七年级数学第六章试卷
人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。
真命题的逆命题都是真命题B。
无限小数都是无理数C。
0.720精确到了百分位D。
16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。
3B。
7C。
3或7D。
1或73.3(-1)²的立方根是()A。
-1B。
1C。
-4D。
44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。
-1B。
-1/2C。
3/2D。
25.若a=2,则a的值为()A。
2B。
±2C。
4D。
±46.下列计算中,错误的是()A。
30.125=0.5B。
3-273=-644C。
33/31=1/82D。
-3/8²=-125/577.下列说法正确的是()A。
实数分为正实数和负实数B。
3/2是有理数C。
0.9是有理数D。
30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有() A。
2个B。
3个C。
4个D。
5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。
4 cm~5 cm之间B。
5 cm~6 cm之间C。
6 cm~7 cm之间D。
7 cm~8 cm之间10.计算-4-|-3|的结果是()A。
-1B。
-5C。
1D。
5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。
15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。
数学七年级下册第六章试卷

1、下列哪个数不是方程2x + 5 = 15的解?A. x = 2B. x = 5C. x = 10D. x = -5解析:将选项代入方程检验,仅C选项x = 10不满足方程2x + 5 = 15。
(答案:C)2、若a与-3的差为7,则a的值为?A. 4B. 10C. -10D. -4解析:根据题意,a - (-3) = 7,即a + 3 = 7,解得a = 4。
(答案:A)3、下列哪个不等式表示“x的3倍与5的差小于-2”?A. 3x - 5 < -2B. 3x + 5 < -2C. 3x - 5 > -2D. 3x + 5 > -2解析:将文字描述转化为数学表达式,即3x - 5 < -2。
(答案:A)4、若|x| = 7,则x的可能取值为?A. 7B. -7C. 7或-7D. 0解析:绝对值表示一个数到0的距离,因此|x| = 7意味着x可以是7或-7。
(答案:C)5、下列哪个选项是方程x - 3 = 5的解,同时也是不等式x + 2 > 5的解?A. x = 6B. x = 7C. x = 8D. x = 9解析:方程x - 3 = 5的解为x = 8,同时8也满足不等式x + 2 > 5。
(答案:C)6、若一个数的相反数是-6,则这个数为?A. 6B. -6C. 0D. 12解析:一个数与它的相反数相加等于0,所以这个数为-(-6) = 6。
(答案:A)7、下列哪个数集包含-1作为它的元素?A. 正整数集B. 负整数集C. 自然数集D. 正有理数集解析:-1是负整数,因此它属于负整数集。
(答案:B)8、若a > b,且c < 0,则下列哪个不等式成立?A. a + c > b + cB. a - c > b - cC. ac > bcD. a/c > b/c解析:对于不等式a > b,两边同时加(或减)同一个数,不等号方向不变。
七年级初一数学下册第六章单元测试卷(含答案解析)

七年级初⼀数学下册第六章单元测试卷(含答案解析)⼀、选择题(每题3分,共24分。
每题只有⼀个正确答案,请将正确答案的代号填在下⾯的表格中)题号 1 2 3 4 5 6 7 8 答案1. 下列运算正确的是()A .39±=B .33-=-C .39-=-D .932=- 2. 下列各组数中互为相反数的是()A .-2 2(2)-B .-2 38-C .-2 与12- D .2与2-3. 下列实数317,π-,14159.38,327-,21中⽆理数有()A.2个B.3个C.4个D.5个4. 实数a,b 在数轴上的位置如图所⽰,则下列结论正确的是()A . 0a b +>B . 0a b ->C . 0>abD .0>ba5. 有如下命题:①负数没有⽴⽅根;②⼀个实数的⽴⽅根不是正数就是负数;③⼀个正数或负数的⽴⽅根与这个数同号;④如果⼀个数的⽴⽅根是这个数本⾝,那么这个数是1或0。
其中错误的是()A .①②③B .①②④C .②③④D .①③④ 6. 若a 为实数,则下列式⼦中⼀定是负数的是()A .2a -B .2)1(+-aC .2a -D .)1(+--a 7. 2a a =-,则实数a 在数轴上的对应点⼀定在()A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧第六章《实数》综合测试题答题时间:90分钟满分:120分8. 请你观察、思考下列计算过程:因为112=121,所以121=11 ;因为1112=12321,所以11112321=;……,由此猜想76543211234567898= ( )A .111111B .1111111C .11111111D .111111111 ⼆、填空题(每题3分,共30) 9.81的平⽅根是。
10. _________。
11. 化简:332-= 。
12. 写出1到2之间的⼀个⽆理数___________。
人教版七年级数学下册 第6章 实数 单元综合测试卷(试卷)

