核燃料后处理解析
核电站中的核燃料储存与处理技术

核电站中的核燃料储存与处理技术核电站是一种重要的能源供应方式,它利用核能产生电能,为社会经济发展提供了可靠且持久的电力支持。
然而,在核电站中,核燃料的储存与处理成为了一个重要的问题。
本文将就核燃料储存与处理技术进行探讨。
一、核燃料储存技术核电站产生的废弃核燃料需要进行储存,以确保其安全与稳定。
核燃料储存技术主要分为两种形式:湿式储存和干式储存。
湿式储存是将废弃核燃料存放于水池中,利用水的冷却效果来控制温度以确保安全。
这种储存方式对于新鲜核燃料及短期储存非常有效,但对于长期储存来说存在一些问题,比如需要大量的水资源和防水设施的要求较高。
干式储存则将废弃核燃料进行转运,放置于密封的容器中,并利用气体或真空对其进行保护。
这种储存方式在长期储存中更加可行,因为它不依赖于外部冷却系统,同时减少了水资源的需求,符合可持续发展的理念。
二、核燃料处理技术核燃料处理技术主要包括再处理与封装两个环节。
再处理是指将废弃核燃料进行分离与提取,以回收其中的可再利用材料;封装则是将废弃核燃料进行封存,以隔离和稳定其中的有害物质。
在再处理过程中,从废弃核燃料中分离出的可再利用材料可以进一步加工,用于生产新的核燃料。
这样不仅提高了可再生资源的利用效率,减少了对原始核燃料的需求,还可以减少废弃物的产生。
而封装技术则需要对废弃核燃料进行密封和隔离,以减少对环境和人体的影响。
封装的方式可以根据具体情况选择,比如使用金属容器、陶瓷材料或混凝土进行包裹。
封装后的废弃核燃料可以储存在专门设计的设施中,确保其安全和稳定。
三、核燃料储存与处理技术的挑战与前景核燃料储存与处理技术在实践中面临着一些挑战。
首先,核燃料储存需要解决安全和环境污染问题,确保废弃核燃料在储存过程中不会对周围环境和人体产生不良影响。
其次,再处理技术虽然能够回收可再利用材料,但同时也会造成一定的放射性废物,如何处理这些废物也是一个重要问题。
然而,随着科学技术的不断发展,核燃料储存与处理技术也在不断改进与创新。
核燃料后处理

铀钚分离
– 萃取器中铀处于六价态,将钚还原到三价态,实现铀 钚分离 – 方法:化学试剂还原法和电化学还原法
铀的反萃:将有机相中的铀反萃入水相
净化循环过程 钚的净化循环
– 经过铀、钚共去污—分离循环,钚从大量的铀中分离 经过铀、钚共去污— 出来以后,需要进一步除去裂变产物、铀和其他锕系 元素。
铀的净化循环
化学分离(净化与去污过程) 化学分离(净化与去污过程) 铀钚共萃取共去污
– 来自首端处理的铀、钚共萃取料液中含有硝酸铀酰、 硝酸钚、硝酸、裂变产物,将其中的铀和钚一起萃入 有机相,99%以上的裂片元素不被萃取而留在萃取残 有机相,99%以上的裂片元素不被萃取而留在萃取残 液中,使铀、钚共同实现了去污。
核燃料后处理的工艺过程 07辐射防护 07辐射防护 李逢伟
核燃料后处理的工艺过程可分下列几个步骤: 冷却与首端处理 化学分离 净化循环 尾端处理
冷却与首端处理 燃料元件解体,元件去壳
– 化学去壳法、机械去壳法、包壳与芯体同时溶解法、 机械机械-化学去壳法
溶解燃料芯块
– 燃料元件的剪切 – 燃料元件的学溶解
– 将来自共去污分离循环的铀溶液再经过两个TBP萃取循 将来自共去污分离循环的铀溶液再经过两个TBP萃取循 环以进一步除去裂片元素、镎和钚。
尾端处理 经过铀、钚共去污经过铀、钚共去污-分离循环过程,净化循环过程 后,铀和钚主要以硝酸铀酰和硝酸钚溶液的形式 存在,而对最终产品贮存成本分析结果表明,贮 存二氧化铀和二氧化钚比贮存硝酸铀酰、硝酸钚 溶液更经济。因此,通常将铀和钚制成二氧化铀 和二氧化钚。
核燃料后处理工学

核燃料后处理工学
核燃料后处理工学是研究用于处理和处理核燃料后产生的放射性废料的学科。
它涉及从核反应堆中提取并处理已使用的核燃料,以及处理和分离放射性废料,以减少对环境和人类健康的影响。
