电流采样电路的设计

合集下载

51单片机电压电流采样电路设计

51单片机电压电流采样电路设计

51单片机是一种常用的微控制器,广泛应用于各种电子设备中。

在很多电子设备中,需要对电压和电流进行采样和测量,以确保设备正常运行和安全使用。

设计一个稳定、精准的电压电流采样电路对于电子设备的正常运行至关重要。

本文将介绍51单片机电压电流采样电路的设计原理、实现方法和相关注意事项,希望能够为初学者提供一些帮助。

一、设计原理1.1 电压采样原理电压采样是通过模数转换器(ADC)将模拟电压信号转换为数字信号的过程。

在51单片机中,有多个模拟输入引脚可以用于电压采样。

通过选择合适的参考电压和采样精度,可以实现对不同电压范围的准确采样。

1.2 电流采样原理电流采样通常需要借助电流传感器或电流互感器来实现。

通过将电流信号转换为与之成正比的电压信号,然后使用ADC进行采样,可以实现对电流的准确测量。

二、电压采样电路设计2.1 电压采样电路原理图在设计电压采样电路时,需要考虑信噪比、采样精度和参考电压的稳定性。

一般来说,可以通过电阻分压网络将被测电压信号转换为微控制器可以接受的范围内的电压信号。

2.2 电压采样电路实现在实际设计中,可以选择合适的电阻数值和参考电压,使得被测电压在不损失精度的前提下可以被精准采样。

还需要注意电源滤波和去耦电容的设置,以提高电路的稳定性和抗干扰能力。

三、电流采样电路设计3.1 电流采样电路原理图电流采样电路通常需要借助电流传感器或电流互感器来实现。

在设计电流采样电路时,需要考虑到电流传感器的灵敏度、线性度和频率特性,以确保采样的准确性和稳定性。

3.2 电流采样电路实现在实际设计中,需要根据被测电流的范围和精度要求选择合适的电流传感器,并通过运算放大器等电路将电流信号转换为微控制器可以接受的范围内的电压信号。

还需要注意电流传感器的电源和接地,以确保电路的正常工作。

四、电压电流采样电路的综合设计4.1 电压电流采样电路整体连接在设计完成电压和电流采样电路后,需要将两者连接到51单片机的模拟输入引脚,并编写相应的程序进行数据采集和处理。