第6章实数单元综合测试卷班级:姓名:一、选择题(每小题3分,共30分)1.144的算术平方根是()A.12B.-12C.±12D.122.下列各数是无理数的是()A.0B.-1C.2D.373.83=()A.±2B.-2C.2D.224.一个实数a的相反数是10,则a等于()A.110B.10C.-110D.-105.下列各式正确的是()A.16=±4B.(-3)2=-3C.±81=±9D.-4=-26.估计23的值()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间7.下列说法正确的是()A.-1的倒数是1B.-1的相反数是-1C.1的算术平方根是1D.1的立方根是±18.下列说法错误的是()A.16的平方根是±2B.2是无理数C.-273是有理数9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定不是无理数;③负数没有立方根;④-19是19的平方根,其中正确的说法有()A.0个B.1个C.2个D.3个10.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0B.ab>0C.|a|+b<0D.a-b>0二、填空题(每小题3分,共30分)11.49的平方根是,216的立方根是.12.若一个数的算术平方根等于它本身,则这个数的立方根是.13.显示的结果是.14.写出一个大于3小于5的无理数:.15.实数a在数轴上的位置如图,则|a-3|=.16.13是m的一个平方根,则m的另一个平方根是,m=.17.273的平方根是,-64的立方根是.18.关于12的叙述,有下列说法,其中正确的说法有个.(1)12是有理数;(2)面积为12的正方形边长是12;(3)在数轴上可以找到表示12的点.19.一个数值转换器,原理如下:当输入的x=16时,输出的y等于.20.若实数x,y满足(2x+3)2+|9-4y|=0,则xy的立方根为.三、解答题(共60分)21.(6分)计算:(1)求252-242的平方根;(2)求338的立方根.22.(6分)计算:(1)(-2)2-(3-5)-4+2×(-3).(2)-643-9+23.(6分)已知一个正数的平方根是3x-2和5x+6,求这个数.24.(6分)求下列各式中的x 的值:(1)25x 2=36;(2)(x+1)3=8.25.(6分)已知2a-3的平方根是±5,2a+b+4的立方根是3,求a+b 的平方根.26.(8分)一个圆形铁板的面积是424cm 2,求圆形铁板的半径.(精确到0.1)27.(12分)根据下表回答问题:xx 2x x 216.0256.0016.6275.5616.1259.2116.7278.8916.2262.4416.8282.2416.3265.6916.9285.6116.4268.9617.0289.0016.5272.25(1)268.96的平方根是多少?(2)285.6≈;(3)270在哪两个数之间?为什么?(4)表中与260最接近的是哪个数?28.(10分)(1)在实数范围内定义运算“ ”,其法则为:ab=a 2-b 2,求方程(4 3) x=24的解;(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.第6章实数单元综合测试卷答案与点拨1.A(点拨:144的算术平方根是144=12.)2.C(点拨:0,-1是整数,是有理数;37是分数,是有理数;2是开方开不尽的数,是无限不循环小数,是无理数.)3.C(点拨:83表示求8的立方根,故83=2.)4.D(点拨:因为-10的相反数是10,所以a 等于-10.)5.C(点拨:16表示16的算术平方根,16=4;(-3)2表示(-3)2(即9)的算术平方根,(-3)2=3;负数没有算术平方根.)6.C(点拨:因为16<23<25,所以16<23<25,即4<23<5,所以23的值在4到5之间.)7.C(点拨:-1的倒数是-1,相反数是1;1的算术平方根是1,立方根是1.)8.D(点拨:16=4,4的平方根是±2;2是无理数;-273=-3是有理数,不是分数.)9.B(点拨:④正确.)10.A(点拨:由数轴知a<0,b>0,|b|>|a|,所以a+b>0,ab<0,|a|+b>0,a-b<0.故选A.)11.±23612.0,1(点拨:算术平方根等于本身的数是0和1,所以它们的立方根分别为0和1.)13.-2(点拨:本题就是求36-8的值,即-2.)14.13或π(答案不唯一)15.3-a(点拨:由数轴上点的位置关系,得a<3,所以|a-3|=3-a.)16.-13169(点拨:由平方根的性质,一个正数的两个平方根互为相反数,得另一个平方根是-13,m=132=169.)17.±3-2(点拨:273=3,所以它的平方根是±3;-64是-8,所以它的立方根是-2.)18.2(点拨:12是无理数,不是有理数,故(1)不正确.)19.2(点拨:根据图中的步骤,把16输入,可得其算术平方根为4,把4再输入得其算术平方根是2,再将2输入得算术平方根是2,是无理数则输出.)20.-32(点拨:根据非负数的性质结合(2x+3)2+|9-4y|=0,得2x+3=0且9-4y=0,解得x=-32,y=94,所以xy=-32×94=-278,所以xy 的立方根为-32.)21.(1)因为252-242=49,而(±7)2=49,所以252-242的平方根是±7.(2)因为338=278,而()323=278,所以338的立方根是32.22.(1)原式=4-(-2)-2-6=-2.(2)原式=-4-3+35=-625.23.由正数平方根的性质得3x-2=-(5x+6),解得x=-12,∴这个数是(3x-2)2=éëêùûú3×()-12-22=494.24.(1)方程两边同时除以25得x2=3625.∴x=±65.(2)开立方,得x+1=83,∴x+1=2.解得x=1.25.由题意有{2a-3=25,2a+b+4=27,解得{a=14,b=-5.∴±a+b=±14-5=±3.故a+b的平方根为±3.26.设圆形铁板的半径为r cm,则πr2=424.解得r≈11.6.答:圆形铁板的半径约为11.6cm.27.(1)±16.4;(2)16.9;(3)由表知268.96<270<272.25,所以16.4<270<16.5,即270在16.4和16.5之间;(4)16.1.28.(1)∵a b=a2-b2,∴(4 3) x=(42-32) x=7 x=72-x2.∴72-x2=24.∴x2=25.∴x=±5.(2)由题意得2a=(±2)2,∴a=2.当a=2时,3a+b=6+b,由于33=6+b,∴b=21,∴a-2b=2-2×21=-40.。
