高等数学格林公式
格林公式补线法求极限

格林公式补线法求极限格林公式是高等数学中的一个重要内容,而补线法在求极限时经常能发挥关键作用。
咱先来说说啥是格林公式。
简单来讲,格林公式就是把一个平面区域上的二重积分和沿着这个区域边界的曲线积分联系起来的一个公式。
比如说,有个区域 D ,它的边界是曲线 L ,那么格林公式就告诉咱,在一定条件下,区域 D 上某个二元函数的偏导数的积分,就等于沿着曲线 L 对这个函数的另一种形式的积分。
那补线法又是咋回事呢?有时候,给咱的曲线不是封闭的,这时候就需要咱自己补上一条线,让它变成封闭曲线,这样就能用格林公式啦。
就像我之前教过的一个学生,他在做一道题的时候,就碰到了这种情况。
题目给的曲线是一个半圆弧,从点 A 到点 B 。
这可把他难住了,因为直接用格林公式没办法啊,曲线不封闭。
我就提示他,咱能不能补上一段线段,把这个半圆弧变成一个封闭的图形呢?这孩子一开始还不太明白,瞪着大眼睛一脸懵。
我就耐心地给他画图解释,从点 A 垂直向下画一条线段到 x 轴,再从点 B 垂直向上画一条线段到 x 轴,这样就把原来的半圆弧封闭起来啦。
然后再用格林公式,计算封闭曲线的积分,但是别忘了,咱补的这两条线段的积分也要单独算出来,最后从总的积分里减去。
这孩子恍然大悟,一拍脑门说:“哎呀老师,我懂了!”然后就兴致勃勃地开始计算。
通过这个小例子,咱们就能明白,补线法其实就是一种巧妙的手段,能把原本不好处理的问题变得容易解决。
但是用补线法求极限也不是随随便便补就行的,得注意补的线要简单,计算积分也不能太复杂,不然可就给自己找麻烦啦。
而且在补线的时候,还得注意方向,方向错了,整个计算就全错喽。
再比如说,还有一种情况,给的曲线是一个复杂的折线,这时候也可以考虑补线,把它变成一个规则一点的图形,像矩形啊、圆形啊之类的。
总之,格林公式的补线法求极限是个很实用的技巧,但要想用得好,还得多做练习,多琢磨琢磨。
只有不断地练习和思考,才能在遇到各种复杂的题目时,迅速找到最合适的补线方法,轻松求出极限。
格林公式(公开教学用)

B
x
b
y
E
xd 1( y)
nD
c
C
o
m
x 2( y)
x
y 型区域
按照 y 型区域考虑
Q dxdy
d
[
2 ( y) Q(x, y)dx]dy
D x
c 1( y)
x
d
c Q( 2 ( y), y) Q(1( y), y)dy
Q(x, y)dy Q(x, y)dy Q(x, y)dy
3)平面曲线 L 的正向:当人(观
察者)沿L的方向行走时,D内在靠近人
Hale Waihona Puke 的一侧始终在人的左侧。L
L
D
D l洞
外圈是逆时针方向;内圈是顺时针方向。
2、格林(Green)公式(定理1)
(1)D 是由分段光滑 (或光滑)的有向
闭曲线 L 围成; (2)函数 P(x, y),Q(x, y) 在D上具有一
阶连续偏导数;
y2 x2 x2 y2
2
,
补充定理:
1) 设P,Q 在 D 内具有一阶连续偏导数
2)
在
D
内恒有
Q x
P y
3) L1, L2 为D内任意两条同向闭曲线;
4) L1,L2 各自所围的区域中有相同的不
属于D的点,则
D
Pdx Qdy Pdx Qdy
L1
L2
L1 L2
解:当 (0,0利) 用D格林公式,结论为0.
(3)L要求取正向.(若不是正向 ? )
(4)二重积分的被积函数必须是 Q P .
x y
同学们思考一下,说明的第(2) 条其实是可以修改的,应该改成什么?
