江苏省徐州市2019年中考数学总复习第三单元函数及其图像第16课时二次函数的应用课件

合集下载

2019年徐州中考数学专题复习-题型六 二次函数综合题课件

2019年徐州中考数学专题复习-题型六  二次函数综合题课件

不在坐标轴上的顶点作坐标轴
的垂线
【温馨提示】求四边形的面积时,先判断四边形是否为规则四边形.①规
则四边形直接用面积公式求解;②不规则的四边形用分割法求解.
2. 面积倍数关系:先求出其中一个图形面积,再用含未知数的式子表示
所求图形(另一个图形)的面积,根据两图形间的面积关系,列方程求解;
或用含相同的未知数分别表示两个图形的面积,再用题中等量关系列方程
∵点P与点C不重合,
∴xP≠0.
∴满足条件的点P有3个,坐标分别为(1+ 7 ,3)或(1- 7 ,3)或(2,
-3);
(3)连接BM,CM,求△BCM的面积;
【思维教练】要求△BCM的面积,可将△BCM的面积转化为求两个同底三
角形的面积和.过点M作MN⊥x轴交BC于点N,求得N点坐标,即可求得
面积,而N点坐标通过直线BC解析式可得;
2. 求线段和的最小值或周长最小值时不妨先联想到用“对称性质”,把要求
的某些线段集中在一起,根据“两点之间线段最短”来解决.有以下两种模
型:
(1)一线两点型(如图①)
已知一直线及直线同侧两点,在直线上找一点使其到已知两点的距离的和
最小,通常作其中一点关于直线的对称点,对称点与另一点的连线与直线
的交点即为所求点.
1 2 5 1 ∴MH=- 2 m + 2 m-2- 2 m+2 1 =- 2 m2+2m =- 1 (m-2)2+2, 2
1 2
m2+
5 2
1 m-2),点H坐标为(m,2
m-2),
∴当m=2时,MH有最大值,最大值为2;
(3)设点G是y轴上一点,点D是抛物线的顶点,是否存在点G,使得GD+
GB的值最小;若存在,求出点G的坐标;若不存在,请说明理由;

中考数学总复习 第三单元 函数及其图象 课时16 二次函

中考数学总复习 第三单元 函数及其图象 课时16 二次函

(1)求y与x之间的函数关系式,并写出自变量x的取值范围.
(2)若矩形空地的面积为160 m2,求x的值.
(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地
面积如下表),问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理
课前考点过关 考点自查
考点 用二次函数的性质解决实际问题 二次函数的应用关键在于建立二次函数的数学模型,利用二次函数解决实际问题,常见的是根据二次函 数的最值确定最大利润、最优方案等问题.
【疑难典析】在实际问题中,自变量的取值往往受到制约,不要忽视自变量的取值范围,要在其允许的范 围内取值.
课堂互动探究
第三单元 函数及其图像
课时 16 二次函数的实际应用
课前考 1. [2018·衡阳] 一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已 知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的 销售量y(件)与销售价x(元/件)之间的函数关系如图16-1. (1)求y与x之间的函数关系式,并写出自变量x的取值范围. (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件 销售价为多少元时,每天的销售利润最大,最大利润是多少?
A. 10 m B. 15 m
C. 20 m D. 22. 5 m
【答案】B
������ = 54, 【解析】由题意得 400������ + 20������ + ������ = 57.9,
1600������ + 40������ + ������ = 46.2,

2019年中考数学总复习课件:二次函数的图象与性质(共39张PPT)教育精品.ppt

2019年中考数学总复习课件:二次函数的图象与性质(共39张PPT)教育精品.ppt

★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2

(江苏专版)2019年中考数学一轮复习第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材(pdf)

(江苏专版)2019年中考数学一轮复习第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材(pdf)

