最新LTE链路预算计算方法

合集下载

TD-LTE无线网络链路预算分析

TD-LTE无线网络链路预算分析

D : 03 6 0i n17 —4 02 1 .1 1 oI 1 .9 9 .s.6 34 4 .0 20 . 0 s 0
良好 的 网络 覆盖 是 所 有无 线 网络赖 以生存 的根 本 ,直 接 影 响最 终 的 用户 感 知 。而链 路 预 算 是评 估 无 线 通信 系 统覆 盖 能 力 的主 要 方法 ,是无 线 网络 规 划 中的一 项 重要 工作 。 因此 ,在 进 行 无 线 网络规 划 时 需 要进 行 链 路预 算 以得 到 合 理 的无 线 覆盖 预 测结
的 因 素 包 括 : 实 现 时频 资源 灵 活 配 置 的 OFDM 可
1 无线 网络链路预算
无线通信系统 中的链路预算总体上来说就是在
保 证 一 定质 量 的 前提 下 ,利 用 发射 端 、 传播 空 间和 接 收 端 的相 关 参 数 ,通过 对 通 信链 路 中的各 种 损耗

舀 蔷
此在 已知 接 收 机灵 敏 度 的情 况 下 ,可 以通过 链 路预
交性来完成 的。因此 OF DM 系统增大 了频谱 利用
T - T 无线 网络链 路预 算分析 D LE
周 慧 茹
( 北京 全路通 信 信号研 究设 计 院有 限 公 司,北京 1 0 7 ) 0 3 0 摘 要 :阐述传 统 的2 、5 G G网络 的链 路 预 算 方 法 ,并 详 细 分析 了由于T — T D L E自身 的特 点 ,其链 路
( MO)技术 。 MI
算中快速地确定所需要的大致基站数量。 无线网络链路预算可按 以下流程获得小区覆盖
半径 。
普通的 F DM 频 分 多 址 技 术 ( 2 如 G和 3 G系 统 ) 了分离开各子信道的信号 ,需要在相邻信道 为 间设置一定的频带保护 间隔 ,以便接收端能用带通 滤波器分离出相应子信道的信号 ,这 势必带来频谱

TD-LTE室内覆盖链路预算教程文件

TD-LTE室内覆盖链路预算教程文件

TD-LTE 室内覆盖链路预算目录1 概述 (1)1.1 链路预算概述 (1)1.2 TD-LTE 网络概述 (1)1.3 TD-LTE 室内分布系统概述 (1)2 TD-LTE 室内覆盖组网方案介绍 (2)2.1 分布式系统 (3)2.1.1 2G 传统方式 (3)2.1.2 3G 和TD-LTE 主流方式 (3)2.2 泄漏电缆系统 (4)2.3 特殊场景的PICOENODEB 、PICORRU 和FEMTO ENODEB (4)2.4 TD-LTE 室分系统的特点 (5)3 TD-LTE 室内无线传播模型 (6)3.1 空间的电磁波传播 (6)3.2 KEENAN-MOTLEY 室内传播模型 (7)3.3 ITU M.2135 模型 (7)3.4 ITU-R P.1238 模型 (8)3.5 各模型计算结果对比 (8)4 覆盖分析 (8)4.1 TD-LTE 与TD 室内链路预算对比 (8)4.1.1 上行链路预算 (9)4.1.2 下行链路预算 (12)4.2 TD-LTE 覆盖指标 (16)4.3 链路预算 (17)4.4 TD-LTE 覆盖半径 (17)4.5 天线口功率测算 (18)4.6 天线口输出功率规划 (18)4.7 信源功率匹配测算 (19)4.7.1 一级合路功率匹配预算 (19)4.7.2 二级合路功率匹配预算 (19)概述1.1 链路预算概述无线链路预算是移动通信网络无线规划中的重要内容。