高数考研备战格林公式的应用与解题技巧

高数考研备战格林公式的应用与解题技巧格林公式(Green's theorem)是高等数学中的一个重要定理,也是考研数学中的重要内容之一。
它在很多场景中有广泛的应用,帮助我们解决各种复杂的问题。
本文将介绍格林公式的基本原理和应用,并提供一些解题技巧,以帮助考生备战高等数学考研。
一、格林公式的基本原理格林公式是由英国数学家格林(George Green)于1828年提出的,它将二维平面上的曲线积分转化为对该曲线所围成的区域的面积积分。
具体地说,设曲线C是一条分段光滑的闭合曲线,曲线C所包围的区域称为D。
如果函数P(x, y)和Q(x, y)在区域D上具有一阶连续偏导数,那么有格林公式的表达式如下:∮C (Pdx + Qdy) = ∬D (Qₓ - Pᵧ)dA其中,∮C表示曲线C上的曲线积分,∬D表示对区域D上的面积积分,Pdx + Qdy表示关于x和y的微分形式,Qₓ和Pᵧ分别表示Q对x求偏导和P对y求偏导。
二、格林公式的应用格林公式在物理、工程和数学等多个领域都有广泛的应用。
下面将介绍几种常见情况下的应用。
1. 曲线积分的计算格林公式可以帮助我们计算曲线C上的曲线积分。
具体操作是,将积分转化为对曲线所包围的区域D上面积积分的计算。
通过求解二重积分,我们可以更简单地计算出原本复杂的曲线积分。
2. 面积的计算格林公式可以通过计算面积积分来帮助我们计算区域D的面积。
通过求解面积积分,我们可以不需要遍历整个区域来计算面积,而是通过对边界曲线上的积分来得到结果。
这在实际问题中十分有用,节省了计算的时间和精力。
3. 流量的计算格林公式还可以用于计算流体力学中的流量。
通过设定P和Q的形式并代入格林公式,我们可以将流量计算问题转化为对面积积分的计算。
这样一来,我们可以更加方便地求解流体力学中的流量问题。
三、解题技巧在考研中遇到格林公式的应用题时,我们可以采取以下的解题技巧:1. 理解问题在开始解题之前,先要完全理解问题的背景和要求。
高等数学第三节 格林公式 平面上曲线积分与路径无关条件

其中曲线积分是按沿L的正向计算的,公式 ①
称为格林公式.
其中曲线积分是按沿L的正向计算的,公式 ①
称为格林公式.
y
C y = 2(x) L
B D
A y =1(x)
E
Oa
bx
证明 假定穿过区域 D 内部且平行于坐标轴的直
线与 D 的边界曲线的交点不超过两个 (如图所示).
于是根据二重积分
的计算法,有
D
P y
d
b a
12((xx))Py dydx
y
C y = 2(x) L
D
B
ቤተ መጻሕፍቲ ባይዱ
A y =1(x)
E
Oa
bx
a b{P [x,2(x) ]P [x,1(x)d ]x.}
第十一章 曲线积分与曲面积分
*第三节 格林公式 平面上曲线积分与路径无 关的条件
一、格林(Green)公式
二、平面上曲线积分与路径 无关的条件
一、格林(Green)公式
定理(格林定理) 设 D 是以分段光滑曲线 L 为边界的平面有界闭区域,函数 P(x, y) 及 Q(x, y) 在 D 上具有一阶连续的偏导数,则
解 显然,用这段路径来计算是很复杂且困难.
能否换一条路径呢?为此计P算 ,Q. 其中 P(x, y) y x
= x2y + 3xex, Q(x,y)1x3ysiny,
3
得
Px2Q.
y
x
显P(然 x,y)Q ,(x,y) ,P,Q在 全D 平 上面 连 . 域 续 y x
mdmπa2mπa2.
