方程与不等式之分式方程知识点
分式方程与分式不等式

分式方程与分式不等式分式方程和分式不等式是高中数学中的重要概念,它们在解决实际问题以及推理证明中有着广泛的应用。
本文将以简洁明了的方式,对分式方程与分式不等式进行全面的介绍和论述。
1. 分式方程在数学中,分式方程是指含有分式的方程,其形式为a/b = c/d,其中a、b、c、d为实数或未知数。
解决分式方程的关键是消除分母,使得方程变为整式方程。
举个例子,考虑分式方程2/x + 1/(x - 1) = 1/x,我们可以通过以下步骤解决这个方程:首先,我们找到方程中的最小公倍数,即x(x-1)。
然后,将方程中每一项的分母都乘以最小公倍数,得到2(x-1) + x = (x-1)(x)。
接下来,我们将方程转化为整式方程,进行多项式的运算。
最后,我们求解得到x = 3,即为原方程的解。
分式方程在代数中有着广泛的应用,特别是在解决比例问题以及抽象问题时起到了重要的作用。
2. 分式不等式分式不等式指的是含有分式的不等式,其形式为a/b > c/d 或 a/b <c/d,其中a、b、c、d是实数或未知数。
解决分式不等式的方法与解决分式方程有些许不同,但思路大致相似。
举个例子,考虑不等式1/x < 2/(x-1),我们可以通过以下步骤解决这个不等式:首先,我们需要确定不等式的定义域。
对于本例而言,由于分母不能为0,所以x ≠ 0, x ≠ 1。
接下来,我们将不等式转化为整式不等式,通过交叉相乘的方式来消除分母。
然后,我们对整式不等式进行求解,得到x > 2,即为原不等式的解。
解决分式不等式时,我们需要特别注意定义域以及分母不为0的限制条件,以保证求解的正确性。
分式不等式在实际问题中有着广泛的应用,比如利润与成本的关系、时间与距离的关系等等,掌握解决分式不等式的方法对于解决这类问题具有重要意义。
总结:本文从分式方程和分式不等式的基本概念出发,对解决这两类问题的方法进行了详细的阐述。
分式方程的关键在于消除分母,转化为整式方程进行求解;而分式不等式的解决则需要注意定义域以及分母不为0的限制条件。
最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第6讲 分式方程

C. 10 - 10=12
1.2x x
B. 10 - 10=0.2
1.2x x
D.10 - 10 =0.2
x 1.2x
返回
数学
6.(2021威海)六一儿童节来临之际,某商店用3 000元购进一批 玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用 3 000元购进的数量比第一次少了10件. (1)第一次每件的进价为多少元? (2)若两次购进的玩具售价均为70元,且全部售完,两次的总利 润为多少元?
(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪 肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
返回
数学
解:(1)设猪肉粽每盒进价 a 元,则豆沙粽每盒进价(a-10)元,
则8
000 a
=
a6-00100,解得
a=40,经检验
a=40
是方程的解.
答:猪肉粽每盒的进价为 40 元,豆沙粽每盒的进价为 30 元.
返回
数学
考点2 分式方程的应用
5.(2021江西)甲、乙两人去市场采购相同价格的同一种商品,
甲用2 400元购买的商品数量比乙用3 000元购买的商品数量
少10件.求这种商品的单价.
解:设这种商品的单价为 x 元/件,由题意得3 000 - 2 400=10,
x
x
解得 x=60,经检验:x=60 是原方程的根.
x+1 x
8.(2010 广东)分式方程 2x =1 的解是 x= 1 .
x+1
返回
数学
9.(2018广东)某公司购买了一批A,B型芯片,其中A型芯片的单 价比B型芯片的单价少9元,已知该公司用3 120元购买A型芯 片的条数与用4 200元购买B型芯片的条数相等. (1)求该公司购买的A,B型芯片的单价各是多少元? (2)若两种芯片共购买了200条,且购买的总费用为6 280元,求 购买了多少条A型芯片?
