江苏省徐州市2019年中考数学总复习第三单元函数及其图像第16课时二次函数的应用课件

合集下载

2019年徐州中考数学专题复习-题型六 二次函数综合题课件

2019年徐州中考数学专题复习-题型六  二次函数综合题课件

不在坐标轴上的顶点作坐标轴
的垂线
【温馨提示】求四边形的面积时,先判断四边形是否为规则四边形.①规
则四边形直接用面积公式求解;②不规则的四边形用分割法求解.
2. 面积倍数关系:先求出其中一个图形面积,再用含未知数的式子表示
所求图形(另一个图形)的面积,根据两图形间的面积关系,列方程求解;
或用含相同的未知数分别表示两个图形的面积,再用题中等量关系列方程
∵点P与点C不重合,
∴xP≠0.
∴满足条件的点P有3个,坐标分别为(1+ 7 ,3)或(1- 7 ,3)或(2,
-3);
(3)连接BM,CM,求△BCM的面积;
【思维教练】要求△BCM的面积,可将△BCM的面积转化为求两个同底三
角形的面积和.过点M作MN⊥x轴交BC于点N,求得N点坐标,即可求得
面积,而N点坐标通过直线BC解析式可得;
2. 求线段和的最小值或周长最小值时不妨先联想到用“对称性质”,把要求
的某些线段集中在一起,根据“两点之间线段最短”来解决.有以下两种模
型:
(1)一线两点型(如图①)
已知一直线及直线同侧两点,在直线上找一点使其到已知两点的距离的和
最小,通常作其中一点关于直线的对称点,对称点与另一点的连线与直线
的交点即为所求点.
1 2 5 1 ∴MH=- 2 m + 2 m-2- 2 m+2 1 =- 2 m2+2m =- 1 (m-2)2+2, 2
1 2
m2+
5 2
1 m-2),点H坐标为(m,2
m-2),
∴当m=2时,MH有最大值,最大值为2;
(3)设点G是y轴上一点,点D是抛物线的顶点,是否存在点G,使得GD+
GB的值最小;若存在,求出点G的坐标;若不存在,请说明理由;

中考数学总复习 第三单元 函数及其图象 课时16 二次函

中考数学总复习 第三单元 函数及其图象 课时16 二次函

(1)求y与x之间的函数关系式,并写出自变量x的取值范围.
(2)若矩形空地的面积为160 m2,求x的值.
(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地
面积如下表),问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理
课前考点过关 考点自查
考点 用二次函数的性质解决实际问题 二次函数的应用关键在于建立二次函数的数学模型,利用二次函数解决实际问题,常见的是根据二次函 数的最值确定最大利润、最优方案等问题.
【疑难典析】在实际问题中,自变量的取值往往受到制约,不要忽视自变量的取值范围,要在其允许的范 围内取值.
课堂互动探究
第三单元 函数及其图像
课时 16 二次函数的实际应用
课前考 1. [2018·衡阳] 一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已 知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的 销售量y(件)与销售价x(元/件)之间的函数关系如图16-1. (1)求y与x之间的函数关系式,并写出自变量x的取值范围. (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件 销售价为多少元时,每天的销售利润最大,最大利润是多少?
A. 10 m B. 15 m
C. 20 m D. 22. 5 m
【答案】B
������ = 54, 【解析】由题意得 400������ + 20������ + ������ = 57.9,
1600������ + 40������ + ������ = 46.2,

2019年中考数学总复习课件:二次函数的图象与性质(共39张PPT)教育精品.ppt

2019年中考数学总复习课件:二次函数的图象与性质(共39张PPT)教育精品.ppt

★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2

(江苏专版)2019年中考数学一轮复习第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材(pdf)

(江苏专版)2019年中考数学一轮复习第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材(pdf)