核燃料后处理工程的目标是:
1. 提高核燃料的利用率:通过对已使用核燃料进行处理和再利用,可以提高核燃料的利用率,延长其寿命,并减少新鲜核燃料的需求。
2. 处理放射性废料:对核燃料后处理过程产生的放射性废料进行处理和减量,确保安全处理和最小化对环境的影响。
3. 回收优质物质:核燃料后处理过程中,可以回收包括铀、镎、钍等在内的优质核材料,减少资源的浪费。
核燃料后处理工程涉及的主要技术包括萃取、溶剂萃取、精细分离、裂变产物处理、铀和钍处理等。
这些技术需要综合利用化学、物理、材料等知识,确保处理过程的安全性和高效性,同时遵循辐射安全和环境保护的原则。
关于核燃料循环之乏燃料后处理的报告

关于核燃料循环之乏燃料后处理的报告经过对2010~2011下半年的核燃料循环课程的学习,我们了解了循环的概况:1.铀矿冶;2.铀转化;3.铀浓缩;4.核燃料元件制造;5.反应堆燃烧;6.核燃料后处理;7.高放废物贮存;8.玻璃固化;9.地质处置。
学习中我们认识到每个环节都极其重要,下面我们将针对核燃料循环之核燃料后处理进行详细论述。
一、乏燃料定义乏燃料又称辐照核燃料。
在反应堆内烧过的核燃料。
核燃料在堆内经中子轰击发生核反应,经一定时间从堆内卸出。
它含有大量未用完的可增殖材料238U或232Th,未烧完的和新生成的易裂变材料239Pu、235U或233U以及核燃料在辐照过程中产生的镎、镅、锔等超铀元素,另外还有裂变元素90Sr、137Cs、99Tc等。
经过冷却后把有用核素提取出来或把乏燃料直接贮存。
二、我国乏燃料的来源1.已投入商业运行的核电站(秦山核电站、大亚湾核电站,未来还将会有多座核电站建成)2.用于核技术研究的实验堆(401、903等)3.核动力潜艇(未来还将会有核动力航母)4.军用生产堆(一部分已经处于退役阶段)三、乏燃料的管理办法目前,对于乏燃料的管理,国际上主要有两种战略考虑:其一是“后处理”战略。
即对乏燃料中所含的96%的有用核燃料进行分离并回收利用,裂变产物和次锕系元素固化后进行深地质层处置或进行分离嬗变,这是一种闭路核燃料循环。
其特点是铀资源利用率提高,减少了高放废物处置量并降低其毒性,但缺点是费用可能较高,可生产高纯度的钚,有核扩散的风险。
其二是“一次通过”战略。
即乏燃料经过冷却、包装后作为废物送入深地质层处置或长期贮存,美国曾经支持此战略,但其最终处置场尤卡山项目碰到了困难,现在美国已转向了后处理。
该战略特点是费用可能较低,概念简单;无高纯钚产生,核扩散风险低。
但缺点是废物放射性及毒性高,延续时间长达几百万年;没有工业运行经验。
乏燃料后处理是核燃料循环后段中最关键的一个环节,是目前对核反应堆中卸出的乏燃料的最广泛的一种处理方式。
核燃料后处理解析ppt课件

资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
乏燃料中剩余易裂变燃料和可转换材料只有经后处理分离 净化后才能得到回收复用。 ☞ 对低加浓铀乏燃料中尚含有235U~0.9%、238U~95%和新生 成的易裂变物质239Pu~1%,经后处理可以从中回收有用的 铀和钚,再制成UO2、PuO2或UO2+PuO2(MOX)燃料返 回热堆或快堆使用,使核燃料得以有效利用,缓解发展核电 与铀资源不足的矛盾。 ☞ 对于燃料的初始235U富集度为3.3%、燃耗为33000 MWd/t 的1000 MWe(即100万千瓦)的压水堆电站,若燃料用后不 再循环,每年需要天然铀(以U3O8计)约200t;而通过后处 理使铀可节约天然铀约15%,铀、钚同时循环使用,可节约 天然铀40%。此外,实现铀循环还可节约分离功6-10%,实 现铀、钚同时循环可节约分离功约40%。如果使用混合氧化 物燃料的快中子增殖堆核燃料闭路循环,对铀资源的利用率 可从热堆的0.5-1%提高到60-70%!