室外链路预算目标就是在满足业务质量需求的前提下计算出信号在传播中的允许最大路径损耗,系统链路预算然后根据合适的传播模式计算出到基站的覆盖范围。

室内分布系统链路预算分为有线传输部分和无线传输部分,根据信号边缘场强的要求,在一定的覆盖半径下,选择合适的室内传播模型计算出分布系统中天线口功率的大小,通过合理功率分配,最终达到室内覆盖要求。

1.2 TD-LTE 网络概述市场需求永远是技术革新的源动力。

网优文档164:LTE 无线链路覆盖估算方法

网优文档164:LTE 无线链路覆盖估算方法

当业务速率和 RB 数确定后,所需的最低 MCS 等级即可确定下来。 首先要根据业务速率及 TD-子帧配置获得 TBSize 应满足的最小值,然后根据 3GPP 协议 36.213 中的 7.1.7.2.1 表格获取 TBS index,再根据表格 7.1.7.1-1 和 8.6.1-1(分别对应下 行和上行)来获得 MCS index。 2.3.10 调制方式(Modulation)
根据系统仿真分析,功率参数推荐配置为: 1. 系统带宽 10M 配置为 43dBm; 2. 系统带宽 20MHz 配置为 46dBm; 在 10MHz 带宽下,ISD=500m,通过仿真研究功率需求,结果如下: 1. 基本参数 ISD=500m, 不同的小区发射功率,天线交叉极化,SCME 信道,FR=1,SFBC 2. 仿真结果 通过 SE 或 ESE 与 Tx Power 的关系,得到如下结果: 图 2-2 SE 与 Tx Power 的关系
TDD,2*2,SFBC,SE 1.36 1.34 1.32 1.3 1.28 1.26 1.24 1.22 1.2 36 40 43 TxPower 46 49
SE
图 2-3
ESE 与 Tx Power 的关系
TDD,2*2,SFBC,ESE 0.035 0.034 0.033 0.032 0.031 0.03 36 40 43 TxPower 46 49 ESE
馈缆损耗是指 RRU 与天线接口之间的跳线损耗,它会降低接收机接收电平,从而对覆盖能 力产生影响,一般取 0.5dB。 2.3.17 等效发射 EIRP(TX EIRP)
1. 下行资源占用下的等效发射 EIRP 根据基站 EIRP,边缘用户分配的 RB 与信道带宽对应的总 RB 数之比,得到一定资源下, UE 分配到的功率。 TX EIRP per occupied allocation = eNB Tx power + Antenna gain + Cable Loss – 10 * log (DL RB Total Num/ Assign Num of RB) 。

TD-LTE室内覆盖链路预算

TD-LTE室内覆盖链路预算

TD-LTE 室内覆盖链路预算目录1 概述 (1)1.1 链路预算概述 (1)1.2 TD-LTE网络概述 (1)1.3 TD-LTE室内分布系统概述 (1)2 TD-LTE室内覆盖组网方案介绍 (2)2.1 分布式系统 (3)2.1.1 2G传统方式 (3)2.1.2 3G和TD-LTE主流方式 (3)2.2 泄漏电缆系统 (4)2.3 特殊场景的PICOENODEB、PICORRU和FEMTO ENODEB (4)2.4 TD-LTE室分系统的特点 (5)3 TD-LTE室内无线传播模型 (6)3.1 空间的电磁波传播 (6)3.2 KEENAN-MOTLEY室内传播模型 (7)3.3 ITU M.2135模型 (7)3.4 ITU-R P.1238模型 (8)3.5 各模型计算结果对比 (8)4 覆盖分析 (8)4.1 TD-LTE与TD室内链路预算对比 (8)4.1.1 上行链路预算 (9)4.1.2 下行链路预算 (12)4.2 TD-LTE覆盖指标 (16)4.3 链路预算 (17)4.4 TD-LTE覆盖半径 (17)4.5 天线口功率测算 (18)4.6 天线口输出功率规划 (18)4.7 信源功率匹配测算 (19)4.7.1 一级合路功率匹配预算 (19)4.7.2 二级合路功率匹配预算 (19)1 概述1.1 链路预算概述无线链路预算是移动通信网络无线规划中的重要内容。