分式方程与分式不等式

分式方程与分式不等式通常情况下,分式方程与分式不等式是我们在初中数学学习过程中需要掌握的重要知识点。
本文将对分式方程与分式不等式进行详细介绍,包括定义、求解方法以及一些应用实例。
一、分式方程分式方程是指方程中含有分式的等式。
通常表现为分式中含有未知数,并且需要求解该未知数的值。
在解分式方程时,首先需要将方程中的分式转化为通分式,然后将等式两边进行化简,最后得到未知数的值。
举例说明:1. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{6}$首先,通分得到 $\frac{3}{6}x - \frac{9}{12} = \frac{2}{12}x$化简得到 $\frac{3}{6}x - \frac{2}{12}x = \frac{9}{12}$进一步计算得到 $\frac{1}{6}x = \frac{9}{12}$最后得到 $x = \frac{9}{12} \cdot \frac{6}{1} = \frac{3}{2}$因此,方程的解为 $x = \frac{3}{2}$2. 解方程:$\frac{1}{x} + \frac{3}{2} = \frac{5}{4}$首先,通分得到 $\frac{2}{2x} + \frac{3x}{2x} = \frac{5}{4}$化简得到 $\frac{2 + 3x}{2x} = \frac{5}{4}$进一步计算得到 $8 + 12x = 10x$移项得到 $12x - 10x = -8$最后得到 $x = -8$因此,方程的解为 $x = -8$二、分式不等式分式不等式是指方程中含有分式的不等式。
通常表现为分式中含有未知数,并且需要求解该未知数的取值范围。
在解分式不等式时,首先需要将不等式中的分式转化为通分式,然后将不等式两边进行化简,最后得到未知数的取值范围。
举例说明:1. 解不等式:$\frac{2}{3}x + \frac{1}{2} < \frac{5}{4}$首先,通分得到 $\frac{8}{12}x + \frac{6}{12} < \frac{15}{12}$化简得到 $\frac{8x + 6}{12} < \frac{15}{12}$进一步计算得到 $8x + 6 < 15$移项得到 $8x < 9$最后得到 $x < \frac{9}{8}$因此,不等式的解为 $x < \frac{9}{8}$2. 解不等式:$\frac{x}{4} - \frac{1}{3} \geq \frac{5}{6}$首先,通分得到 $\frac{3x}{12} - \frac{4}{12} \geq \frac{10}{12}$化简得到 $\frac{3x - 4}{12} \geq \frac{10}{12}$进一步计算得到 $3x - 4 \geq 10$移项得到 $3x \geq 14$最后得到 $x \geq \frac{14}{3}$因此,不等式的解为 $x \geq \frac{14}{3}$三、分式方程与分式不等式的应用实例1. 实例一:某公司的总资产为450万元,其中固定资产占总资产的四分之一,流动资产为总资产的三分之一。
知识必备02 方程与不等式(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备02方程与不等式(公式、定理、结论图表)考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础.列方程解应用题的常用公式:(1)行程问题:距离=速度×时间;(2)工程问题:工作量=工效×工时;(3)比率问题:部分=全体×比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abh ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.考点二、一元二次方程1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如的一元二次方程.根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中.(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.典例1:已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.【答案】(1)证明:∵不论取何值时,∴,即∴不论取何值时,方程总有两个不相等的实数根..(2)将代入方程,得再将代入,原方程化为,解得.考点三、分式方程1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.典例2:近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程.【答案与解析】解:设今年5月份汽油价格为x元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得,整理,得.解这个方程,得x1=4.8,x2=-3.经检验两根都为原方程的根,但x2=-3不符合实际意义,故舍去.