☞ 核弹头的主要装料是239Pu 与235U的生产相比较,用天然铀作原料,在反应堆内将238U
转换为239Pu,然后通过后处理提取军用钚是发展核武器 的更加经济而有效的途径。另一方面,核弹性能上,钚 弹的临界质量要比铀弹要小,同样威力的原子弹用钚量 只有用铀量的1/3-1/4左右。 谁掌握了后处理技术,谁就有可能制造更经济的核武器。
工业上曾先后使用过的主要流程有磷酸铋流程、Redox流 程、Butex流程、Thorex流程和Purex流程。而在各种萃取 流程中性能最好、使用最成功的是以TBP为萃取剂的Purex 流程:目前世界各国用来处理电站辐照核燃料的工艺流程 (而离子交换法则是用于尾端处理,作为钚或镎产品的纯 化、浓缩手段)。
核燃料后处理工学 PUREX(课堂PPT)

5.2 共去污-分离循环
(2) 铀、钚分离(1B槽)
9
5.2 共去污-分离循环
(一)过程概述
(2) 1B槽(铀钚分离槽)
➢ 1BX:还原反萃剂 ➢ 1BS:补充萃取剂 ➢ 1BP:水相反萃液 ➢ 1BU:含U有机相
10
5.2 共去污-分离循环
(一) 过程概述 (3) 1C槽
➢ 1CX:铀反萃取剂 ➢ 1CU:含铀水相反萃液 ➢ 1CW:污溶剂
✓ 依据:
• 当1AF料液中锆铌含量比钌多时
✓ 优点:
• 由于采用较高铀浓度的料液而提高了设备的生产能力; • 降低了强放废液1AW的硝酸浓度。
✓ 缺点: • 增加了铀/钚净化循环除钌的负担。
16
5.2 共去污-分离循环
(1) 共萃取共去污(1A) ➢ ③ TBP浓度 ➢ 所处理对象
➢ 高加浓铀燃料元件 • 2%-15%(体积)TBP浓度 ➢ 天然铀及低加浓铀燃料元件 • 30% (20%-40%) (体积)TBP浓度 • 生产能力 • 水力学性能 • 铀/钚和裂片元素分配系数
核燃料化学工艺学
Part Ⅱ 核燃料后处理
第五章 溶剂萃取工艺过程
第十三讲 聂小琴
1
第五章 溶剂萃取工艺过程
5.1 普雷克斯流程概述 5.2 共去污-分离循环 5.3 钚的净化循环 5.4 铀的净化循环
2
5.1 普雷克斯流程概述
普雷克斯 (Purex: Plutonium Uranium Recovery by Extraction—萃取回收铀钚)
13
5.2 共去污-分离循环
(1) 共萃取共去污(1A) ➢ ① 料液铀浓度
✓ 高(生产能力/进料级的铀饱和度) ✓ 太高(粘度/密度/流动性)
我国核燃料后处理技术的现状与发展_叶国安

嬗变过程可实现核废物的最小化,并有效 降低其放射性毒性的长期危害。乏燃料 若直接进行地质处置,其体积是 2m3/tU, 而经后处理提取铀钚后,需地质处置的 废物体积低于 0.5m3/tU。
地质处置库的装载容量取决于处 置库关闭后巷道内的温度,即残留在玻 璃固化体中的释热核素决定处置库的 容量。以乏燃料直接处置为参照,提高 钚 、次 锕 系 与 高 释 热 核 素 (Sr-90、 Cs-137) 的 回 收 率 ,可 显 著 提 高 处 置 库 的装载容量。
全分离技术的要点是改进 PUREX 流程,除了分离铀、钚外,同时分离镎、 锝、碘,然后进一步分离高放废液中剩 余的铀、钚和次锕系元素以及锶、铯,分 别得到上述元素的单个产品。部分分 离指分别得到铀和铀/钚(或铀/超铀)混 合产品。部分分离由于得到的是锕系 混合物,只能用于均匀嬗变。在干法后 处理中,钚与其他锕系元素一般难以分 开,属于部分分离。
后处理发展的意义
一是通过后处理提取并复用铀、钚, 可提高铀资源利用率。
后处理可极大地提高铀资源的利用 率。回收的铀、钚可用于热堆循环,但钚 最好用于快堆循环。在热堆中铀资源利 用率不足 1%,而在快堆中铀资源利用率 可以提高到 60%以上,理论上可使地球铀 资源使用达到千年,从而确保核能的可 持续发展。