新人教版初中数学七年级下册第六章《实数》检测试题(含答案)

人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平方根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个B.的平方根是±4A.6.69 B.6.7 C.6.70 D.±6.708.一个底面是正方形的水池,容积是11.52m3,池深2m,则水池底边长是( C )A.9.25m B.13.52m C.2.4m D.4.2m9. 比较2, , 的大小,正确的是(C )A. 2<<B. 2<<C.<2<D.<<210.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C) A .0个 B .1个om] C .2个D .3个二、填空题11.3的算术平方根是____3____.12.(1)一个正方体的体积是216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示_______9_____的立方根;13.已知a ,b 为两个连续整数,且a<15<b ,则a +b 的值为 7 . 14.已知一个有理数的平方根和立方根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________. 三、解答题17.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317.(3)(-911)2.解:(-911)2的平方根是±(-911)2=±911,算术平方根是(-911)2=911.[]18.已知一个正数x的两个平方根分别是3-5m和m-7,求这个正数x的立方根.由已知得(3-5m)+(m-7)=0,-4m-4=0,解得:m=-1.所以3-5m=8,m-7=-8.所以x=(±8)2=64.所以x的立方根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;(3)0.36×4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12人教版初中数学七年级下册第六章《实数》检测卷一、选择题(每题3分,共30分)1. 下列各数中,没有平方根的是( )A. |-4|B. -(-4)C. (-4)2D. -422. 1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间3. 下列说法中,错误的是( )A. ±2B. 是无理数C.是有理数 D. 4. 下列说法中,错误的是 ( )A. -4是16的一个平方根B. 17是(-17)2的算术平方根C.164的算术平方根是18D. 0.9的算术平方根是0.03 5. 下列语句写成式子正确的是 ( )A. 4是16的算术平方根,即±4B. 4是(-4)2 4C. ±4是16的平方根,即 4D. ±4是16±46. 如图,数轴上点 N 表示的数可能是 ( )A. 10B. 5C. 3D. 27. 在实数0,π,227( ) A. 1个 B. 2个 C. 3个 D. 4个 8. a ,b ,c 在数轴上的对应点如图所示,则|a -b |+|b +c |-|a +c |的值为 ( )A. 2b +2cB. b +cC. 0D. a +b +c 9. 下列四个结论中,正确的是 ( )A.32<52 B. 54<32C.32<2<2 D. 1<2<5410. 一个自然数的算术平方根是a ,则下一个自然数的平方根是 ( ) A. a 2+1 B. ±(a 2+1) C. a 2+1 D. ±a 2+1二、填空题(每题3分,共24分)11.的算术平方根为 ,(-3)2的平方根是 .12. -338的立方根是 ,的立方根是 . 13. 在-5,- 3,0,π,6中,最大的一个数是 .14. =9,则x = ;若x 2=9,则x = .15. 若a <b 且a ,b 为连续正整数,则a 2+b 2的平方根为 .16. 5.70618.044= .17. =3,|b |=5,且ab <0,则a +b 的算术平方根为 .18. 请你辨别:下图依次是面积为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有 个,边长是无理数的正方形有 个.三、解答题(共66分)19. (8分)计算下列各题.(1) |3-|2;(2)20. (8分)求下列各式中的x的值.(1)(x+2)3+27=0;(2)2(2x+1)2-12=0.21. (9分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求x2-y2人教版七年级数学下册第六章实数复习检测试题一、选择题(每小题3分,共30分)1.下列各数中最大的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.的立方根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上二、填空题(每小题3分,共24分)1.按键顺序是“,,则计算器上显示的数是.2.一个数的平方根和它的立方根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平方根为a+3和2a-15,则这个数是.5.比较大小:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.6.(8分)设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.参考答案与解析一、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A二、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2。