D
高考数学知识点解析斯托克斯公式与格林公式

高考数学知识点解析斯托克斯公式与格林公式高考数学知识点解析:斯托克斯公式与格林公式在高考数学的众多知识点中,斯托克斯公式与格林公式是较为复杂但又十分重要的内容。
理解和掌握这两个公式,对于解决一些涉及曲线积分和曲面积分的问题具有关键作用。
首先,我们来认识一下格林公式。
格林公式建立了平面区域上的二重积分与沿着该区域边界的曲线积分之间的关系。
如果我们有一个闭区域 D 及其边界曲线 L,函数 P(x,y) 和 Q(x,y) 在 D 上具有一阶连续偏导数,那么格林公式可以表示为:∮L Pdx + Qdy =∬D (∂Q/∂x∂P/∂y)dxdy 。
为了更好地理解格林公式,我们来看一个简单的例子。
假设有一个平面区域是由一个半径为 r 的圆所围成的,我们要计算沿这个圆边界的曲线积分。
如果我们设P(x,y) =y ,Q(x,y) =x ,那么根据格林公式,曲线积分就可以转化为对这个圆区域的二重积分。
通过计算这个二重积分,就能得到曲线积分的结果。
那么,格林公式有什么用呢?它可以帮助我们简化曲线积分的计算。
有时候,直接计算曲线积分可能会比较困难,但通过格林公式将其转化为二重积分,可能会让计算变得更加简便。
接下来,我们再来看斯托克斯公式。
斯托克斯公式是格林公式在三维空间中的推广。
它建立了空间曲面上的曲面积分与沿着曲面边界的曲线积分之间的关系。
如果有一个有向曲面 S ,其边界曲线为Γ ,函数 P(x,y,z) 、Q(x,y,z) 和 R(x,y,z) 具有一阶连续偏导数,那么斯托克斯公式可以表示为:∮Γ Pdx + Qdy + Rdz =∬S (curlF)·ndS ,其中curlF 表示向量场 F =(P, Q, R) 的旋度,n 是曲面 S 的法向量。
同样,通过一个例子来帮助理解斯托克斯公式。
假设我们有一个半球面,要计算沿其边界圆的曲线积分。
运用斯托克斯公式,将曲线积分转化为对半球面的曲面积分,然后通过计算曲面积分来得到曲线积分的结果。
高等数学曲面积分与曲线积分之格林公式

4 1 cos 4 a 2 2 a 4 sin 2 2d 2 2 a 4 d 0 0 2 2
高 等 解法二: 利用圆的参数方程转化为定积分计算 数 学 x a cos ,dx a sin d 电 y a sin ,dy a cosd 2 2 y xdy x ydx 子 L 案
其中C是一条不经过原点的分段
光滑的不自相交的简单闭曲线,方向取逆时针方向.
解:
y x P 2 ,Q 2 2 x y x y2
y
C
2 2 Q y x P x 2 y 2 0时,有 2 x ( x y 2 ) 2 y
D
x
下面分两种情况计算.
ydx xdy Q P ( )dxdy (1)当(0,0) D时, 则C 2 2 D x x y y
顺时针
y 2 xdy x 2 ydx
逆时针
y 2 xdy x 2 ydx
Q p ( )dxdy ( x 2 y 2 )dxdy D x D y
2
0
d 2 d
0
a
a 4
2
高 等 数 学 电 子 案
ydx xdy , 例5 计算 C 2 2 x y
高 等 数 学 电 子 案
例1 求椭圆 x a cos , y b sin 的面积S.
解: S
1 xdy ydx 2 C
1 1 2 S (a cos b cos b sin a sin )d abd ab 2 C 2 0
高 等 数 学 电 子 案
二
平面上曲线积分与路径无关的条件
高等数学-格林公式及其应用.ppt

l D1
O D2
x
1
2π
d
1 2π
π
20
2
l :4x2 y2 2
法二
l
ydx xdy 4x2 y2
l
ydx
2
xdy
1
2
ydx xd y
l
格林公式
D2是由l 所围区域
4x2 y2 2
所以 I 0 π
π.