核燃料后处理及核废物处置(第三章和第四章)

用4-6mol/L的热硫酸溶解不锈钢包壳。
Fe H 2 SO 4 FeSO 4 H 2
Cr 1 .5 H 2 SO 4 0 .5Cr 2 ( SO 4 ) 3 1 .5 H 2
Ni H 2 SO 4 NiSO 4 H 2
化学溶解去壳法的缺点
(1)溶解速度慢,且不稳定,硝酸根对不锈钢包壳
东华理工大学 化学生物材料科学学院 张志宾
首端处理的目的:将不同种类的乏燃料组(元)件加工 成具有特定的物理、化学状态的料液,供铀钚共萃取共
去污工序使用。
首端处理对后处理试剂的消耗量、三废的产生量及运行费有很 大的影响,而且直接关系到萃取工艺工程能够顺利进行。
因此,首端处理是后处理工艺的重要组成部分。
优 点:(1)产生的废物包壳处于固态状态,克服
了化学法溶解包壳那样产生过多的放射性废液, (2)也解决了机械脱壳可能将少量芯体夹带在包
壳中而失去核燃料。
缺 点:切割设备较复杂,需遥控操作。 应 用:用于处理锆及其合金包壳、不锈钢包壳, 是动力堆乏燃料元件有代表性的去壳方法。
1 乏燃料元件的剪切
乏燃料剪切的要求: (1)切除元件端头,使不含铀芯的金属材料尽可能
铝包壳的元件
在同一溶解器中先用碱溶壳,再用硝酸溶芯的溶解 过程。
2 Al 2 NaOH 2 H 2 O 2 NaAlO
2
3H 2
氢气与空气的爆炸极限为4% ~75%(范围较宽,爆炸难控制), 在NaOH溶液中添加适量NaNO3可以一直氢气的产生。
8 Al 5 NaOH 3 NaNO 3 2 H 2 O 8 NaAlO
溶解器出现正压造成放射性物质泄漏的危险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 概述
5.1.1核燃料(乏燃料)后处理
核燃料后处理目的:从乏燃料中除去裂变产物,并回收未 耗尽的和新生成的核燃料。
核燃料在反应堆中燃烧,不是一次烧尽的,为维持反应堆 的正常运行,堆中要留有最低数量的核燃料;积累的裂变产 物也会吸收中子而影响反应堆的正常运行。核燃料在反应堆 中燃烧一段时间后应从反应堆中卸出,卸出的核燃料经过后 处理才有可能重新利用其中有用之物。对核燃料循环来说, 核燃料后处理是一个不可缺少的环节。
因此,为了维持反应堆的正常运行,卸出的乏燃料必需 留有最低数量的易裂变核素,不能“烧尽”。
乏燃料并不是烧尽的废燃料,乏燃料中含有许 多有价值的物质: ☞ 一定量的未裂变和新生成的易裂变核素,如U235、Pu-239、U-233。 ☞ 大量的未用完的可转换核素,U-238、Th-232以 及在辐照过程中产生的超铀元素, 如Np-237、Am241、Cm-242等. ☞ 核裂变产生的有用的裂片元素,Sr-90、Cs-137、 Tc-99等. 上述核素可以通过乏燃料后处理和相应的分离流 程予以回收和纯化。
5.1.2 核燃料后处理在核工业中的重要性
核燃料后处理是核燃料循环中的一个重要组成部分,同 时它又是军民两用技术。核工业中的地位和作用如下: 1. 后处理对于充分利用核能资源意义重大 ☞ 核电是我国能源的重要组成部分。对动力堆乏燃料进行后
处理,实现核燃料闭路循环,对充分利用铀资源、实现核 能可持续发展,起着举足轻重的作用。我国已探明的铀资 源量有限,且铀矿品位低、规模小,如果不搞后处理,铀 资源将会限制我国核能的发展。 ☞ 核燃料通过反应堆使用一次,只能利用燃料总量的极少部 分。生产堆仅用了千分之几,较先进的动力堆,燃料的利
核燃料在反应堆中为什么不能“烧尽”?