七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。
第六章数据的收集与整理单元练习2024-2025学年北师大版数学七年级上册
第六章数据的收集与整理单元练习2024-2025学年北师大版数学七年级上册一、单选题1.要反应中国在最近五届奥运会上获得奖牌数量的变化情况应选择()A.条形统计图B.扇形统计图C.折线统计图D.以上均不是2.下列采用的调查方式中,不合适的是()A.调查全省中学生视力和用眼卫生情况,采用抽样调查B.检查神舟飞船十七号的零部件,采用全面调查C.企业招聘时对应聘人员进行面试,采用抽样调查D.了解某班学生的身高,采用全面调查3.为了了解某学校七年级495名学生的视力情况,从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A.495名学生是总体B.每名学生是个体C.50名学生是所抽取的一个样本D.这个样本容量是504.梅里雪山是云南的第一高峰,有着“中国最美的十大名山”的美誉,其著名的“日照金山”是很多人梦寐以求难得一见的胜景.某校为了解全校学生最喜欢在哪个季节去梅里雪山国家公园游玩,随机抽取若干名学生进行调研,有关信息如下统计图:下列判断错误的是()A.共随机调查了60名学生;B.喜欢在秋季去梅里雪山国家公园游玩的人数比喜欢在冬季去的人数多10;C.喜欢在春季去梅里雪山国家公园游玩的人数最多;D.喜欢在夏季去梅里雪山国家公园游玩的人数占总人数的25%.5.为了估计一片牧场里老鼠的数量,从牧场中捕获60只老鼠,做上记号,然后放回牧场,几天后再捕获第二批老鼠100只,发现其中带有标记的老鼠5只,估计这片牧场中约有老鼠的只数为()A.1000B.1200C.1500D.8006.为了解某校七年级900名学生每天花费在数学学习上的时间,随机抽取了100名学生进行调查,以下说法正确的是()A.样本容量是100B.每名学生是个体C.从中抽取的100名学生是样本D.七年级900名学生是总体7.某商场为了解用户最喜欢的家用电器,设计了如下尚不完整的调查问卷:该商场准备在“①制冷电器,①微波炉,①冰箱,①电饭锅,①空调,①厨房电器”中选取四个作为问卷问题的备选项目,你认为最合理的是()调查问卷________年________月________日你最喜欢的一种家用电器是()(单选)A B C DA.①①①①B.①①①①C.①①①①D.①①①①8.某校为了了解全校学生对“智能杭州”的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.根据以上的信息,给出下列判断:①参加问卷调查的学生有50人;①参加问卷调查的学生中,“基本了解”的有10人;①扇形图中“基本了解”部分的扇形的圆心角的度数是108°;①在参加问卷调查的学生中,“了解”的学生人数占10%.其中结论正确的序号是()A .①①①B .①①①C .①①①D .①①①9.某学校课外活动小组为了解同学们喜爱的电影类型,设计了如下的调查问卷(不完整):准备在“①国产片,①科幻片,①动作片,①喜剧片,①亿元大片”中选取三个作为该问题的备选答案,选取合理的是( ) 调查问卷 年 月你平时最喜欢的一种电影类型是( )(单选) A . B . C . D .其他 A .①①①B .①①①C .①①①D .①①①10.为了解学生上学的交通方式,刘老师在九年级800名学生中随机抽取了60名进行问卷调查,并将调查结果制作成如下统计表,估计该年级学生乘坐公交车上学的人数为( )A .100B .200C .300D .40011.小明为了解同学们的课余生活,设计如下调查问卷:小莉认为选项不合理,应该删去的一项是( )A .①B .①C .①D .①12.为了解某小区居民的家庭月平均用水量的情况,物业公司从该小区1500户家庭中随机抽取150户家庭进行调查,统计了他们的月平均用水量,将收集的数据整理成如下的统计图表:根据统计图表得出以下四个结论,其中正确的是( )A .本次调查的样本容量是1500B .这150户家庭中月平均用水量为7≤x <9的家庭所占比例是30%C .在扇形统计图中,月平均用水量为11≤x <13的家庭所对应圆心角的度数是95°D .若以各组组中值(各小组的两个端点的数的平均数)代表各组的实际数据,则这150户家庭月平均用水量的众数是12 二、填空题13.数据处理的一般过程包括:→ → →分析数据→得出结论,则下列选项处依次填入划线处,正确的顺序是 .(填上序号)①描述数据①收集数据①整理数据14.一个袋中有黑球15个,白球若干个,小明从袋中随机摸出10个球,记下其中黑球的数目,再把他们放回,搅匀后重复上述过程共20次,发现一共摸出黑球20个,由此你能估计出袋中白球数是个.15.一个瓶子中装有一些豆子,从瓶子中取出50粒豆子,给这些豆子做记号,把这些豆子放回瓶子中,充分摇匀,从瓶子中再取出30粒豆子,其中有记号的有2粒,则瓶子中的豆子总数约为粒.16.某校举行“大赞美丽山西,我为家乡代言”活动,同学们积极参加.如图,这是七(1)班同学6月份连续7天投稿数量的折线统计图,则稿件数量不少于5件共有天.17.某校为开展“阳光体育”活动,组织调查了该校50名学生各自最喜爱的一项体育活动,制成了如图所示的扇形统计图.全校共有3000名学生,估计该学校选择篮球的学生有名.18.某校有2000学生,想要了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,特进行了抽样调查.现将调查结果用条形图描述如图,则抽取的样本的容量为,可推测其中最受全校学生喜爱的节目是,若将该统计结果用扇形图来描述,则“动画”对应扇形的圆心角为.