【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a ≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况对于其他情况,可根据学生的接受能力给予渗透.典例3:如图所示,是在同一坐标系内作出的一次函数y1、y2的图象、,设,,则方程组的解是( )A. B. C. D.【思路点拨】图象、的交点的坐标就是方程组的解.【答案】B;【解析】由图可知图象、的交点的坐标为(-2,3),所以方程组的解为【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.不等式组(其中a >b )图示解集口诀(同大取大)(同小取小)(大小取中间)无解(空集) (大大、小小找不到)(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a, 则a=b;④若a2≤0,则a=0;⑤若ab>0或,则a、b同号;⑥若ab<0或,则a、b异号.(2)任意两个实数a、b的大小关系:①a-b>O a>b;②a-b=O a=b;③a-b<O a<b.不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c.典例4:解不等式组并将解集在数轴上表示出来.【思路点拨】此题考查一元一次不等式组的解法,解出不等式组中的每个不等式,根据不等式组解的四种情况,看看属于哪种情况.【答案与解析】解不等式①得:.解不等式②得:x≥-1.所以不等式组的解集为-1≤x<.其解在数轴上表示为如图所示:【总结升华】注意解不等式组的解题步骤.典例5:为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲乙A90盆30盆B40盆100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x个A种造型,则需要搭配(50-x)个B种造型,由题意,得解得30≤x≤32.所以x的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A种造型30个,B种造型20个;A种造型31个,B种造型19个;A种造型32个,B种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题.。
分式方程与分式不等式的解法

分式方程与分式不等式的解法在数学学科中,我们经常会遇到分式方程和分式不等式的求解问题。
分式方程是指含有分数形式的方程,而分式不等式则是含有分数形式的不等式。
本文将介绍分式方程和分式不等式的基本解法。
一、分式方程的解法分式方程的解法可以分为以下几个步骤:1. 将方程中的分式化简为整式,消除分式。
2. 通过移项和合并同类项,将方程转化为一元一次方程。
3. 求解一元一次方程,得到方程的解。
举例说明:假设我们要解以下分式方程:(2/x) + 1 = 5首先,我们将方程中的分式化简为整式:2/x + 1 = 5然后,通过移项和合并同类项,将方程转化为一元一次方程:2 + x = 5x接下来,我们求解一元一次方程,得到方程的解:2 = 5x - xx = 1/2因此,原方程的解为x = 1/2。
二、分式不等式的解法分式不等式的解法可以分为以下几个步骤:1. 将不等式中的分式化简为整式。
2. 根据不等式的性质,进行等价变形。
3. 确定不等式的解集。
举例说明:假设我们要解以下分式不等式:(3/x) - 2 ≥ 1首先,我们将不等式中的分式化简为整式:3/x - 2 ≥ 1然后,根据不等式的性质,进行等价变形:3/x ≥ 3x ≤ 1最后,确定不等式的解集:解集为x ≤ 1。
分式方程的解法包括将分式化简为整式、转化为一元一次方程、求解一元一次方程等步骤。
而分式不等式的解法则包括将分式化简为整式、进行等价变形、确定解集等步骤。
掌握这些解法,我们就能够准确地求解各种类型的分式方程和不等式问题。
通过以上的讲解,我们对分式方程与分式不等式的解法有了更深入的理解。
希望本文对您在学习和应用中有所帮助。
人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
分式方程与分式不等式的解法

分式方程与分式不等式的解法分式方程和分式不等式是涉及分数的方程和不等式,其解法与一般的代数方程和不等式有一些不同之处。
本文将介绍分式方程和分式不等式的解法,并给出一些实例说明。
一、分式方程的解法分式方程是包含有分数的方程,一般形式为:$\frac{a}{x}+\frac{b}{y}=c$解分式方程的一般步骤如下:1. 将方程的两边通分,以消去分母。
2. 将分子相加,将方程转化为一个整式方程。
3. 解得整式方程的解。
4. 检验解,将解代入原方程验证是否成立。
例如,解方程$\frac{3}{x}-\frac{2}{y}=5$:解:首先将方程的两边通分,得到$3y-2x=5xy$。
接着整理方程,得到$5xy+2x-3y=0$。
将该方程转化为整式方程:$5xy+2x-3y=0$。
解得整式方程$5xy+2x-3y=0$的解。
程$5xy+2x-3y=0$的解。
二、分式不等式的解法分式不等式是包含有分数的不等式,一般形式为:$\frac{a}{x}>\frac{b}{y}$解分式不等式的一般步骤如下:1. 将不等式的两边通分,以消去分母。