需要根据二次函数的性质确定最值的大小.
若给出函数的自变量的取值范围, 或函数的对称轴不定, 则
例 2㊀ ( 2017 四川乐山, 9, 3 分 ) 已知二次函数 y = x 2 - 2mx ( m 为常数) , 当 - 1ɤ x ɤ2 时, 函数值 y 的最小值为 - 2, 则 m 的 值是 3 A. 2 3 B. 2 C. 或 2 2 2 2 2 解析㊀ y = x -2mx = ( x - m) - m , 3 D.- 或 2 2 (㊀ ㊀ )
b 4ac - b 2 b , ,对称轴是直线 x = - . 2a 4a 2a
)
b 2a
-b ( aʂ0) , ) + 4ac 4a
2 2
A.(1,-5)
( m,- m2 -4) ,ʑ Mᶄ的坐标为 ( - m, m2 + 4) ,ȵ 点 Mᶄ 在抛物线上, ʑ m2 +2m2 -4 = m2 + 4,ʑ m2 = 4. ȵ m > 0,ʑ m = 2,ʑ M ( 2, -8) , 故 选 C. ㊀ ㊀ 变式训练㊀ ( 2018 陕西,10,3 分) 对于抛物线 y = ax 2 +( 2a - 1) x + a -3,当 x = 1 时,y >0,则这条抛物线的顶点一定在 ( ㊀ ㊀ ) A. 第一象限 C. 第三象限 答案㊀ C B. 第二象限 D. 第四象限 答案㊀ C
a <0
(
对称轴方 b ㊀ 2a
b >0,对称轴在 y 轴������ ������㊀ 左侧㊀; ������ a b <0,对称轴在 y 轴������ ������㊀ 右侧㊀ ������ a
程为 x = ������ ������㊀- ������
)
图象

决定 抛 物 线 与 y 轴 交点的位置

江苏省徐州市2019年中考数学总复习第三单元函数及其图像第15课时二次函数与一元二次方程及不等式课件

江苏省徐州市2019年中考数学总复习第三单元函数及其图像第15课时二次函数与一元二次方程及不等式课件

Δ>0
Δ=0
Δ<0
一切实数 无解
无解
课前双基巩固
对点演练
题组一 必会题
1. [2018· 滨州] 如图 15-1,若二次函数 y=ax2+bx+c(a≠0) 图像的对称轴为直线 x=1,与 y 轴交于点 C,与 x 轴交 于点 A,点 B(-1,0).则①二次函数的最大值为 a+b+c;
[答案] B [解析] 由图像可知,当 x=1 时,函数取到最大值, 最大值为:a+b+c,故①正确;因为抛物线经过点 B(-1,0),所以当 x=-1 时,y=a-b+c=0,故②错误;因 为该函数图像与 x 轴有两个交点 A,B,所以 b2-4ac>0,故③错误;因为点 A 与点 B 关于直线 x=1 对称,所以 A(3,0),根据图像可知,当 y>0 时,-1<x<3,故④正确.故选 B.
部分对应值如下表: x … -1 0 y … 10 5 则当 y<5 时,x 的取值范围是 1 2 2 1 . 3 … 2 …
而减小,故抛物线的开口向上,当 x=0 时,y=5,由抛物线的对称性知,当 x=4 时,y=5,则当 y<5 时,0<x<4.
高频考向探究
[方法模型] 根据抛物线的对称性,在表格中找出顶点坐标,再由函数的增减性确定开口方向,然后就能由 y 的范 围确定 x 的范围,或由 x 的范围来确定 y 的范围了.
对称轴为③ y 对称轴在 y 轴左侧 对称轴在 y 轴右侧 经过④ 原点 与 y 轴正半轴相交 与 y 轴负半轴相交
课前双基巩固
(续表)
b2-4ac=0 b2-4ac b2-4ac>0 b2-4ac<0 与 x 轴有唯一交点(顶点) 与 x 轴有两个不同交点 与 x 轴没有交点 当 x=1 时,y=a+b+c 特殊关系 当 x=-1 时,y=a-b+c 若 a+b+c>0,则当 x=1 时,y>0 若 a-b+c>0,则当 x=-1 时,y>0