室外链路预算目标就是在满足业务质量需求的前提下计算出信号在传播中的允许最大路径损耗,系统链路预算然后根据合适的传播模式计算出到基站的覆盖范围。

室内分布系统链路预算分为有线传输部分和无线传输部分,根据信号边缘场强的要求,在一定的覆盖半径下,选择合适的室内传播模型计算出分布系统中天线口功率的大小,通过合理功率分配,最终达到室内覆盖要求。

1.2 TD-LTE网络概述市场需求永远是技术革新的源动力。

移动互联网的快速发展,推进了TD-LTE标准的制定和成熟。

最新(完美版)LO_BT09_C1_1 FDD-LTE链路预算-70

最新(完美版)LO_BT09_C1_1 FDD-LTE链路预算-70
的 边缘速率
要求的 边缘速率 小区半径
分配的RB数 TBS& MCS MIMO 配置 SINR 接收机灵敏度 干扰余量 MAPL 小区半径 其他参数
FDD-LTE上行链路分配的RB数
64kbps RB 2
128kbps 4
256kbps 7
384kbps 8
512kbps 10
噪声
FDD-LTE上行链路预算
eNode B 天线增益
FDD-LTE上行链路预算
• 一般建议选择2路接收天线。
天线增益大致为18dBi 水平半功率角约为65° 垂直半功率角约为7° 电下倾可以手动调整或通过RCU
基于工程经验
(Remote Control Unit)远端调整
对于极化分集,密集市区、一般市区、和郊区选择交叉极化,乡村可以选择垂直极化。
FDD-LTE上行链路分配RB数
64kbps
128kbps
256kbps
384kbps
512kbps
1024kbps
RB
MCS SNR target(1*2)dB SNR target(1*4)dB
2
2 -0.3 -4.6
4
1 -2.28 -6.1
7
2 -2.38 -6.18
8
3 -1.63 -5.46
FDD-LTE上行链路预算
要求的小区边缘速率
接收机灵敏度 上行干扰裕量
要求的 边缘速率
小区半径
FDD-LTE上行链路干扰裕量
干扰裕量是由于其他小区的干扰信号在热噪声基础上的噪声增加量。 LTE链路预算中通常考虑干扰裕量为3dB
要求的接收信号
本小区信号
要求的SINR 干扰水平

TDLTE室内覆盖链路预算

TDLTE室内覆盖链路预算

百度文库- 让每个人平等地提升自我TD-LTE室内覆盖链路预算目录1概述 (1)1.1链路预算概述 (1)1.2TD-LTE网络概述 (1)1.3TD-LTE室内分布系统概述 (1)2TD-LTE室内覆盖组网方案介绍 (2)2.1分布式系统 (3)2.1.12G传统方式 (3)2.1.23G和TD-LTE主流方式 (3)2.2泄漏电缆系统 (4)2.3特殊场景的PICOENODEB、PICORRU和FEMTO ENODEB (4)2.4TD-LTE室分系统的特点 (5)3TD-LTE室内无线传播模型 (6)3.1空间的电磁波传播 (6)3.2KEENAN-MOTLEY室内传播模型 (7)3.3ITU 模型 (7)3.4ITU-R 模型 (8)3.5各模型计算结果对比 (8)4覆盖分析 (8)4.1TD-LTE与TD室内链路预算对比 (8)4.1.1上行链路预算 (9)4.1.2下行链路预算 (12)4.2TD-LTE覆盖指标 (16)4.3链路预算 (17)4.4TD-LTE覆盖半径 (17)4.5天线口功率测算 (18)4.6天线口输出功率规划 (18)4.7信源功率匹配测算 (19)4.7.1一级合路功率匹配预算 (19)4.7.2二级合路功率匹配预算 (19)1 概述1.1 链路预算概述无线链路预算是移动通信网络无线规划中的重要内容。