需要根据二次函数的性质确定最值的大小.
若给出函数的自变量的取值范围, 或函数的对称轴不定, 则
例 2㊀ ( 2017 四川乐山, 9, 3 分 ) 已知二次函数 y = x 2 - 2mx ( m 为常数) , 当 - 1ɤ x ɤ2 时, 函数值 y 的最小值为 - 2, 则 m 的 值是 3 A. 2 3 B. 2 C. 或 2 2 2 2 2 解析㊀ y = x -2mx = ( x - m) - m , 3 D.- 或 2 2 (㊀ ㊀ )
b 4ac - b 2 b , ,对称轴是直线 x = - . 2a 4a 2a
)
b 2a
-b ( aʂ0) , ) + 4ac 4a
2 2
A.(1,-5)
( m,- m2 -4) ,ʑ Mᶄ的坐标为 ( - m, m2 + 4) ,ȵ 点 Mᶄ 在抛物线上, ʑ m2 +2m2 -4 = m2 + 4,ʑ m2 = 4. ȵ m > 0,ʑ m = 2,ʑ M ( 2, -8) , 故 选 C. ㊀ ㊀ 变式训练㊀ ( 2018 陕西,10,3 分) 对于抛物线 y = ax 2 +( 2a - 1) x + a -3,当 x = 1 时,y >0,则这条抛物线的顶点一定在 ( ㊀ ㊀ ) A. 第一象限 C. 第三象限 答案㊀ C B. 第二象限 D. 第四象限 答案㊀ C
a <0
(
对称轴方 b ㊀ 2a
b >0,对称轴在 y 轴������ ������㊀ 左侧㊀; ������ a b <0,对称轴在 y 轴������ ������㊀ 右侧㊀ ������ a
程为 x = ������ ������㊀- ������
)
图象

决定 抛 物 线 与 y 轴 交点的位置

江苏省徐州市2019年中考数学总复习第三单元函数及其图像第15课时二次函数与一元二次方程及不等式课件

江苏省徐州市2019年中考数学总复习第三单元函数及其图像第15课时二次函数与一元二次方程及不等式课件

Δ>0
Δ=0
Δ<0
一切实数 无解
无解
课前双基巩固
对点演练
题组一 必会题
1. [2018· 滨州] 如图 15-1,若二次函数 y=ax2+bx+c(a≠0) 图像的对称轴为直线 x=1,与 y 轴交于点 C,与 x 轴交 于点 A,点 B(-1,0).则①二次函数的最大值为 a+b+c;
[答案] B [解析] 由图像可知,当 x=1 时,函数取到最大值, 最大值为:a+b+c,故①正确;因为抛物线经过点 B(-1,0),所以当 x=-1 时,y=a-b+c=0,故②错误;因 为该函数图像与 x 轴有两个交点 A,B,所以 b2-4ac>0,故③错误;因为点 A 与点 B 关于直线 x=1 对称,所以 A(3,0),根据图像可知,当 y>0 时,-1<x<3,故④正确.故选 B.
部分对应值如下表: x … -1 0 y … 10 5 则当 y<5 时,x 的取值范围是 1 2 2 1 . 3 … 2 …
而减小,故抛物线的开口向上,当 x=0 时,y=5,由抛物线的对称性知,当 x=4 时,y=5,则当 y<5 时,0<x<4.
高频考向探究
[方法模型] 根据抛物线的对称性,在表格中找出顶点坐标,再由函数的增减性确定开口方向,然后就能由 y 的范 围确定 x 的范围,或由 x 的范围来确定 y 的范围了.
对称轴为③ y 对称轴在 y 轴左侧 对称轴在 y 轴右侧 经过④ 原点 与 y 轴正半轴相交 与 y 轴负半轴相交
课前双基巩固
(续表)
b2-4ac=0 b2-4ac b2-4ac>0 b2-4ac<0 与 x 轴有唯一交点(顶点) 与 x 轴有两个不同交点 与 x 轴没有交点 当 x=1 时,y=a+b+c 特殊关系 当 x=-1 时,y=a-b+c 若 a+b+c>0,则当 x=1 时,y>0 若 a-b+c>0,则当 x=-1 时,y>0