buck峰值电流 采样电路

buck峰值电流 采样电路

buck峰值电流采样电路随着电子设备的不断发展,对于电源管理的需求也越来越高。

其中,对于峰值电流的精确采样及实时监测是电源管理领域中非常重要的一环。

在开关电源、电动车充电桩、光伏逆变器等领域,峰值电流采样电路的设计和应用变得越来越普遍。

为了满足这一需求,工程师们设计了各种各样的峰值电流采样电路。

在本文中,我们将重点介绍一种常用的buck峰值电流采样电路,希望能为相关领域的工程师和研究人员提供一些参考和帮助。

一、buck峰值电流采样电路的原理buck峰值电流采样电路是一种基于电流变压器的电路。

其实现原理主要是利用电流变压器将电路中的峰值电流转换为与之成正比的电压信号,再通过放大电路和滤波电路处理得到稳定的、精确的峰值电流信号。

在buck峰值电流采样电路中,首先需要选择合适的电流变压器。

电流变压器的参数应满足电路设计的要求,如额定电流、变比、耐压等。

然后通过电流变压器将被测电路中的峰值电流转换为相应的电压信号,进而经过放大和滤波处理得到稳定的、精确的峰值电流信号。

二、buck峰值电流采样电路的电路设计1. 选择电流变压器在设计buck峰值电流采样电路时,首先需要选择合适的电流变压器。

通常情况下,电流变压器的额定电流要大于被测电路中的最大峰值电流,以确保信号的充分采样。

变压器的变比和耐压等参数也需要根据实际需求进行选择。

2. 放大电路设计放大电路用于放大电流变压器输出的电压信号。

在选择放大电路时,需要考虑信噪比、增益稳定性,以及对输入信号的线性响应等因素。

常用的放大器有运放、差分放大器等,根据实际需求选择合适的放大电路。

3. 滤波电路设计滤波电路主要用于去除放大电路输出信号中的杂散干扰,得到稳定的、精确的峰值电流信号。

一般情况下,可以采用低通滤波电路或带通滤波电路进行滤波处理,以满足精确采样的要求。

三、buck峰值电流采样电路的应用buck峰值电流采样电路在电源管理领域有着广泛的应用。

主要包括但不限于以下几个方面:1. 开关电源在开关电源中,准确测量和监测输出端的峰值电流是保证电源稳定运行和工作效率的关键。

各种电压电流采样电路设计

各种电压电流采样电路设计

各种电压电流采样电路设计电压电流采样电路是一种用于测量电路中电压和电流的电子设备。

它们广泛应用于各种领域,如电力系统监测、电子设备测试和工业自动化等。

本文将介绍几种常见的电压电流采样电路设计。

电压采样电路用于测量电路中的电压信号。

以下是一种基于运算放大器的电压采样电路设计。

1.电阻分压电路电阻分压电路是最简单的电压采样电路之一、它由两个电阻器组成,将电压信号分成两部分。

一个电阻器连接到待测电压源的正极,另一个连接到负极。

通过测量电压信号之间的差异,可以计算出电源的电压。

2.差分放大电路差分放大电路是一种常见的电压采样电路。

它由两个输入端(正和负)和一个输出端组成。

正输入端连接到待测电压源的正极,负输入端连接到负极,输出端连接到运算放大器的输出。

通过测量输出电压和输入电压之间的差异,可以计算出电压信号。

3.内部反馈放大电路内部反馈放大电路是一种高精度的电压采样电路。

它包括一个运算放大器和一个反馈电阻器。

待测电压通过反馈电阻器连接到运算放大器的非反相输入端,直接连接到反相输入端。

输出信号通过反馈电阻器连接到非反相输入端。

通过调整反馈电阻器的阻值,可以实现电压采样的精度控制。

电流采样电路用于测量电路中的电流信号。

以下是一种基于电阻器的电流采样电路设计。

1.电流到电压转换电路电流采样的一种常见方法是使用电流到电压转换电路。

它将待测电流通过一个电阻器,使其转换为相应的电压信号。

输出电压信号可以通过运算放大器放大,然后通过数模转换器进行数字化。

2.霍尔效应传感器霍尔效应传感器是一种常用的电流采样电路。

它利用霍尔效应原理,将电流转换为相应的电压信号。

霍尔效应传感器受到的电流通过一个电阻器,使其转换为电压。

输出电压信号可以通过运算放大器放大,然后通过数模转换器进行数字化。

3.电阻分压法电阻分压法是一种简单的电流采样电路设计。

它通过将待测电流分成两部分,在每一部分中使用一个电阻器。

输出电压信号可以通过运算放大器放大,然后通过数模转换器进行数字化。

电压电流采样电路设计

电压电流采样电路设计

电压电流采样电路设计
一、电压采样
1.采样电路原理:
电压采样电路是一种能够基于参考电压对输入电压进行采样,即在参考电压和输入电压之间比较,按比例将其转换为一个相对更低的电压,以便进一步处理。

在电压采样电路中,一个可调分压器实现参考电压,一个微分放大器将输入电压和参考电压放大为输出电压,一个比较器比较输出电压和参考电压,一个低通滤波器去除多余的噪声,一个放大器放大采样电压,最后一个数据转换器将数字信号转换为输出信号。

2.电路实现方式:
电压采样电路的实现可以采用以下两种方式:
(1)利用ADC芯片:
采用ADC芯片实现的电压采样电路,电路构成比较简单,只需要具有其中一种ADC芯片、电源及电压基准,采样电压,就可以构成一个电压采样电路。

(2)利用放大器和比较器:
利用放大器对电压进行放大,而后再把放大后的电压送到比较器中,比较器将放大后的电压和参考电压进行比较,从而检测出比较结果,构成另一种电压采样电路。

二、电流采样
1.采样电路原理:
电流采样电路采用一个电流型传感器对电流进行检测,其输出电压受电流的变化而变化。

一种小型化低功耗电流采样电路设计

一种小型化低功耗电流采样电路设计

张纯亚(1989—),男,工程师,主要从事开关电源技术研究。

刘 松(1989—),男,工程师,主要从事开关电源技术研究。

一种小型化低功耗电流采样电路设计张纯亚, 刘 松(中国电子科技集团公司第二十四研究所,重庆 400060)摘 要:分析了开关电源中电流模式控制的必要性以及传统电流采样方式的缺点,通过对电感电流的分析与计算,提出了一种小型化低功耗的电流采样电路设计,并进行实物验证,设计了一款输入电压5~24V、输出3.3V的DC/DC电源模块,验证了设计的稳定性和可靠性。