2. 根据分数的正负和大小关系确定不等式符号。
3. 将分子相减,得到一个整式不等式。
4. 解得整式不等式的解。
5. 检验解,将解代入原不等式验证是否成立。
例如,解不等式$\frac{5}{x}>\frac{2}{y}$:解:首先将不等式的两边通分,得到$5y>2x$。
根据分数的正负和大小关系,确定不等式符号为>。
接着整理不等式,得到$2x-5y<0$。
将该不等式转化为整式不等式:$2x-5y<0$。
解得整式不等式$2x-5y<0$的解。
等式$2x-5y<0$的解。
结论本文简要介绍了分式方程和分式不等式的解法。
对于分式方程,我们通过通分和整理方程,将其转化为整式方程来求解。
对于分式不等式,我们通过通分和整理不等式,将其转化为整式不等式来求解。
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

命题点 2:分式方程解的运用(近 6 年考查 4 次)
5 . (2020 · 荆 门 第
11
题
3
分)已经关于
x
的
分
式
方
程
2x+3 x-2
=
(x-2)k(x+3)+2 的解满足-4<x<-1,且 k 为整数,则符合条件的
所有 k 值的乘积为
(A )
A.正数 B.负数
C.零 D.无法确定
6.★(2021·荆州第 15 题 3 分)若关于 x 的方程 2xx-+2m+x2--1x=3 的解是
【分层分析】设第二次购买材料 x t,由②得第二次购买的单价为x2211x0000
元,由③得第一次购买材料的吨数为 2x2 t,由①,③得第一次购买的
45210000 单价为x 2x
元,由④可列方程为x452x0x00-211000=0021
000 x
.
45 000 解:设第二次购买材料 x t,则第一次购买材料 2x t.根据题意得 2x
周
【考情分析】湖北近 3 年主要考查:1.分式方程的解法,应用分式方程 解决简单的实际问题.分式方程的解法考查形式有:直接解分式方程; 根据分式方程解的情况求字母的值或取值范围;2.分式方程的应用主要 以选择题的形式考查列方程,常在解答题中与不等式、函数的实际应用 结合考查,难度较大,分值一般 3-10 分.
4 是原来每天用水量的5,这样 120 t 水可多用 3 天.求现在每天用水量是 多少吨?
4 解:设原来每天的用水量为 x t,则现在每天的用水量为5x t,由题意可 列方程: 1542x0-1x20=3,解得 x=10, 经检验,x=10 是原方程的解.
44 而5x=5×10=8. 答:现在每天的用水量为 8 t.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程 有实数解,
∴△=4(a−4)2−4a2⩾0,
解得a⩽2
∴满足条件的a的值为−4,−2,−1,0,1,2
方程
解得y= +2
∵y有整数解
∴a=−4,0,2,4,6
综上所述,满足条件的a的值为−4,0,2,
符合条件的a的值的和是−2
故选:C
【点睛】
本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.
A. B.
C. D.
【答案】A
【解析】
设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,
由题意得, .
故选A.
14.若关于x的方程 =3的解为正数,则m的取值范围是()
A.m< B.m< 且m≠
C.m>﹣ D.m>﹣ 且m≠﹣
【答案】B
【解析】
【分析】
【详解】
解:去分母得:x+m﹣3m=3x﹣9,
A. B.
C. D.
【答案】A
【解析】
【分析】
设规定时间为 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.
【详解】
解:设规定时间为 天,则慢马需要的时间为( +1)天,快马的时间为( -3)天,
∵快马的速度是慢马的2倍
∴
故选A.
【点睛】
本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.
A. B.
C. D.
【答案】A
【解析】
【分析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.
【详解】
解:设去年居民用水价格为 元/ ,
根据题意得: ,
故选:A.
【点睛】
此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.
4.下列说法中正确的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
设 种月饼单价为 元,再分别表示出A种月饼和B种月饼的个数,根据“购进 、 两种汾阳月饼共1500个”,列出方程即可.
【详解】
设 种月饼单价为 元,则B种月饼单价为(x-1)元,
根据题意可列出方程 ,
故选C.
【点睛】
本题考查分式方程的应用,读懂题意是解题关键.
【解析】
【分析】
根据题意可得等量关系:原计划种植的亩数 改良后种植的亩数 亩,根据等量关系列出方程即可.
【详解】
设原计划每亩平均产量 万千克,则改良后平均每亩产量为 万千克,
根据题意列方程为: .