2019届中考数学复习 第三章 函数 3.4 二次函数课件PPT

2019届中考数学复习 第三章 函数 3.4 二次函数课件PPT

陕西考点 解读
考点3 二次函数图像的平移规律
【特别提示】
陕西考点解读
1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方 2.涉及抛物线的平移时,先将一般式转化为顶点式,即y=a(x-h)2+k的形式。 3.抛物线的平移主要看顶点的平移,抛物线y=ax2的顶点是(0,0),抛物线y=ax2+k的顶 抛物线y=a(x-h)2的顶点是(h,0),抛物线y=a(x-h)2+k的顶点是(h,k)。我们只需在坐标 几个顶点,即可看出平移的方向。 4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移。
陕西考点 解读
陕西考点 解读
【提分必练】
陕西考点解读
1.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),
有下列结论:①抛物线过原点;② 4a+b+c=0;③a-b+c<0;④抛物线的顶点坐标为
y随x的增大而增大。其中结论正确的是( )
A.①②③
C
解得
∴二4a a次k函k3数,0,的解析式 ak 为 4y。1=,-(x+1)2+4=-x2-2x+3。故选D。
பைடு நூலகம் 陕西考点解 读
5.已知二次函数y有最大值4,且图像与x轴的两交点间的距离是8,对称轴为直
此二次函数的解析式为y=_____________。
- 1 x2 3 x 7 4 24
【解析】∵该函数图像与x轴的两交点间的距离是8,对称轴为直线x=-3,∴
陕西考点解读
【提分必练】
4.若二次函数的部分图像如图,对称轴是直线x=-1,则这个二次函数的解析式为( )

第16课时 二次函数的实际应用 课件 2025年中考数学一轮总复习

考点四 抛物线的实际应用例4 (1)(2024·天津)从地面竖直向
上抛出一小球,小球的高度h(m)与
小球的运动时间t(s)之间的关系式是
h=30t-5t2(0≤t≤6).有下列结论:①小球从抛出到落地需要6s;②小球运动中的高度可以是30m;③小球运动2s时的高度小于运动5 s时的
高度.
其中,正确结论的个数是( C )
(2)y=-2x2-16x+3(-1≤x≤2).
[答案] 解:(2)y=-2x2-16x+3=
-2(x+4)2+35.当-1≤x≤2时,y随x的增大而减小,∴当x=-1时,y取最大值17;当x=2时,y取最小值-37.
考点二 利用二次函数模型解决几何面
积问题
例2 (1)如图,在等腰直角三角形
ABC中,∠A=90°,BC=8,点D,
(2)若小球离地面的最大高度为20m,
求小球被发射时的速度;
解:(2)根据题意,得当t= 时,h=20,∴-5× +v0× =20,∴v0=20m/s(负值舍去).
(3)按(2)中的速度发射小球,小球
离地面的高度有两次与实验楼的高度相
同.小明说:“这两次间隔的时间为3s.”已
知实验楼高15 m,请判断他的说法是否
4. (2024·河南)从地面竖直向上发射的
物体离地面的高度h(m)满足关系式h
=-5t2+v0t,其中t(s)是物体运动的
时间,v0(m/s)是物体被发射时的速
度.社团活动时,科学小组在实验楼前从
地面竖直向上发射小球.
(1)小球被发射后 s时离地面的
高度最大(用含v0的式子表示);
∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.
1. 用长12m的铝合金条制成矩形窗框