1
2
1
2
(1
D2
(2)
π
2
1)dxdy
2
π
25
10.3 格林公式及其应用
Pdx Qdy
L
(L1, L2, L3对D来说为正方向)
8
10.3 格林公式及其应用
(3) 对复连通区域证明:
对若复区连域通不区止域由D一, 格条林闭公曲式线
的右所曲端围线应成积 包.添分 括加,沿且直区边线域界段D的的A方全B向,部CE对边.区界 G D
域则DD来的说边都界是曲正线向由. AB, L2 , BA,
2π 0
格林公式
sin d(
2
(Q P )dxdy D1 x y 0
cos ) cos d(
2
2
0 sin
)
24
10.3 格林公式及其应用
l
ydx xdy 4x2 y2
2π
sin
d(
2
cos
)
2
cos
d(
sin
)
0
2
2 0
π
2
2
sin
2
2
2
2
cos2
d
y L: x2 y2 4
格林公式内容

格林公式内容格林公式是高等数学中的一个重要公式,不过您这标题提到要从小学到高中的教材角度来写,可格林公式并不在这个阶段的教材里呀。
但既然接到了这个任务,那我就用比较通俗易懂的方式来跟您聊聊这个不在小学到高中教材里的格林公式,尽量让您有个初步的了解。
咱先来说说格林公式到底是啥。
简单来讲,格林公式把沿着一个封闭曲线的曲线积分和在这个曲线所围成的区域上的二重积分联系了起来。
这就好像是找到了两个不同世界之间的秘密通道,能让我们在计算的时候从一种方法轻松地转换到另一种方法。
比如说,有一个操场,您沿着操场的跑道跑一圈,这就是曲线积分。
而操场里面的整个区域呢,就相当于二重积分。
格林公式就告诉我们,这两者之间有着密切的关系。
我还记得之前给学生讲这个的时候,有个学生瞪着大眼睛问我:“老师,这有啥用啊?”我就笑着跟他说:“你想想,要是让你算沿着一个特别复杂的曲线走一圈的路程,多麻烦啊。
但如果能用格林公式转换成在一个区域里的计算,是不是就简单多啦?”那学生若有所思地点点头。
在实际应用中,格林公式的作用可大了。
比如说在物理学中,计算电场或者磁场的一些问题时,它就能派上大用场。
还有在工程学里,设计一些复杂的结构时,也能靠它来帮忙简化计算。
想象一下,有个工程师要设计一个形状奇特的零件,需要计算各种物理量。
如果没有格林公式,那他可能得花费大量的时间和精力去一点点计算。
但有了格林公式,就好像给他配备了一把神奇的钥匙,能打开快速解决问题的大门。
对于学习格林公式,重点在于理解它的原理和掌握运用的方法。
可别死记硬背,得通过多做练习题来真正掌握它的精髓。
总之,格林公式虽然有点复杂,但一旦掌握了,就能在数学和相关领域的学习和应用中如鱼得水。
希望您对格林公式能有个初步的认识啦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Green公式的简单应用
1. 简化曲线积分的计算(常用)
例1:求L( y x)dx (3x y)dy,其中L是圆周 y
( x 1)2 ( y 4)2 9,取逆时针方向.
解:由格林公式,P y x,Q 3x y,
•
L ( y x)dx (3x y)dy
D
Q x
P y
dxdy
x
第十章 第三节
格林公式及其应用
本节的主要内容
一、连通域及其边界的方向; 二、格林(Green)公式; 三、曲线积分与路径无关的条件; 四、全微分方程。
一、连通域及其边界的方向
1、连通区域
D是连通区域: D内任意两点都可以用完全
属于D的折线连接起来。
单连通区域和复连通区域:
若包含于D内的任一条封闭曲线C所围成的区域
( 其 中l 的 方 向参数方程: xy 取逆时针方向)
y2 r2
r cos , r sin ,
(注意格林公式的条件)
例4:计算 e x sin y 3 y dx e x cos y 3 dy,其中AnO为 AnO
x2 y2 ax的上半圆周自A(a,0)到O(0,0)一段.
L3
E C
F
L1
A
{ } (Pdx Qdy) AB L2 BA AFC CE L3 EC CGA
( )(Pdx Qdy)
L2
L3
L1
Pdx Qdy L
(L1,L2 , L3对D来说为正方向)
格林公式的实质: 沟通了沿闭曲线的积分与
二重积分之间的联系.
定理1 设闭区域 D由分段光滑的曲线 L 围
成,函数 P( x, y)及Q( x, y)在 D上具有一阶连
续偏导数, 则有
ÑL Pdx
Qdy
D
(
Q x
P y
)dxdy
(1)
其中 L是 D的取正向的边界曲线,
公式(1)叫做格林公式.
证明(1)
若区域D 既是X 型 又是Y 型,即平行于 坐标轴的直线和L 至
将D 分成三个既是X 型又是 L1 D1
Y 型的区域D1,D2 ,D3 .