关键词:开关电源;电流采样;小型化;低功耗中图分类号:TM46 文献标志码:A 文章编号:2095 8188(2021)01 0054 04DOI:10.16628/j.cnki.2095 8188.2021.01.009DesignofMiniaturizedLowPowerConsumptionCurrentSamplingCircuitZHANGChunya, LIUSong(SichuanInstituteofSolid StateCircuits,ChinaElectronicsTechnologyGroupCorporation,Chongqing400060,China)Abstract:Thispaperintroducedthenecessityofcurrent modecontrolinswitchingpowerandanalyzedthedisadvantagesofthetraditionalcurrentsamplingmethod.Basedontheanalysisandcalculationofinductivecurrent,acurrentsamplingcircuitcurrentdesignwithminiaturizationandlowpowerconsumptionwasproposed.Physicalverificationwascarriedoutaccordingtothistheory.ADC/DCpowermodulewithinputvoltageof5~24Vandoutputvoltageof3.3Vwasdesigned,whichverifiesthestabilityandreliabilityofthedesign.Keywords:switchingpower;currentsampling;miniaturization;lowpowerconsumption0 引 言随着智能化和模块化的发展,整机系统的产品对电力电子设备的供电质量和供电能力提出了越来越高的要求,从而驱使电源模块技术的不断革新。

基于电流互感器的电流采样电路的制作方法

基于电流互感器的电流采样电路的制作方法

基于电流互感器的电流采样电路的制作方法电流互感器是一种用于测量交流电路中电流的传感器。

它通过感应电流在互感器中产生的磁场来实现测量,因此需要通过电流采样电路将互感器输出的信号转化为适合测量和处理的电压信号。

制作电流采样电路需要以下步骤:1.设计电路结构:根据实际应用需求,选择合适的电流采样电路结构。

常见的电流采样电路结构有电阻式采样、霍尔传感器采样和互感器采样等。

根据基本电路理论,设计出符合要求的电路结构。

2.选择元器件:根据设计的电路结构,选择合适的元器件。

例如,对于电阻式采样电路,需要选取合适的电阻器;对于互感器采样电路,需要选择合适的互感器和运放等元器件。

3.绘制电路图:根据电路结构和元器件的选择,将电路图纸绘制出来。

电路图应该包括互感器、元器件以及连接它们的线路、引脚等信息。

4.PCB设计:将电路图转化为PCB设计。

根据电路图纸,选取合适的PCB板材和尺寸,绘制出对应的PCB图纸。

5.PCB制作:根据PCB图纸,使用PCB制作设备将PCB板制作出来。

首先,将PCB图纸导入到PCB制作设备中,利用光刻技术将电路图案转移到PCB板上;然后,通过腐蚀、钻孔、镀铜等步骤完成PCB板的制作。

6.元器件焊接:将选取的元器件焊接到PCB板上。

首先,根据元器件的引脚位置,钻孔放置焊盘;然后,将元器件通过焊锡或焊膏固定在相应的位置上;最后,使用焊接设备对焊接点进行焊接。

7.电路调试:对已完成的电路进行调试。

首先,将电流互感器连接到电路中;然后,通过电源和信号源等设备对电路进行供电和输入信号;最后,利用示波器、信号发生器等测试设备对电路进行检测和调试,确保电路正常工作。

8.电路封装:对已完成的电路进行封装。

根据应用需求,选择合适的封装方式,如电子设备外壳、连接接口等。

以上是基于电流互感器的电流采样电路的制作方法。

不同的电路结构和应用需求会有一定的差异,因此在制作电路时需要根据具体情况进行调整和改进。

伺服驱动器中电流采样电路的设计

伺服驱动器中电流采样电路的设计

伺服驱动器中电流采样电路的设计引言现如今,交流伺服电机因为其优良的性能,已经在工业生产中占据了举足轻重的地位,而伺服驱动器作为伺服电机的控制系统,其本身的优劣将直接影响到驱动电机的使用性能。

在伺服驱动控制系统中,为实现磁场定向控制,需要至少对两相电机绕组的电流进行采样,这两路电流采样将作为电流反馈信号使伺服驱动实现电流闭环,可以这样说,电流信号采样是伺服控制系统硬件的一个重要模块,也是一大难点。

常规电流采样电路设计如今,大多数伺服驱动使用采样电阻和线性光耦搭建的一路电流采样电路,如图1所示。

其中,rsense是功率型采样电阻,mc34081为运算放大器,78l05为三端稳压电源。

hcpl-7840为线性光耦,其2,3引脚为信号输入端,6,7引脚为信号输出端,在输入端输出端供电电压均为5v的情况下,当2,3引脚输入的差值电压变化时,6,7引脚的输出信号将随着输入信号分别进行递增和递减的线性变化。