室外链路预算目标就是在满足业务质量需求的前提下计算出信号在传播中的允许最大路径损耗,系统链路预算然后根据合适的传播模式计算出到基站的覆盖范围。

室内分布系统链路预算分为有线传输部分和无线传输部分,根据信号边缘场强的要求,在一定的覆盖半径下,选择合适的室内传播模型计算出分布系统中天线口功率的大小,通过合理功率分配,最终达到室内覆盖要求。

1.2 TD-LTE网络概述市场需求永远是技术革新的源动力。

移动互联网的快速发展,推进了TD-LTE标准的制定和成熟。

与传统的GSM、TD-SCDMA系统相比,TD-LTE的物理层配置显得更加灵活;OFDM技术取代传统的CDMA技术也让TD-LTE更适应宽带化的发展,性能上,TD-LTE将支持传统无线通信系统无法比拟的高速数据业务。

7-LTE链路预算

7-LTE链路预算

64kbps RB 2
128kbps 4
256kbps 7
384kbps 8
512kbps 10
1024kbps 17
MCS
2
1
2
3
3
4
LTE上行链路TBS
TBS:Transport Block Size 对于给定的MCS和TBS可以对应不同的RB数。

TBS表
LTE上行链路MCS
MCS:Modulation & Coding Scheme 对应给定RB数,不同的TBS Index(ITBS)承载的TBS也不 同。
8 dB 95% 86. 2% 8.7 dB 90% 75. 1% 5.4 dB
7 dB 95% 84. 9% 7.2 dB 90% 73. 3% 4.3 dB
6 dB 95% 83. 9% 5.9 dB 90% 70. 9% 3.3 dB
密集市区、一般市区、郊区的标准方差取8dB 乡村和公路的标准方差取6dB

MCS表
LTE上行链路TBS和MCS
512kbps 10 RB
25
MCS vs RB
MCS 3
20 15 10 5 0
512kpbs12345
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
LTE上行链路SINR

SINR 目标值受以下因素影响:




对于极化分集,密集市区、一般市区、和郊区选择交叉极化,乡村可以选择垂直极化。
在一些特殊覆盖的场景中,如高速公路、 铁路、超远覆盖等,可以采用半功率角更 窄,增益更高的天线,例如增益21dBi, 水平半功率角33°的天线。

LTE链路预算研究及分析

LTE链路预算研究及分析

LTE链路预算研究及分析黄芷辛;冯健;麦磊鑫【摘要】Link budget is fundamental for wireless network planning, significant for the estimation of network coverage capacity as well as network construction cost. In this paper, the method and major parameters affected of LTE link budget are studied, the typical values of key parameters are given, and the impact on link budget and coverage ability under different scenes and duplex mode is analyzed and summarized.% 链路预算是无线网络规划的基础环节,对网络覆盖能力和建设成本的估算具有十分重要的意义。

重点对LTE链路预算的方式及主要参数进行研究,给出了关键参数的典型取值,并分析总结不同的场景或双工方式对链路预算及覆盖能力的影响。

【期刊名称】《移动通信》【年(卷),期】2013(000)008【总页数】6页(P45-50)【关键词】LTE;链路预算;传播模型;覆盖半径【作者】黄芷辛;冯健;麦磊鑫【作者单位】广东省电信规划设计院有限公司,广东广州 510630;广东省电信规划设计院有限公司,广东广州 510630;广东省电信规划设计院有限公司,广东广州 510630【正文语种】中文【中图分类】TN915.651 前言LTE(Long Term Evolution,长期演进)是3G的演进。