2019届中考数学复习 第三章 函数 3.4 二次函数课件PPT

2019届中考数学复习 第三章 函数 3.4 二次函数课件PPT

陕西考点 解读
考点3 二次函数图像的平移规律
【特别提示】
陕西考点解读
1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方 2.涉及抛物线的平移时,先将一般式转化为顶点式,即y=a(x-h)2+k的形式。 3.抛物线的平移主要看顶点的平移,抛物线y=ax2的顶点是(0,0),抛物线y=ax2+k的顶 抛物线y=a(x-h)2的顶点是(h,0),抛物线y=a(x-h)2+k的顶点是(h,k)。我们只需在坐标 几个顶点,即可看出平移的方向。 4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移。
陕西考点 解读
陕西考点 解读
【提分必练】
陕西考点解读
1.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),
有下列结论:①抛物线过原点;② 4a+b+c=0;③a-b+c<0;④抛物线的顶点坐标为
y随x的增大而增大。其中结论正确的是( )
A.①②③
C
解得
∴二4a a次k函k3数,0,的解析式 ak 为 4y。1=,-(x+1)2+4=-x2-2x+3。故选D。
பைடு நூலகம் 陕西考点解 读
5.已知二次函数y有最大值4,且图像与x轴的两交点间的距离是8,对称轴为直
此二次函数的解析式为y=_____________。
- 1 x2 3 x 7 4 24
【解析】∵该函数图像与x轴的两交点间的距离是8,对称轴为直线x=-3,∴
陕西考点解读
【提分必练】
4.若二次函数的部分图像如图,对称轴是直线x=-1,则这个二次函数的解析式为( )

第16课时 二次函数的实际应用 课件 2025年中考数学一轮总复习

第16课时 二次函数的实际应用   课件 2025年中考数学一轮总复习
考点四 抛物线的实际应用例4 (1)(2024·天津)从地面竖直向
上抛出一小球,小球的高度h(m)与
小球的运动时间t(s)之间的关系式是
h=30t-5t2(0≤t≤6).有下列结论:①小球从抛出到落地需要6s;②小球运动中的高度可以是30m;③小球运动2s时的高度小于运动5 s时的
高度.
其中,正确结论的个数是( C )
(2)y=-2x2-16x+3(-1≤x≤2).
[答案] 解:(2)y=-2x2-16x+3=
-2(x+4)2+35.当-1≤x≤2时,y随x的增大而减小,∴当x=-1时,y取最大值17;当x=2时,y取最小值-37.
考点二 利用二次函数模型解决几何面
积问题
例2 (1)如图,在等腰直角三角形
ABC中,∠A=90°,BC=8,点D,
(2)若小球离地面的最大高度为20m,
求小球被发射时的速度;
解:(2)根据题意,得当t= 时,h=20,∴-5× +v0× =20,∴v0=20m/s(负值舍去).
(3)按(2)中的速度发射小球,小球
离地面的高度有两次与实验楼的高度相
同.小明说:“这两次间隔的时间为3s.”已
知实验楼高15 m,请判断他的说法是否
4. (2024·河南)从地面竖直向上发射的
物体离地面的高度h(m)满足关系式h
=-5t2+v0t,其中t(s)是物体运动的
时间,v0(m/s)是物体被发射时的速
度.社团活动时,科学小组在实验楼前从
地面竖直向上发射小球.
(1)小球被发射后 s时离地面的
高度最大(用含v0的式子表示);
∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.
1. 用长12m的铝合金条制成矩形窗框

2019年中考数学第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材

2019年中考数学第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材

b a
>0,对称轴在

轴������������ 左侧 ;
) 程为


������������ -
b 2a
b a
<0,对称轴在

轴������������ 右侧
c = 0,抛物线过������������ 原点 ;
决定抛 轴;
交点的位置
c<0,抛物线与 y 轴交于负半轴
考点 2 二次函数与一元二次方程之间的联系
在二次函数 y = ax2 +bx+c( a≠0) 中,当 y = 0 时,x 的取值就 是一元二次方程 ax2 +bx+c = 0 的解,即 y = ax2 +bx+c 与 x 轴交点 的横坐标就是一元二次方程 ax2 +bx+c = 0 的根.
式:y = a( x-h) 2 +k( a≠0) ,其中顶点坐标为( h,k) ,对称轴为直
线 x = h;
(3)若已知抛物线与 x 轴的交点的坐标,则可设解析式为 y
= a(x-x1) ( x -x2 ) ( a≠0),其中与 x 轴的交点坐标为( x1,0), ( x2 ,0) .
例 3 (2017 广西百色,17,3 分) 经过 A( 4,0) ,B( - 2,0) ,
68
考点 1 二次函数的图象与性质
1.概念:一般地,形如① y = ax2 +bx+c ( a≠0,a,b,c 为常数) 的函数叫做二次函数.
2.二次函数的图象与性质
函数
y = ax2 +bx+c( a≠0)
a>0
a<0
图象
开口方向 对称轴
顶点坐标
② 开口向上
③ 开口向下
④ 直线

(2) 在这 30 天内,哪一天的利润是 6 300 元?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档