由图1所示可知,当伺服电机正常工作时,将采集通过绕组的电流信号转变为采集采样电阻两端电压值,并将该电压值通过线性光耦进行隔离放大,再经过运算放大器,a/d转换送给dsp进行数据分析,进而实现电流环闭环控制。

在实际实验过程中,由于伺服电机等外界条件干扰,dsp所接收到的电流采样信号会有相对较大程度的干扰,故必须在电路中增加相应的滤波措施。

新型电流采样电路设计采用采样电阻和线性光耦搭建的采样电路均为模拟电路,很容易受到外界的干扰,在电路调试过程中,滤除杂波尤为繁琐。

为使得电流采样信号更精确,使电流环闭环效果更好,我们又设计了一种采用高压线性电流传感器ir2175来实现电流采样的方案,并做对比实验。

芯片概述ir2175是ir公司专为交流或直流无刷电机的驱动应用而设计的高压线性电流传感器,它内置电流检测和保护电路,可通过串联在绕组回路的采样电阻来进行电流采样,并且该芯片能自动。

电流采样电路设计的详细解析!

电流采样电路设计的详细解析!

电流采样电路设计的详细解析!首先,电流采样电路的设计需要考虑的主要因素有:电流测量范围、精度和带宽。

1.电流测量范围:电流采样电路设计需要根据实际需求确定测量范围,一般来说,电流传感器的电流测量范围建议在其额定范围的80%~100%之间。

2.精度:电流采样电路的精度取决于传感器本身的精度以及采样电路的放大和滤波等环节。

为保证测量的精度,需要选择合适的传感器和采样电路,并进行校准和补偿。

3.带宽:电流采样电路需要根据实际测量的需求确定所需的带宽。

带宽决定了电流采样电路能够测量的最小电流变化。

带宽较高的电流采样电路可以更准确地测量快速变化的电流信号。

接下来,我们将详细解析一个典型的电流采样电路的设计。

典型电流采样电路由三个主要组成部分构成:电流传感器、放大电路和滤波电路。

1.电流传感器:电流传感器是将电流转换为电压的装置。

常用的电流传感器有霍尔效应元件、电感和电阻等。

其中,霍尔效应元件是一种常用的非接触式电流传感器,具有高精度和线性度高的优点。

2.放大电路:放大电路用于增强电流传感器输出的微弱电流信号。

它的设计需要考虑到电流传感器的输出阻抗、放大倍数和工作电源等因素。

一般来说,放大电路可以采用运放电路或差分放大电路等。

3.滤波电路:滤波电路用于去除电流信号中的噪声和干扰。

常见的滤波电路有低通滤波器和带通滤波器等。

低通滤波器通常用于去除高频噪声,而带通滤波器可用于保留特定频率段上的信号。

此外,还可以考虑使用模数转换器(ADC)将电压信号转换为数字信号,并通过微处理器进行数字信号处理。

在进行电流采样电路设计时,需要注意以下几点:1.确定电流采样电路的工作条件和要求,包括测量范围、精度和带宽等。

2.选择合适的电流传感器,根据电流传感器的特性和要求确定放大电路和滤波电路的参数。

3.进行电路设计,包括放大电路和滤波电路的设计,可以使用电路仿真软件进行验证和优化。

4.进行电路布局和线路连接,注意电路的屏蔽和防干扰措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流采样电路的设计
电流采样电路的设计
摘要:文中研制了一套模拟并网发电系统,实现了频率跟踪、最大功率跟踪、相位跟踪、输入欠压保护、输出过流保护、反孤岛效应等功能;采用Atmega16高速单片机,实现了内部集成定时、计数器功能;利用定...
文中研制了一套模拟并网发电系统,实现了频率跟踪、最大功率跟踪、相位跟踪、输入欠压保护、输出过流保护、反孤岛效应等功能;采用Atmega16高速单片机,实现了内部集成定时、计数器功能;利用定时器T/C2的快速PWM功能,实现SPWM信号的产生;采用T/C1的输入捕获功能,实现了频率相位监测和跟踪以及对失真度、输入电压、输出电流等物理量的检测与控制。

