 12u ≥log 124=-2,所以y =log 12(3+2x -x 2)的值域为[-2,+∞).解题技巧:(对数型函数的值域与最值)(1)求对数型函数的值域,一般需根据对数函数的单调性及真数的取值范围求解.(2)求函数的值域时,一定要注意定义域对它的影响,结合函数的单调性求解,当函数中含有参数时,有时需讨论参数的取值.跟踪训练四1.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的最大值及此时x 的值.【答案】当x =3时,y 取得最大值,为13.【解析】y =[f (x )]2+f (x 2)=(2+log 3x )2+log 3x 2+2=(log 3x )2+6log 3x +6=(log 3x +3)2-3.∵f (x )的定义域为[1,9],∴y =[f (x )]2+f (x 2)中,x 必须满足⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9, ∴1≤x ≤3,∴0≤log 3x ≤1,∴6≤y ≤13.∴当x =3时,y 取得最大值,为13.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本140页习题4.4本节通过运用对数函数的图像及应用解决相关问题,侧重用实操,培养学生的逻辑思维能力,提高学生的数学素养.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】4.4 对数函数
【教学目标】
知识目标:
⑴了解对数函数的图像及性质特征;
⑵了解对数函数的实际应用.
能力目标:
⑴观察对数函数的图像,总结对数函数的性质,培养观察能力;
⑵通过应用实例的介绍,培养学生数学思维能力和分析与解决问题能力.【教学重点】
对数函数的图像及性质.
【教学难点】
对数函数的应用中实际问题的题意分析.
【教学设计】
⑴实例引入知识,提升学生的求知欲;
⑵“描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;
⑶知识的巩固与练习,培养学生的思维能力;
⑷实际问题的解决,培养学生分析与解决问题能力;
⑸小组的形式进行讨论、探究、交流,培养团队精神.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】。

相关文档
最新文档