故选: .
【点睛】
本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
18.若整数 使得关于 的方程 的解为非负数,且使得关于 的不等式组 至少有四个整数解,则所有符合条件的整数 的和为().
B、9的平方根是±3,该选项错误;
C、抛物线 的顶点坐标为(-1,3),该选项错误;
D、由方程 去分母得: ,
∵关于 的分式方程的解为非负数,
∴ 且 ,
解得: 且 ,该选项错误;
故选:A.
【点睛】
本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.
2.关于x的方程 解为正数,则m的范围为()
A. B. C. D.
【答案】B
【解析】
【分析】
首先解分式方程,然后令其大于0即可,注意还有 .
【详解】
方程两边同乘以 ,得
∴
解得 且
故选:B.
【点睛】
此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.
3.某市从今年1月1日起调整居民用水价格,每立方米水费上涨 ,小丽家去年12月份的水费是 元,而今年5月的水费则是 元,已知小丽家今年5月的用水量比去年12月的用水量多 .求该市今年居民用水的价格.设去年居民用水价格为 元/ ,根据题意列方程,正确的是()
【详解】
根据作图方法可得点P在第二象限角平分线上,
A.17B.18C.22D.25
【答案】C
【解析】
【分析】
表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.
【详解】
解: ,
不等式组整理得: ,
由不等式组至少有四个整数解,得到-1<y≤a,
解得:a≥3,即整数a=3,4,5,6,…,
7.从 , , ,0,1,2,4,6这八个数中,随机抽一个数,记为 .若数 使关于 的一元二次方程 有实数解.且关于 的分式方程 有整数解,则符合条件的 的值的和是()
A. B. C. D.2
【答案】C
【解析】
【分析】
由一元二次方程 有实数解,确定a的取值范围,由分式方程 有整数解,确定a的值即可判断.
8.方程 的解是( )
A.x= B.x= C.x= D.x=
【答案】B
【解析】
【分析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
解:去分母得:2x2+2x=2x2﹣3x+1,
解得:x= ,
经检验x= 是分式方程的解,
故选B.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
20.如图,在平面直角坐标系中,以 为圆心,适当长为半径画弧,交 轴于点 ,交 轴于点 ,再分别一点 为圆心,大于 的长为半径画弧,两弧在第二象限交于点 .若点 的坐标为 ,则 的值为( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得 ,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.
2- ,
去分母得:2(x-2)-3=-a,
解得:x= ,
∵ ≥0,且 ≠2,
∴a≤7,且a≠3,
由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.
故选:C.
【点睛】
此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
19.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为 天,则可列方程为()
故选:A.
【点睛】
此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.
11.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线小时,根据题意,得
17.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为 万千克,根据题意,列方程为
A. B.
C. D.
【答案】A
A. B. C. D.
【答案】D
【解析】
【分析】
根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.
【详解】
解:把x=4代入方程 ,得
,
解得a=10.
经检验,a=10是原方程的解
故选D.
点睛:此题考查了分式方程的解,分式方程注意分母不能为0.
13.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为().
整理得:2x=﹣2m+9,解得:x= ,
已知关于x的方程 =3的解为正数,
所以﹣2m+9>0,解得m< ,
当x=3时,x= =3,解得:m= ,
所以m的取值范围是:m< 且m≠ .
故答案选B.
15.如果关于x的分式方程 有正整数解,且关于y的不等式组 无解,那么符合条件的所有整数a的和是()
A.﹣16B.﹣15C.﹣6D.﹣4
故选A.
6.若关于 的分式方程 有增根,则 的值是()
A. B.1C.2D.3
【答案】B
【解析】
【分析】
根据分式方程的增根的定义得出x-3=0,再进行判断即可.
【详解】
去分母得:x-2=m,
∴x=2+m
∵分式方程 有增根,
∴x-3=0,
∴x= 3,
∴2+m=3,
所以m=1,
故选:B.
【点睛】
本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.
A. B.
C. D.
【答案】A
【解析】
若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
解:设走路线一时的平均速度为x千米/小时,
故选A.
12.关于 的分式方程 解为 ,则常数 的值为( )