☞ 核燃料物理寿命:当最后调整控制棒不能维持链式反应时 的时间。此时,核燃料必需从堆内卸出。
☞ 燃料包壳寿命:随着燃耗的加深,燃料包壳受热和中子影 响以及裂变产物积累的影响会变形。包壳存在一个使用 寿命问题。
☞ 实际中核燃料从堆内卸出的时间,需根据燃料的辐照性能、 力学性能以及燃料的浓缩度的相互匹配,提出最经济的 燃耗值来确定。
☞ 1950-1952年,橡树岭进行了普雷克斯(Purex)流程的中 试,并于1954年和1956年先后在萨凡那河工厂和汉福特工 厂投入运行。
乏燃料组成
(95%U、1%Pu、4%FP+MA)
从轻水堆卸出的 乏燃料中,235U含 量仍有0.85%左右, 高于天然铀,而 且每吨乏燃料还 含有约10 kg钚, 其中可作为核燃 料的239Pu和241Pu 约占7kg。
3. 后处理对保障核燃料工业环境安全极其关键
☞ 每从核电站得到一度电,就有3.7×1010Bq放射性物质从反 应堆中排出。虽然一些放射性物质一开始就很快衰变掉, 但其中长寿命放射性核素的数量仍十分可观。一座10万 kW的核电站,每年要产生2.2×1017Bq的137Cs、90Sr。同时, 还要产生3.7×1013Bq的长寿命锕系元素(半衰期以万到百 万年计)。
2. 后处理过程对核电经济性有重要影响
☞ 为保护天然资源,今后的反应堆将不断提高可转 换材料的利用率,发展先进的增殖反应堆,同时 实现工业钚的复用。
☞ 因此,天然铀提炼费和同位素富集费在核电成本 中所占比重将逐渐下降,而后处理和元件再制造 这两个环节占燃料循环费的比例将明显上升。
☞ 为了适应上述变化,必须在后处理工厂中不断降 低每公斤燃料的处理费用。
ห้องสมุดไป่ตู้
乏燃料(Spent Fuel):指在核反应堆中,辐照 达到计划卸料的比燃耗后从堆中卸出,且不再在该 堆中使用的核燃料。 核燃料在反应堆中燃烧的过程实质是核燃料中的易 裂变核素(如U-235、Pu-239或U-233)在中子流 的轰击下发生自持的核裂变反应的过程。 ☞ 随着核反应的进行,初期核燃料中的易裂变核素 逐渐减少,俘获中子的裂变产物逐渐增加; ☞ 随着燃耗的加深,反应性逐步降低,为了维持反 应堆中全活性区的有效增殖系数大于1,需调整控 制棒位置以增加反应性。
随着核能和平利用的发展,世界上陆续建造了各 种用途的反应堆,如核电站动力用堆、研究试验 用堆、船舶推进用堆等。核燃料后处理的对象也 发生了变化,其中主要的是电站用堆卸下的辐照 燃料。
Purex流程已取代了其他溶剂萃取流程,它不仅 可以用于生产堆、动力堆燃料的后处理,而且有 可能性用于燃耗更深的快中子增殖堆的燃料后处 理,是现今最有效、最成功的核燃料后处理流程。
用率也只有百分之几。
乏燃料中剩余易裂变燃料和可转换材料只有经后处理分离 净化后才能得到回收复用。 ☞ 对低加浓铀乏燃料中尚含有235U~0.9%、238U~95%和新生 成的易裂变物质239Pu~1%,经后处理可以从中回收有用的 铀和钚,再制成UO2、PuO2或UO2+PuO2(MOX)燃料返 回热堆或快堆使用,使核燃料得以有效利用,缓解发展核电 与铀资源不足的矛盾。 ☞ 对于燃料的初始235U富集度为3.3%、燃耗为33000 MWd/t 的1000 MWe(即100万千瓦)的压水堆电站,若燃料用后不 再循环,每年需要天然铀(以U3O8计)约200t;而通过后处 理使铀可节约天然铀约15%,铀、钚同时循环使用,可节约 天然铀40%。此外,实现铀循环还可节约分离功6-10%,实 现铀、钚同时循环可节约分离功约40%。如果使用混合氧化 物燃料的快中子增殖堆核燃料闭路循环,对铀资源的利用率 可从热堆的0.5-1%提高到60-70%!
核燃料后处理历史
☞ 源于军事目的,上世纪40年代为得到核武器装料Pu-239, 建立了以天然铀为燃料的反应堆,并用沉淀法从辐照天然 铀中提取武器级钚。
☞ 1944年首次大规模地使用磷酸铋沉淀流程从辐照天然铀中 提取钚,但其严重缺点是不能回收铀。
☞ 1948-1949年,橡树岭对以甲基异丁基酮(MIBK)作萃 取剂的雷道克斯(Redox)流程进行了中试,并于1952年 在汉福特开始大规模运行,这个流程既能同时回收铀和钚, 同时又可以连续操作并大大减少了废物量。