它定义了多种不同的工作带宽(1.4MHz、5MHz、10MHz、15MHz及20MHz),并在20MHz频谱带宽下能够提供下行100Mbit/s与上行50Mbit/s的峰值速率,同时改善了小区边缘用户的性能,提高小区容量并减少系统延迟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平坦地面宏蜂窝(Okumura-Hata, COST 231,General Model) 丘陵与山地(Egli) 微蜂窝(Walfish-lkegami, Ray-Tracing) 室内覆盖(Okumura-Hata)
传播模型校正步骤:
4
传播模型及校正
数据准备
1. 电子地图 2. 基站 3. 扇区 4. 天线数据
系统参数
双工模式:采用FDD双工模式。 工作频段:LTE FDD协议支持700MHz到2.6GHz的频段。 工作带宽:LTE FDD支持1.4M、3M、5M、10M和20M共6种带宽。 LTE FDD使用OFDMA多址方式,其子载波带宽为15KHz, 每12个连续的子载波组成一个资源块RB
系统带宽(MHz) 系统带宽 1.4 3 5 10 15 20 RB数量 数量 6 15 25 50 75 100 子载波数量 72 180 300 600 900 1200 传输带宽(MHz) 传输带宽 1.08 2.7 4.5 9 13.5 18
路径损耗
下行链路预算模型
UE接收灵敏度 UE接收灵敏度 穿透损耗 UE天线增益 UE天线增益 人体损耗
9
链路预算模型
阴影衰落余量 其它增益 UE发射功率 发射功率 UE天线增益 UE天线增益
上行链路预算模型
干扰余量
人体损耗
穿透损耗
路径损耗 eNode接收灵敏度 接收灵敏度
eNodeB线缆损耗 线缆损耗 eNodeB天线增益 eNodeB天线增益
13
计算EIRP
发射端相关参数用于计算发射端有效全向辐射功率(Equivalent Isotropically Radiated Power,EIRP),主要包括天馈参数、 发射功率、 增益、损耗。 发端EIRP = 最大发射功率 + 增益 – 损耗 天馈参数:主要包括波瓣宽度、增益、挂高等,需要针对特定 的频段、覆盖场景和要求选择合适的天线增益和高度。 发射功率:对于LTE FDD系统,eNodeB发射功率一般20W, 即43dBm,UE最大发射功率定义为200mW,即23dBm。 增益:主要包括天线增益。 损耗:主要包含合路器、塔放等器件插入损耗以及馈线损耗。
最新LTE链路预算
2012年 2012年3月
目录
第一部分 第二部分 第三部分
前期准备 链路预算 LTE链路预算表
前期准备
前期准备
业务分布
传播模型校正
明确用户的相关信息 根据具体的传播环境 确定传播模型
2
业务分布
承载
表征了用户在特定信道环境下能够支持的传输块大小, MCS、TB、RB的设置
业务信息
16
目录
第一部分 第二部分 第三部分
前期准备 链路预算 LTE链路预算表 LTE链路预算表
LTE链路预算表
参数取值
带宽为20MHz。 下行单通道发射功率43dBm,上行UE最大发射功率23dBm。 小区边缘MIMO工作于发射分集模式。 BLER目标设置为10%。 小区边缘速率:这里取下行2048kbps/上行512kbps。 小区边缘用户所分配的RB数量上下行最大RB数分别为8和20。 确定所需的MCS:下行和上行的TBS分别为2088和552。 分别对应的MCS等级为6和3。 调制方式为QPSK。 MCS效率分别为0.87和0.47。 确定所需的SINR:所需的下行/上行SINR分别为1.5dB和–3dB。
18
LTE链路预算表
单位 dBm dBi dBm dB dBm dBm dB dBm dBi dB dB dB dB dB dB dB dB dB dB 上行 23 0 23 2.5 -112.39 -109.89 -3 -112.89 18 2 2 2 11.7 20 0 0 2.5 4 126.69 下行 43 18 61 7 -108.41 -101.41 1.5 -99.91 0 2 2 0 11.7 20 0 2.5 0 4 131.71 最大发射功率 发射机 发射天线增益 EIRP 接收机噪声系数 热噪声 接收机 接收基底噪声 SINR 接收机灵敏度 接收天线增益 干扰余量 馈线损耗 塔放增益 阴影衰落 增益余量损耗 穿透损耗 人体损耗 发射分集增益 分集接收增益 切换增益 最大路径损耗 最大路径损耗