2019年中考数学第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材


b a
>0,对称轴在

轴������������ 左侧 ;
) 程为


������������ -
b 2a
b a
<0,对称轴在

轴������������ 右侧
c = 0,抛物线过������������ 原点 ;
决定抛 轴;
交点的位置
c<0,抛物线与 y 轴交于负半轴
考点 2 二次函数与一元二次方程之间的联系
在二次函数 y = ax2 +bx+c( a≠0) 中,当 y = 0 时,x 的取值就 是一元二次方程 ax2 +bx+c = 0 的解,即 y = ax2 +bx+c 与 x 轴交点 的横坐标就是一元二次方程 ax2 +bx+c = 0 的根.
式:y = a( x-h) 2 +k( a≠0) ,其中顶点坐标为( h,k) ,对称轴为直
线 x = h;
(3)若已知抛物线与 x 轴的交点的坐标,则可设解析式为 y
= a(x-x1) ( x -x2 ) ( a≠0),其中与 x 轴的交点坐标为( x1,0), ( x2 ,0) .
例 3 (2017 广西百色,17,3 分) 经过 A( 4,0) ,B( - 2,0) ,
68
考点 1 二次函数的图象与性质
1.概念:一般地,形如① y = ax2 +bx+c ( a≠0,a,b,c 为常数) 的函数叫做二次函数.
2.二次函数的图象与性质
函数
y = ax2 +bx+c( a≠0)
a>0
a<0
图象
开口方向 对称轴
顶点坐标
② 开口向上
③ 开口向下
④ 直线

(2) 在这 30 天内,哪一天的利润是 6 300 元?