D2 L2
D L
Q P
Q P
( )dxdy
( )dxdy
D x y
x D1 D2 D3 y
Q P
Q P
Q P
(
D1
x
y
)dxdy
(
D2
x
y
)dxdy
(
D3
x
y
)dxdy
L1 Pdx Qdy L2 Pdx Qdy L3 Pdx Qdy
d
dy
Q[
x,
y]
2
(
y)
D dx
c 1( y) x
c
1( y)
c
d
Q(
2(
y),
y)
Q(1(
d
y),
y)
dy
曲线EAC
:
x 1(
y y,
y),
c Q( 2( y), y)dy
c
Q( 1(
y),
y
)dy
曲
线CBE
:
x 2(
y y,
y
),
=
Q( x, y)dy
CBE
Q( x, y)dy
x2
x
y2
,
则当 x2
y2
0时,
有Q x
(
y2 x2
x2 y2 )2
P .
y
(1) 当(0, 0) D时,
由格林公式知
y
L
xdy x2
ydx y2
D
Q x
P y
dxdy
0
D
o
(2) 当(0,0) D时,
L x
作位于D 内圆周 l : x2 y2 r 2, y L
记D1由L 和l 所围成,
o
3 1dxdy 2 dxdy
D
D
2 32 18 2倍D的面积.
y
例2:计算 xdy,其中曲线AB是半径A AB
为r的 圆 在 第 一 象 限 部 分.
D
解 引入辅助曲线L ,
oL
Bx
L OA AB BO
应用格林公式, P 0, Q x 有
dxdy L xdy OA xdy AB xdy BO xdy,
便于记忆形式:
x ydxdy L Pdx Qdy.
DP Q
注:(1)不 管D是 单 连 通 域 还 是 复 连 通域 , 只 要 偏 导数连续,公式都成立 (2)D必 须 是 闭 区 域 ,L为 闭 曲 线 且 取 正 向 , 若L 为反向,则
格林公式的实质: 沟通了沿闭曲线的积分与 二重积分之间的联系.
D都包含于D,则称D为单连通区域,否则称D
为复连通区域。 . D.
.
.D
2、连通区域的边界D的方向
单连通区域的边界D由一条封闭曲线构成;
复连通区域的边界D由两条或两条以上封闭
曲线构成。
连通域D的正方向的规定:
D
当观察着沿D的方向行
走时,观察者附近的D的
内部总在观察者的左侧。 D
二、格林(Green)公式
解 : 补 上 线 段OA, 组 成 闭 曲 线,
CAE
y
E
d
= Q( x, y)dy Q( x, y)dyx 1( y)
CBE
Eห้องสมุดไป่ตู้C
A
DB
= L Q( x, y)dy
c
C
o
同理可证
D
P y
dxdy
L
P
(
x
,
y
)dx
x 2( y)
x
两式相加得
D
(
Q x
P y
)dxdy
L
Pdx
Qdy
证明(2)
L3 D3
若区域D 由按段光
滑的闭曲线围成.如图,
D
由于 OA
xdy
0,
BO
xdy
0,
AB
xdy
D
dxdy
1 4
r
2
.
例3: 计 算
L
xdy x2
ydx y2
, 其 中L为 一 条
无重点,
分 段 光 滑 且 不 经 过 原 点的 连 续 闭 曲 线 ,L的
方 向 为 逆 时 针 方 向.
解 记L所围成的闭区域为D ,
则
P
y x2 y2
,
Q
L Pdx Qdy
L3 D3
( L1, L2 , L3对D来说为正方向) L1 D1
D2 L2
L
证明(3)
G
若区域不止由一条闭曲
线所围成.添加直线段 AB,CE.
则D 的边界曲线由 AB,L2 ,BA, AFC,CE, L3 , EC 及 CGA 构成.
D
L2
B
由(2)知
D
(
Q x
P y
)dxdy
多交于两点.
y
d x 1( y)
A c oa
E y 2(x)
D
B
x 2( y)
Cy 1(x) b
x
D {( x, y) a x b,1( x) y 2 ( x)}
D {( x, y) c y d , 1( y) x 2 ( y)}
Q dxdy
d
dy
2( y)Qdx
应用格林公式,得
l D1
or
x
Ll
xdy ydx x2 y2
D
Q x
P y
dxdy
0
y
即
L
xdy x2
ydx y2
l
xdy x2
ydx y2
0
L
xdy x2
ydx y2
l
xdy x2
ydx y2
L
D1
l
or
x
2r2
0
2
d
0
cos 2
r2
2 .
r
2
sin2 d
l 的方程:x2