(填度数)三、解答题19.小李在家门口进行了一项社会调查,对从家门口经过的车辆进行记录,分析出本地车与外地车辆的数据(1)在这过程中他要收集哪些数据?(2)设计出记录用的表格.20.为满足学生锻炼身体的需求,学校将大批量添置运动器械,在购买之前对学生进行了调查,找出学生最喜欢的体育项目,然后按比例分配资金.在开始调查前应考虑好如下一些问题:(1)你要调查的问题是什么?(2)你要调查哪些人?(3)你用什么方法调查?(4)向你的调查对象提出哪些问题?21.期中考试结束后,数学课代表小丽在计算全班50名同学的数学平均成绩时,按简单随机抽样法抽出了10名同学的数学成绩,发现这10名同学的成绩均处于全班上游.使用简单随机抽样的方法,既然能抽到全班成绩较好的10名同学的成绩作为样本,当然也有可能抽到恰为全班成绩较差的10名同学的成绩作为样本,于是小丽质疑“简单随机抽样方法不可靠”.你的看法如何?22.某报纸上刊登了一则新闻,“某种品牌的节能灯的合格率为95%”,请据此回答下列问题:(1)这则新闻________(填“能”或“不能”)说明市面上所有这种品牌的节能灯恰有5%为不合格,这则消息来源于________(填“普查”或“抽样调查”);(2)如果已知在这次检查中合格产品有76个,则共有多少个节能灯接受检查? (3)如果此次检查了两种产品,数据如下表所示,有人由此认为“A 品牌的不合格率比B 品牌低,更让人放心”,你同意这种说法吗?为什么?23.某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)补全条形图,并计算“讲解题目”组所在扇形的圆心角的大小是________; (3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?24.某商场试销A 、B 两款型号的洗碗机,四个月共售出400台.试销结束后,该商场想从中选择一款洗碗机进行经销,请根据提供的两幅统计图完成下列问题.(1)第四个月销量占总销量的百分比是 %; (2)通过计算补全洗碗机月销量的折线统计图;(3)结合折线统计图,判断该商场应选择哪款洗碗机进行经销?请说明理由. 25.某单位食堂为全体960名职工提供了A ,B ,C ,D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A 套餐的人数为________,扇形统计图中“C ”对应扇形的圆心角的大小为________°;(2)依据本次调查的结果进行采访,估计从全体960名职工中随机找到最喜欢B 套餐的人的概率;。
人教版七年级数学上册第六章达标测试卷含答案
人教版七年级数学上册第六章达标测试卷七年级数学上(R版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.下列图形中,与其他三个不同类的是()A BC D2.[2023郴州]下列几何体中,从三个方向看到的图形完全一样的是()A BC D3.当我们在教室中排课桌时,有时在最前和最后的课桌旁拉一根长绳,沿着长绳排列能使课桌排的更整齐,这样做的数学道理是()A.两点之间,线段最短B.垂线段最短C.点动成线D.两点确定一条直线4.[教材P159习题T8变式2024长春期末]学校组织学生参观一汽红旗汽车生产线,感受一汽人创业、守业、拓业的红旗精神.某同学在活动结束后,将“执着的扛旗人”六个汉字分别写在一个正方体的表面上,如图是它的一种展开图,则在原正方体中,与“旗”字所在面相对的面上的汉字为()(第4题)A.执B.着C.的D.扛5.如图,点C是线段AB的中点,AB=6 cm.如果点D是线段AB上一点,且BD=1 cm,那么CD的长为()(第5题)A.1 cm B.2 cm C.3 cm D.4 cm 6.[2024吕梁一模]如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.已知∠AOB=110°,∠BOC=60°,则∠MON的度数为()(第6题)A.50°B.75°C.60°D.55°7.[教材P71例1变式新情境生活应用]嘉淇乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间的距离是1 km(最小圆的半径是1 km),下列关于小艇A,B的位置描述,正确的是()A.小艇A在游船的北偏东60°方向上,且与游船的距离是3 kmB.游船在小艇A的南偏西60°方向上,且与小艇A的距离是3 kmC.小艇B在游船的北偏西30°方向上,且与游船的距离是2 kmD.游船在小艇B的南偏东60°方向上,且与小艇B的距离是2 km8.[教材P179习题T11变式]将一副直角三角尺按如图所示的不同方式摆放,则图中锐角∠α与∠β相等的是()A BC D9.[新考法折叠法法2024驻马店期末]如图,已知∠AOB=130°,以点O为顶点作直角∠COB,以点O为端点作一条射线OD.通过折叠的方法,使OD与OC重合,然后展开,OB落在OB'处,OE为折痕,若∠COE=15°,则∠AOB'=()(第9题)A.30°B.25°C.20°D.15°10.[ 2024长春双阳区期末]如图,已知O为直线AB上一点,将直角三角板的直角顶点放在点O处,若OC是∠MOB的平分线,则下列结论正确的是()(第10题)A.∠AOM=3∠NOC B.∠AOM=2∠NOCC.2∠AOM=3∠NOC D.3∠AOM=5∠NOC二、填空题(每题4分,共24分)11.国扇文化有着深厚的文化底蕴,历来中国有“制扇王国”之称.打开折扇时,随着扇骨的移动形成一个扇面,如图,这种现象可以用数学原理解释为.(第11题)12.已知∠1=4°18',∠2=4.4°,则∠1∠2.(填“>”“<”或“=”) 13.如图,∠AOC=90°,点B,O,D在同一直线上,若∠1=26°,则∠2的度数为.(第13题)14.[教材P172练习T1变式]下午3:40时,时钟上分针与时针的夹角是度.15.