【K12教育学习资料】[学习]江苏省徐州市2019年中考数学总复习 第三单元 函数及其图像 课时训练

课时训练(十四)二次函数的图像与性质(限时:30分钟)|夯实基础|1.抛物线y=(x-1)2+2的顶点坐标是()A.(-1,2)B.(―1,―2)C.(1,-2)D.(1,2)2.[2018·无锡滨湖区一模]将抛物线y=x2-4x-3向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A.y=(x+1)2-2B.y=(x-5)2-2C.y=(x-5)2-12D.y=(x+1)2-123.[2018·岳阳]在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图像如图K14-1所示,若两个函数图像上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()图K14-1A.1B.mC.m2D.4.[2018·泸州]已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y 的最大值为9,则a的值为()A.1或-2B.-或C.D.15.[2018·菏泽]已知二次函数y=ax2+bx+c的图像如图K14-2所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图像大致是()图K14-2 图K14-36.[2018·白银]如图K14-4是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图像的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是直线x=1,关于下列说法:①ab<0,②2a+b=0,③3a+c>0,④a+b≥m(am+b)(m为常数),⑤当-1<x<3时,y>0,其中正确的是()图K14-4A.①②④B.①②⑤C.②③④D.③④⑤7.[2018·广州]已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).8.[2018·淮阴中学开明分校期中]写出一个二次函数,使得它在x=-1时取得最大值2,它的表达式可以为.9.根据图K14-5中的抛物线可以判断:当x 时,y随x的增大而减小;当x= 时,y有最小值.图K14-510.[2018·淄博]已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧).若B,C是线段AD的三等分点,则m的值为. 11.求二次函数y=-2x2-4x+1图像的顶点坐标,并在下列坐标系内画出函数的大致图像.说出此函数的三条性质.图K14-612.如图K14-7,抛物线y=ax2+bx+与直线AB交于点A(-1,0),B4,,点D是抛物线上A,B两点间部分的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标.图K14-7|拓展提升|13.[2018·陕西]对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限14.[2018·安徽]如图K14-8,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图像大致为 ()图K14-8 图K14-915.如图K14-10,在平面直角坐标系xOy中,A(-3,0),B(0,1),形状相同的抛物线C n(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为;抛物线C8的顶点坐标为.图K14-1016.我们把a,b中较大的数记作max{a,b},若直线y=kx+1与函数y=max{x2+(k-1)x-k,-x2-(k-1)x+k}(k>0)的图像只有两个公共点,则k的取值范围是.17.一次函数y=x的图像如图K14-11所示,它与二次函数y=ax2-4ax+c的图像交于A,B两点(其中点A在点B的左侧),与这个二次函数图像的对称轴交于点C.(1)求点C的坐标.(2)设二次函数图像的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式.②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.图K14-11参考答案1.D2.A3.D[解析] 根据题意可得A,B,C三点中有两个在二次函数图像上,一个在反比例函数图像上,不妨设A,B两点在二次函数图像上,点C在反比例函数图像上,∵二次函数y=x2图像的对称轴是y轴,∴x1+x2=0.∵点C在反比例函数y=(x>0)图像上,∴x3=,∴ω=x1+x2+x3=.故选D.4.D[解析] 原函数可化为y=a(x+1)2+3a2-a+3,对称轴为直线x=-1,当x≥2时,y随x的增大而增大,所以a>0,抛物线开口向上,因为-2≤x≤1时,y的最大值为9,结合对称轴及增减性可得,当x=1时,y=9,代入可得,a1=1,a2=-2,又因为a>0,所以a=1.5.B[解析] ∵抛物线开口向上,∴a>0;∵抛物线对称轴在y轴右侧,∴b<0;∵抛物线与y轴交于正半轴,∴c>0;再由二次函数的图像看出,当x=1时,y=a+b+c<0;∵b<0,a>0,∴一次函数y=bx+a的图像经过第一,二,四象限;∵a+b+c<0,∴反比例函数y=的图像位于第二,第四象限,两个函数图像都满足的是选项B.故选B.6.A[解析] ∵抛物线的开口向下,∴a<0.∵抛物线的对称轴为直线x=1,即x=-=1,∴b=-2a>0,∴ab<0,2a+b=0.∴①②正确.∵当x=-1时,y=a-b+c=3a+c,由对称轴为直线x=1和抛物线过x轴上的A点,A点在(2,0)与(3,0)之间,得抛物线与x轴的另一个交点则在(-1,0)到(0,0)之间,所以当x=-1时,y=3a+c<0.