随着国际工业化的进程,全球未来能源消耗预计以3%的速度增长,常规能源面临日益枯竭的窘境。

人们开始了可再生能源与新能源技术的开发,最具发展前景的当属风力发电和太阳能发电,即光伏并网发电。

1 整体方案设计
设计采用Atmega16单片机为主体控制电路,工作过程为:与基准信号同频率、同相位正弦波经过SPWM调制后,输出正弦波脉宽调制信号,经驱动电胳放大,驱动H桥功率管工作,经过滤波器和工频变压器产生于基准信号通频率、同相位的正弦波电流。

其中,过流、欠压保护由硬件实现,同步信号采集、频率的采集、控制信号的输出等功能,均由Atmega16完成。

系统总体设计框图如图1所示。

2 硬件电路设计
分为DC/AC驱动电路、DC/AC电路和滤波电路3部分和平滑电容C1,电路原理如图2所示。

2.1 DC—AC驱动电路
是由R1、R2、R3、R4、R5、R6、Q3、Q4、P3和P4组成,其中P3和P4是控制信号输入端,R3和R4为限流电阻。

集电极的电流直接影响波形上升沿的陡峭度,集电极电流越大输出的波形越陡峭。

因为R2和R1与集电极pn节的寄生电容形成了一个RC充放电的时间常数,集电极pn结的寄生电容无法改变,只有通过改变R1和R2的值来改变时间常数,所以R1和R2值越小,Q3和Q4的集电极电流就越大;RC的充电时间常数越小,波形的上升沿越陡峭,而增加集电极电流,会增加系统的功耗,权衡利弊选择一个合适的值。

其次,射级pn结的寄生电容也会影响Q3和Q4的关断时间和波形上升沿的陡峭度。

所以在驱动电路中各加了一个放电回路,即拉地电阻R5和R6,R5和R6的引入,加快了Q3和Q4的关闭速度,这样就使集电极的波形更陡峭。

同样在保证基极射极pn不损坏的条件下,基极的电流也是越大越好,但也会带来损耗问题,权衡利弊选择一个合适的值。

关于两个电阻的取值,这里假设三极管的放大倍数为β,基极电流Ib,集电极电流Ic,流过R5的电流为I5,流过R3的电流为I3,R3的压降为V3,驱动信号为V,R5的压降为V5,有
实际中R3和R5应该比计算值小,这样是为了让三极管工作在饱和状态,提高系统稳定性。

2.2 DC-AC电路
是由两只p沟道MOSFET。

Q1、Q2和两只n沟道MOSFET Q5、Q6组成。

在这里没有采用4只n沟道MOSFET,原因是驱动电路复杂,如果采用上面的驱动电路接近电源的两个导体管不能完全导通,发热量为接近地一侧导体管4倍以上,功耗增加,所以采用对管逆变即减小了功耗,而且驱动电路简单。

通过控制4个导体管的开关速度再通过低通滤波器即可实现DC/AC功能。

2.3 滤波电路
两个肖特基整流二极管1N5822为续流二极管,这里为防止产生负电压,C2、C3、C4、C5、L1、L2组成低通滤波器,其中C5、C6为瓷片电容,C2、C3用电解电容,充放电电流可以流进地,L1、L2为带铁芯的电感,带铁芯的电感对高频的抑制比空心电感更好,电感值更高。

关于参数的选取和截止频率的计算如下
3 采样电路
3.1 电流采样电路的设计
由于终端负载一定,所以电流采样实际等同于一个峰值检测的过程,此电路实际是一个峰值检测电路,P3为信号的2个输入端,调整R10,R11和R17、R18取值来实现峰值测功能,电路中的阻值并不准确,需要实际中根据信号的幅值来调整R10、R11和R17、R18阻值和比值。

R14、R15、R19、R20的电流为模拟比较器内部偏置电流的10倍以上,电阻的阻值尽可能大,这样既减小了功耗也保证了系统的稳定性。

Y3采用模拟比较器LM393,LM393内部为开集电极输出,应用的时候输出端要接一个上拉电阻,电路如图3所示。

3.2 MPPT采样电路
在光伏系统中,通常要求太阳能电池的输出功率始终最大,系统要能跟踪太阳电池输出的最大功率点。

如果负载不能工作在电池提供的最大功率点,就不能充分利用在当前条件下电池所能提供的最大功率。

因此,必须在太阳能电池和负载之间加入阻抗变换器,使得变换后的工作点正好和太阳能电池的最大功率点重合,使太阳能电池以最大功率输出,这就是太阳能电池的最大功率跟踪。

即最大功率跟踪MPPT,是本套光伏并网发电模拟装置研究的一个重要方向。

由于光伏电池的最大功率输出点是随光强、负载和温度变化的。

为充分利用太阳能,系统必须实现最大功率点的跟踪。

本套光伏并网发电模拟采用恒定电压控制方法,其优点是简单易行,且可以跟踪最大功率点。

电路的工作原理:本模块电路的核心也是模拟比较器LM393,TL431提供7.5 V的基准电压,在这里基准电压取值建议≥7.5 V,取值可以比7.5 V稍大,以提高系统稳定性,应保证流过R3、R9的电流为模拟比较器LM393偏置电流的10倍以上,R3、R9的取值尽可能大。