[新考法分类讨论法]已知线段AB=30 cm,点P沿线段AB自点A向点B以2 cm/s的速度运动,同时点Q沿线段BA自点B向点A以3 cm/s的速度运动,则s后,P,Q两点相距10 cm.16.[新考法分类讨论法2024南阳期中]如图,已知∠AOB=90°,射线OC绕点O从OA 位置开始,以每秒3°的速度顺时针旋转,同时,射线OD绕点O从OB位置开始,以每秒1°的速度逆时针旋转,并且当OC与OA成180°角时,OC与OD同时停止旋转.在旋转的过程中,秒后,OC与OD的夹角是30°.(第16题)三、解答题(共66分)17.(8分)[教材P166练习T1变式]如图,在同一平面内有四个点A,B,C,D,请按要求完成下列问题(不要求写出画法).(1)作射线AC;(2)作直线BD与射线AC相交于点O;(3)分别连接AB,AD;(4)我们容易判断出线段AB+AD与BD的大小关系是,理由是.18.(10分) [新考法折叠法2024泉州泉港区期末]下图是一个正方体的表面展开图,已知在原正方体中,相对面上的数的和为8,求-2xy+z的值.AB 19.(10分)[2023嘉兴模拟]已知点B在线段AC上,点D在线段AB上,如图,若BD=14 CD,E为线段AB的中点,EC=12 cm,求线段AC的长度.=1320.(12分) [新考法分类讨论法]已知点A在数轴上对应的数为a,点B对应的数为b,A,B之间的距离记作AB,且|a+4|+(b-10)2=0.(1)求线段AB的长;(2)设点P在数轴上对应的数为x,当PA+PB=20时,求x的值.21.(12分) [新视角规律探究题]欧拉公式讲述的是多面体的顶点数(V)、面数(F)、棱数(E)之间存在的等量关系.(1)如图,通过观察图中几何体,完成下列表格:多面体顶点数(V) 面数(F) 棱数(E)四面体 4 4五面体 5 8六面体8 6(2)通过对如图所示的多面体的归纳,请你补全欧拉公式:V+F-E=.【实际应用】(3)足球一般由32块黑白皮子缝合而成,且黑色的是正五边形,白色的是正六边形.如果我们近似地把足球看成一个多面体.你能利用欧拉公式计算出正五边形和正六边形各有多少块吗?请写出你的解答过程.22.(14分)[新趋势学科内综合]如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC∶∠BOC=1∶2,∠MON的一边OM在射线OB上,另一边ON在直线AB的下方,且∠MON=90°.(1)如图,求∠CON的度数;(2)将图中的∠MON绕点O以每秒6°的速度逆时针旋转一周,在旋转的过程中,若直线ON 恰好平分锐角∠AOC,求∠MON的运动时间t;(3)在(2)的条件下,当∠AOC与∠NOC互余时,请直接写出∠BOC与∠MOC之间的数量关系.参考答案一、1. C2. D3. D4. B5. B6. D7. D8. B9. C10. B点拨:因为∠MON=90°,所以∠BON=90°-∠AOM.因为OC是∠MOB的平分线,所以∠MOB=2∠BOC.所以∠AOM=180°-∠MOB=180°-2∠BOC=180°-2∠BON-2∠NOC=180°-2(90°-∠AOM)-2∠NOC=2∠AOM-2∠NOC.所以∠AOM=2∠NOC.二、11.线动成面12.<13.116°14.130点拨:因为时针每小时走30°,分针每分钟走6°,所以下午3:40时,分针与×30°)=130°.时针的夹角为40×6°-(3×30°+406015.4或8点拨:设x s后,P,Q两点相距10 cm.由题意得2x+3x+10=30或2x+3x-10=30,解得x=4或x=8.所以4 s或8 s后,P,Q两点相距10 cm.16.15或30点拨:设t秒后,OC与OD的夹角是30°,则∠AOC=3t°,∠BOD=t°.①如图①,因为∠AOB=90°,所以∠AOC+∠COD+∠BOD=90°,即3t°+30°+t°=90°,解得t=15.②如图②,因为∠AOB=90°,所以∠AOC-∠COD+∠BOD=90°,即3t°-30°+t°=90°,解得t=30.综上可知,15秒或30秒后,OC与OD的夹角是30°.三、17.解:(1)(2)(3)如图所示.(4)AB+AD>BD;两点之间,线段最短18.解:将这个展开图折成正方体,则“5”与“y”是相对面,“x”与“2”是相对面,”与“-1”是相对面.“z3因为相对面上的数的和为8,所以5+y=8,x+2=8,z-1=8.3所以x =6,y =3,z =27.所以-2xy +z =-2×6×3+27=-9. 19.解:设BD =x cm .因为BD =14AB =13CD ,所以AB =4BD =4x cm ,CD =3BD =3x cm . 又因为DC =DB +BC ,所以BC =3x -x =2x (cm ). 又因为AC =AB +BC ,所以AC =4x +2x =6x (cm ). 因为E 为线段AB 的中点, 所以BE =12AB =12×4x =2x (cm ).又因为EC =BE +BC ,所以EC =2x +2x =4x (cm ). 又因为EC =12 cm ,所以4x =12,解得x =3. 所以AC =6×3=18(cm ).20.解:(1)因为|a +4|+(b -10)2=0,所以a +4=0,b -10=0,解得a =-4,b =10. 所以AB =10-(-4)=14.(2)如图①,当P 在点A 左侧时,PA +PB =(-4-x )+(10-x )=20,即-2x +6=20,解得x =-7;如图②,当点P 在点B 右侧时,PA +PB =(x +4)+(x -10)=20,即2x -6=20,解得x =13;如图③,当点P 在点A 与点B 之间时,PA +PB =(x +4)+(10-x )=20,不存在这样的x 值,舍去.综上所述,x 的值是-7或13.21.解:(1)6;5;12(2)2(3)设正五边形有x 块,则正六边形有(32-x )块,由题意得F =32,E =5x+6(32-x )2=-12x +96,所以V =E ÷3×2=-13x +64. 根据欧拉公式V +F -E =2, 得-13x +64+32-(-12x +96)=2,解得x=12,则32-x=20.所以正五边形有12块,正六边形有20块.22.解:(1)因为∠AOC∶∠BOC=1∶2,∠AOC+∠BOC=180°,×180°=60°.所以∠AOC=13因为∠MON=90°,所以∠AON=90°,所以∠CON=∠AOC+∠AON=60°+90°=150°.(2)若直线ON恰好平分锐角∠AOC,则分两种情况:①如图a,易知ON沿逆时针旋转的度数为60°,所以t=60°÷6°=10(s).②如图b,易知ON沿逆时针旋转的度数为90°+150°=240°,=40(s).所以t=240°6°综上所述,∠MON的运动时间t为40 s或10 s.(3)∠BOC+∠MOC=180°或∠BOC=∠MOC.。