所以③错误.∵当x=1时,y=a+b+c,此点为抛物线的顶点,即抛物线的最高点.当x=m时,y=am2+bm+c=m(am+b)+c,∴此时有:a+b+c≥m(am+b)+c,即a+b≥m(am+b),所以④正确.∵抛物线过x轴上的A点,A点在(2,0)与(3,0)之间,则抛物线与x轴的另一个交点则在(-1,0)到(0,0)之间,由图知,当2<x<3时,有一部分图像位于x轴下方,说明此时y<0,同理,当-1<x<0时,也有一部分图像位于x轴下方,说明此时y<0.所以⑤错误.故选A.7.增大8.y=-(x+1)2+2(答案不唯一)9.<11[解析] 根据图像可知对称轴为直线x=(-1+3)÷2=1,所以当x<1时,y随x的增大而减小;当x=1时,y有最小值.10.2或8[解析] 易求得点A(-3,0),B(1,0),若平移后C在A,B之间且B,C是线段AD的三等分点,则AC=CB,此时C(-1,0),m=2;若平移后C在B点右侧且B,C是线段AD的三等分点,则AB=BC,此时C(5,0),m=8.11.解:∵y=-2x2-4x+1=-2(x+1)2+3,∴抛物线开口向下,对称轴为直线x=-1,顶点坐标为(-1,3),在y=-2x2-4x+1中,令y=0可求得x=-1±,令x=0可得y=1,∴抛物线与x轴的交点坐标为-1+,0和-1-,0,与y轴的交点坐标为(0,1),其图像如图所示,其性质有:①开口向下,②有最大值3,③对称轴为直线x=-1.(答案不唯一)12.解:(1)由题意得解得:∴抛物线的解析式为y=-x2+2x+.(2)设直线AB为:y=kx+n,则有解得∴y=x+.则D m,-m2+2m+,C m,m+,CD=-m2+2m+-m+=-m2+m+2,∴S=(m+1)·CD+(4-m)·CD=×5×CD=×5×-m2+m+2=-m2+m+5.∵-<0,∴当m=时,S有最大值,当m=时,m+=×+=,∴点C,.13.C[解析] ∵抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,∴a+2a-1+a-3>0.解得:a>1.∵-=-,==,∴抛物线顶点坐标为:-,,∵a>1,∴-<0,<0,∴该抛物线的顶点一定在第三象限.故选择C.14.A[解析] 这是一道动态问题,需要分段思考,求解关键是先确定函数解析式,再选择图像.其中,在图形运动过程中,确定三种运动状态下的图形形态是重中之重.其中关键是确定图形变化瞬间的静态图形位置,从而得到分界点,然后再思考动态时的情况,确定各种情况下的取值范围,最后求出各部分对应的函数解析式,运用函数的图像、性质分析作答.有时,直接根据各运动状态(如前后图形的对称状态带来函数图像的对称,前后图形面积的增减变化带来函数图像的递增或递减等)就能求解.∵正方形ABCD的边长为,∴AC=2.(1)如图①,当C位于l1,l2之间,0≤x<1时,设CD,BC与l1分别相交于点P,Q,则PC=x,∴y=2x;①(2)如图②,当D位于l1,l2之间,1≤x<2时,②设AD与l1相交于点P,CD与l2相交于点Q,连接BD,作PR⊥BD于R,QS⊥BD于S.设PR=a,则SQ=1-a,DP+DQ=a+(1-a)=,所以y=2;(3)如图③,当A位于l1,l2之间,2≤x≤3时,设AD,AB分别与l2相交于点P,Q,∵AN=3-x,∴AP=(3-x)=3-x, ∴y=6-2x.③综上所述,y关于x的函数图像大致如选项A所示.故选A.15.(3,2)55,[解析] 设直线AB的解析式为y=kx+b,则解得∴直线AB的解析式为y=x+1.∵抛物线C2的顶点的横坐标为3,且顶点在直线AB上,∴抛物线C2的顶点坐标为(3,2).∵对称轴与x轴的交点的横坐标依次为2,3,5,8,13,∴每个数都是前两个数的和,∴抛物线C8的顶点的横坐标为55,∴抛物线C8的顶点坐标为55,.16.0<k<或k>1[解析] ①当k>1时,如图①(图中实线),设直线y=kx+1与x轴的交点C的坐标为-,0,∵<k,∴->-k,∴C在B的右侧,此时,直线y=kx+1与函数y=max{x2+(k-1)x-k,-x2-(k-1)x+k}(k>0)的图像只有两个公共点;②当k=1时,如图②(图中实线),此时,直线y=x+1与函数y=max{x2+(k-1)x-k,-x2-(k-1)x+k}(k>0)的图像有三个公共点,不符合题意;③当0<k<1时,如图③(图中实线),∵0<k<1,∴>k,∴-<-k,当y=kx+1与y=-x2-(k-1)x+k无公共点时,符合要求,∴无解,∴kx+1=-x2-(k-1)x+k无实数根,∴Δ=(2k-1)2-4(1-k)<0,∴(2k+)(2k-)<0,∵2k+>0,∴2k-<0,∴k<,∴0<k<,综上所述:0<k<或k>1.故答案为:0<k<或k>1.17.解:(1)y=ax2-4ax+c=a(x-2)2+c-4a,∴二次函数图像的对称轴为直线x=2.当x=2时,y=×2=,∴C点坐标为2,.(2)①若点D和点C关于x轴对称,则点D坐标为2,-,CD=3.∵△ACD的面积等于3,∴点A到CD的距离为2,∴点A的横坐标为0(点A在点B左侧).∵点A在直线y=x上,∴点A的坐标为(0,0).将点A,点D坐标代入二次函数解析式可求得∴二次函数解析式为y=x2-x.②若CD=AC,如图,设CD=AC=x(x>0).过A点作AH⊥CD于H,则AH=AC=x,S△ACD=×CD×AH=x·x=10.∵x>0,∴x=5.D点坐标为2,或2,-,A点坐标为-2,-.将A-2,-,D2,-代入二次函数y=ax2-4ax+c中可求得∴二次函数解析式为y=x2-x-3,或将A-2,-,D2,代入二次函数y=ax2-4ax+c中,求得∴二次函数解析式为y=-x2+2x+.综上可得,二次函数关系式为:y=x2-x-3或y=-x2+2x+.。

初三数学复习《二次函数》(专题复习)PPT课件


面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档