R1、R2并联是为了调试方便,现实中很难找到阻值很合适的电阻,滑动变阻器昂贵,所以用两个电阻并联调试效果比较理想。

假设R为R1、R2并联值,流过R的电流为I,则有
式(9)中的,可以认为是TL431的灌电流的最小值,流过R6的电流和模拟比较器LM393的偏置电流忽略不计。

R6和R13阻值选取,应参考TL431内部1脚的偏置电流,流过R6和
R13的电流应该10倍于TL431内部1脚的偏置电流,在保证系统稳定的前提下尽量减小功耗。

输出用了光电耦合器U4把控制电路和主电路隔离,防止主电路干扰控制电路,R4和R5的取值太大影响稳定性,取值太小则使流过R4、R5的电流大功耗增加甚至损坏器件。

模拟比较器LM393的正相输入端3脚位固定电压7.5 V,正常状态下PD4采集到的为高电平,当2脚的电压高于7.5 V时输出端1脚输出低电平,光耦导通,PD4采集到的为低电平开始处理SPWM信号调整输出阻抗来实现恒电压跟踪,最终实现最大功率点跟踪。

电路如图4所示。

3.3 欠压采样电路设计
如图5与图4电路相似,模拟比较器的反相输入端为基准电压7.5 V,而R22换成电位器,目的是为了便于调整使本装置适用于不同欠压值控制。

输出采用光电耦合器U4把控制电路和主电路隔离,防止主电路干扰控制电路,R22、R24的取值太大影响稳定性,取值太小则使流过R22、R24的电流大功耗增加甚至损坏器件,R21、R23的取值大小参见4N25的输入输出特性曲线。

模拟比较器LM393的反相输入端6脚位固定电压7.5 V,正常状态下欠压采样输出为高电平,当5脚电压<7.5 V时,输出端7脚输出为低电平,光耦导通,欠压输出端采集到的低电平欠压保护电路开始工作,切断主电路供电,实现欠压保护。

4 欠压过流保护电路设计
电路如图6所示,当系统正常工作时,此过流保护的输入端过流信号和欠压即CD4011的1脚和2脚,检测到的信号都是高电平,C04011的3脚输出低电平,经过U10B和U10C 两级反相最终CD4011的10脚输出低电平,三极管2N3904截止,继电器常闭端处于导通状态,系统处于正常工作状态。

当输出流过负载的电流过大或者输入电压不足时低电平触发CD4011的1脚2脚,这时候3脚输出高电平,电容C10充电经过U10B和U10C两级反相后10脚输出高电平,三极管2N3904导通,继电器的常闭端断开,主电路停止供电,处于保护状态。

由于主电路电源被切断U10A的输入端检测到高电平,3脚输出低电平,由于CD4011的高输入阻抗和开关二极管D6单向导通作用,C10的电荷只能通过R27释放,当U10B的输入端电位低于门限电压,经过U10B和U10C两级反相后,三极管2N3904关闭,主电路开始供电。

这样实现了系统过流、欠压故障排除后,装置自动恢复为正常状态。

此部分电路的设计采用双输入四与非门CD4011做反相器、开关二极管D6、电阻R27、电解电容C10、三极管2N3904和继电器。

R26的选取由继电器的驱动电流和2N3904的放大倍数β来决定,过小则增加功耗,过大则不能驱动继电器。

R27和C10的放电时间就是系统过流欠压保护后检测的间隔时间。

时间T=2×R27×C10。

5 结束语
光伏并网发电是一个集计算机技术、电力电子技术和材料科学等综合性学科的技术。

光伏并网发电有广阔的发展前景,而太阳能利用将为环保事业、能源结构的调整,减少对传统能源的依赖做出巨大贡献。

随着风电机组制造成本的不断降低,化石燃料的逐步减少及其开采成本的增加,将使风电逐步增强市场竞争力。

电流采样电路的设计
留言板。

相关文档
最新文档