人教版(2024)七年级上册数学第六章学业质量评价试卷(含答案)
人教版(2024)七年级上册数学第六章学业质量评价试卷时间:120分钟满分:120分班级:________ 姓名:________ 分数:________一、单项选择题(本大题共12小题,每小题3分,共36分)1.下列几何图形中,是棱锥的是()2.下列图形中,∠1和∠2互为余角的是()3.如图的几何体由5个相同的小正方体搭成.从上面看,这个几何体的形状是()4.把一枚硬币竖立在桌面上,然后快速旋转该硬币后所形成的几何体是()A.圆柱B.圆锥C.球D.正方体5.下列说法中正确的是()A.直线比射线长B.两条射线组成的图形叫角C.连接两点间的线段的长度,叫作两点间的距离D.若AB=AC,则点B为AC的中点6.如图,长度为18 cm的线段AB的中点为M,C是线段MB的三等分点,则线段AC的长为()A.3 cmB.6 cmC.9 cmD.12 cm7.上午8:40是第一节课的下课时间,这时钟表上时针和分针之间的夹角是()A.10°B.20°C.30°D.40°8.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,则下列序号中不应剪去的是()A.3B.2C.6D.19.若一个锐角和它的余角的大小之比是5∶4,则这个锐角的补角的度数是()A.100°B.120°C.130°D.140°10.如图,甲、乙两人同时从A地出发,沿图示方向分别步行前进到B,C两地,现测得∠BAC为100°,B地位于A地的北偏东50°方向,则C地位于A地的()。
部编数学七年级下册【单元测试】第六章实数(综合能力拔高卷)(解析版)含答案
人教版七年级数学下册【单元测试】第六章实数(综合能力拔高卷)(考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时90分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题:本题共10个小题,每小题2分,共20分。
在每小题给出的四个选项中只有一项是符合题目要求的。
a-是16的平方根,则a的值为()1.(2021·全国·七年级期末)若3A.4B.4±C.256D.1-或7【答案】D【分析】根据平方根的定义得到a-3=4,或a-3=-4,即可求出a的值.a-是16的平方根,【详解】解:∵3∴a-3=4或a-3=-4,∴a=7或a=-1.故选:D【点睛】本题考查了平方根的定义,熟知16的平方根是±4是解题关键.2.(2020·江苏昆山·七年级期中)下列各数:1,π3数的个数为()A.2B.3C.4D.5【答案】A【分析】根据无理数的定义:“无限不循环的小数是无理数”逐个分析判断即可.【详解】解:1,3p ==13,是有理数,,p 2个,故选A【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有p 的数.3.(2022·江苏无锡·七年级期末)下列各式中,正确的是( )A .4=±B 3=±C 3=D 4=-【答案】A【分析】根据平方根、算术平方根、立方根的定义逐项分析即可.【详解】解:A.4±,正确;3=,故不正确;3=-,故不正确;4=,故不正确;故选A .【点睛】本题考查了平方根、算术平方根、立方根的定义,熟练掌握定义是解答本题的关键.4.(2021·广西三江·七年级期中)若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数【答案】B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B .【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.5.(2021·广东·深圳市沙井中学七年级期中)下列判断中,你认为正确的是( )A .0的倒数是0B .2p是分数C .34D 3【答案】C【分析】根据倒数的概念即可判断A 选项,根据分数的概念即可判断B 选项,根据无理数的估算方法即可判断C 选项,根据算术平方根的概念即可判断D 选项.【详解】解:A 、0不能作分母,所以0没有倒数,故本选项错误;B 、2p属于无理数,故本选项错误;C 、因为 9<15<16,所以 34,故本选项正确;D 3,故本选项错误.故选:C .【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.6.(2021·福建福安·七年级期中)点A 在数轴上的位置如图所示,则点A 表示的数可能是( )A B C D 【答案】A 【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A 表示的数在4至4.5之间,A 、∵16<18<20.25,∴,故该选项符合题意;B 、∵9<10<16,∴,故该选项不符合题意;C 、∵20.25<24<25,∴,故该选项不符合题意;D 、∵25<30<36,∴,故该选项不符合题意;故选:A .【点睛】本题考查实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.7.(2021·广西港口·七年级期中)﹣π,﹣3A .3p -<-<<B .3p -<-<<C .3p -<-<<D .3p -<-<<【答案】B【分析】根据实数的大小比较法则即可得.