系统参数
场景:网络规划中常考虑4种典型的场景,分别对应典型的信道模型。 场景的设置将影响计算小区半径时使用的传播模型公式,同时 也影响如基站天线高度及穿透损耗等的参数取值。不同的信道 模型将采用不同的解调门限,
场景 密集城区 城区 郊区 农村 信道模型 ETU 3 ETU 30 ETU 60 EVA 120 移动速度 3km/h 30km/h 60km/h 120km/h
6
目录
第一部分 第二部分 第三部分
前期准备 链路预算 链路预算表
链路预算
链路预算
链路预算模型
上行、下行预算模型
MAPL计算过程 计算过程
系统参数,发送端, 接收端,其它增益、 损耗、余量
链路预算模型
其它增益 eNode发射功率 eNode发射功率 干扰余量 线缆损耗 eNode天线增益 eNode天线增益 阴影衰落余量
15
其它增益,损耗,余量
其他增益损耗余量主要包括MIMO增益、TTI时隙绑定增益、 IRC干扰抑制 合并 增益、穿透损耗、阴影衰落余量、干扰余量等。 其中MIMO增益、时隙绑定增益、IRC增益体现在解调门限中。 LTE只支持硬切换,硬切换可以降低边缘接收信号的强度要求, 给系统覆盖带来增益,一般取值为2~5dB。 阴影衰落是指电磁波在传播路径上受到建筑物阻挡产生的阴影效应 所带来的损耗。为了对抗这种衰落带来的影响,在链路预算中通常 采用预留余量的方法,称为阴影衰落余量。 穿透损耗是由于穿透建筑墙体、车身、船身等引起的信号电平衰落。
数据后台处理
1. 滤除异常数据 2. 修正GPS误差 误差 修正
传播模型校正
1. 原始传播模型系数 修正 2. 传播模型校正
3. 实测数据 3. 校正后传播模型系 数修正
5
传播模型及校正
传播模型校正的意义
有利于对一个新的服务覆盖地区的信号进行预测 可以大大降低进行实际路测所需的时间、人力和资金 可以为网络规划提供有力的依据 可以对现有网络的信号覆盖情况进行分析,为网络的优化提供重要的 参考依据 可以节省大量的基站建设、运行维护成本 可以提高网络的服务质量
14
计算Min Rx
接收端相关参数主要用于计算最小接收电平,主要包括接收灵敏度、 噪声系数、天线增益、线缆损耗、人体损耗等。 最小接收电平 = 接收灵敏度 – 接收增益 + 接收损耗 接收灵敏度:在输入端无外界噪声或干扰条件下,在所分配的资源带 宽内,满 足业务质量要求的最小接收信号功率。 接收灵敏度 = 每子载波接收灵敏度 + 10*lg(需要的子载波数) =热噪声功率谱密度+ 10×lg(子载波间隔) + 噪声系数 + 解调门限 + 10×lg(需要的子载波数) 其中,热噪声功率谱密度为-174dBm/Hz。子载波间隔为15KHz。 解调门限是指信号与干扰和噪声比门限,在LTE FDD系统中,解调门限 与频段、信道类型、移动速度、MIMO方式、MCS、BLER等因素相关。 接收增益:包括天线增益,塔放增益等。接收损耗:包括馈线损耗、 人体损耗等。
10
MAPL计算过程
配置系统参数
Hale Waihona Puke 计算EIRP 计算计算Min Rx 计算
其它
频段 带宽 双工模式 场景
发射功率 天线增益 线缆损耗
接收机灵 敏度 噪声系数 解调门限 天线增益 线缆损耗 人体损耗
MIMO增益 增益 TTL Bunding 增益 IRC增益 增益 穿透损耗 阴影衰落 余量 干扰余量
11
表征了业务的优先级以及对于传输速率的要求等信息 实时业务:VoIP业务 非实时业务: FTP、FTTP、流媒体业务
终端
表征了用户所对应的物理实体,包含发射功率,发射接收天线数等参数信息
3
传播模型及校正
网络规划中,传播模型用于计算发射端到接收端的路径损耗。
经典传播模型具有普适性,但对于具体传播环境不够准确, 需要对传播模型进行校正。
19
相关文档
最新文档