【详解】解: 3.1430p -»-<-<,1.5<=,1.5>=,则3p -<-<<故选:B .【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.8.(2021·吉林珲春· )A .3与4B .4与5C .5与6D .12与13【答案】B【分析】估算即可得到结果.【详解】解:162225<<Q ,\45<<,故选:B .【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.9.(2021·河南伊川·七年级期中)有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A B.2C D.【答案】C【分析】直接利用立方根以及算术平方根、无理数分析得出答案.【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2,即y=.故选:C.【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.10.(2022·北京·七年级期末)我国明朝数学家程大位所著的《算法统宗》中介绍了一种计算乘法的方法,称为“铺地锦”.例如,如图1所示,计算31×47,首先把乘数31和47分别写在方格的上面和右面,然后以31的每位数字分别乘以47的每位数字,将结果计入对应的格子中(如3×4=12的12写在3下面的方格里,十位1写在斜线的上面,个位2写在斜线的下面),再把同一斜线上的数相加,结果写在斜线末端,最后把得数依次写下来是1457,即31×47=1457.如图2,用“铺地锦”的方法表示两个两位数相乘,则a的值是()A.5B.4C.3D.2【答案】A【分析】根据“铺地锦”的定义计算即可.【详解】解:设3下面的数字为x根据“铺地锦”的定义310a x a =+,解得5a x =∵5ax =必须是正整数,且a 为十位上的数字∴5a =故选:A【点睛】本题考查新定义;能够理解新定义,3a 的结果用各位数字正确表示出来是解题的关键.二、填空题:本题共8个小题,每题3分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 平面直角坐标系
一、选择题(4×6=24)
1.坐标平面内下列各点中,在x 轴上的点是 ( ) A 、(0,3) B 、)0,3(- C 、)2,1(- D 、)3,2(--
2.如果
y
x
<0,),(y x Q 那么在( )象限 ( ) A 、 第四 B 、 第二 C 、 第一、三 D 、 第二、四 3.已知03)2(2
=++-b a ,则),(b a P --的坐标为 ( ) A 、 )3,2( B 、 )3,2(- C 、 )3,2(- D 、 )3,2(-- 4.若点),(n m P 在第三象限,则点),(n m Q --在 ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 5. 如图:正方形ABCD 中点A 和点C 的坐标分别为 )3,2(-和)2,3(-,则点B 和点D 的坐标分别为(
A 、)2,2(和)3,3(
B 、)2,2(--和)3,3(
C 、 )2,2(--和)3,3(--
D 、 )2,2(和)3,3(--
6.已知平面直角坐标系内点),(y x 的纵、横坐标满足,则点),(y x 位 于( )
A 、 x 轴上方(含x 轴)
B 、 x 轴下方(含x 轴)
C 、 y 轴的右方(含y 轴)
D 、 y 轴的左方(含y 轴) 二、填空(2分×28=56分)
7.有了平面直角坐标系,平面内的点就可以用一个 来表示了。
点)4,3(-的横坐标是 ,纵坐标是 。
8.若)4,2(表示教室里第2列第4排的位置,则)2,4(表示教室里第 列 第 排的位置。
9.设点P 在坐标平面内的坐标为),(y x P ,则当P 在第一象限时x 0 y 0, 当点P 在第四象限时,x 0,y 0。
10.到x 轴距离为2,到y 轴距离为3的坐标为 11.按照下列条件确定点),(y x P 位置:
⑴ 若x=0,y ≥0,则点P 在 ⑵ 若xy=0,则点P 在
⑶ 若022=+y x ,则点P 在 ⑷ 若3-=x ,则点P 在 ⑸ 若y x =,则P 在
12.温度的变化是人们经常谈论的话题。
请你根据右图,讨论某地某天温度变化的情况:
⑴上午9时的温度是 度
12时的温度是 度
⑵这一天最高温度是 度,
是在 时达到的;
最低温度是 度, 是在 时达到的, ⑶这一天最低温度是 ℃,
从最低温度到最高温度
经过了 小时;
⑷温度上升的时间范围为 ,
温度下降的时间范围为
⑸图中A 点表示的是 ,
B 点表示的是
⑹你预测次日凌晨1时的 温度是 。
三、解下列各题 13.(10分)在平面直角坐标系中,描出下列各点, 并将各点用线段依次连接起来:
(2,1) (6,1) (6,3) (7,3)
(2,2) (4,6) (1,3) (2,3)
观察得到的图形,你觉得它像什么?
14.如图:铅笔图案的五个顶点的坐标分别 是(0,1) (4,1) (5,1.5)
(4,2) (0,2)将图案向下平移 2个单位长度,作出相应图案,并写
出平移后相应5点的坐标。
(10分)
15.建立适当的直角坐标系,表示边长为3
时间/时
温度/c ︒
37353325
2421181512963
16.(10分)如图:左右两幅图案关于轴对称,左图案中左右眼睛的坐标分别是)3,2(-,)3,4(-,
嘴角左右端点的坐标分别是)1,2(- ,)1,4(-
⑵你是怎样得到的?与同伴交流。
17.(10分)如图:三角形DEF 是三角形ABC 经过某种变换后得到的图形,分别写出A 与点D ,
点B 与点E ,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M 的坐标),(y x ,那么它的对应点N 的坐标是什么?。