2014年辽宁省高考数学试卷(理科)
2014年辽宁省高考数学试卷(理科)(含解析版)

2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1} 2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0B.d>0C.a1d<0D.a1d>09.(5分)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,]上单调递减C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3] 12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C.D.二、填空题:本大题共4小题,每小题5分。
2014年高考理科数学辽宁卷

过点 P ,求 l 的方程.
21.(本小题满分 12 分)
已知函数 f (x) (cos x x)(π 2x) 8 (sin x 1) , 3 g(x) 3(x π)cos x 4(1 sin x) ln(3 2x) . π
证明:
(Ⅰ)存在唯一
x0
(0,
π ) ,使 2
f
(x0 )
在
绝密★启用前
2014 年普通高等学校招生全国统一考试(辽宁卷)
此 注意事项:
数学(供理科考生使用)
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己
的姓名、准考证号填写在答题卡上.
卷
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如
需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.
14.正方形的四个顶点 A(1, 1) , B(1,1) , C(1,1) , D(1,1) 分别在抛物线 y x2 和 y x2 上,如图所示.若将一个质点随机投入正方形 ABCD 中,则质点落在图中阴影区域的概 率是________.
15.已知椭圆 C : x2 y2 1,点 M 与 C 的焦点不重合.若 M 关于 C 的焦点的对称点分别 94
数学试卷 第 4 页(共 6 页)
19.(本小题满分 12 分) 如图,△ABC 和△BCD 所在平面互相垂直,且 AB BC BD 2 , ABC DBC 120 , E , F 分别为 AC , DC 的中点. (Ⅰ)求证: EF⊥ BC ; (Ⅱ)求二面角 E BF C 的正弦值.
0;
(Ⅱ)存在唯一
x1
(π 2
, π)
,使
g ( x1 )
2014年辽宁省高考数学试卷(理科)答案与解析

2014年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1} C.{x|0≤x≤1} D.{x|0<x<1}考点:交、并、补集的混合运算.专题:集合.分析:先求A∪B,再根据补集的定义求C U(A∪B).解答:解:A∪B={x|x≥1或x≤0},∴C U(A∪B)={x|0<x<1},故选:D.点评:本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法.2.(5分)(2014•辽宁)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把给出的等式两边同时乘以,然后利用复数代数形式的除法运算化简,则z可求.解答:解:由(z﹣2i)(2﹣i)=5,得:,∴z=2+3i.故选:A.点评:本题考查了复数代数形式的除法运算,是基础的计算题.3.(5分)(2014•辽宁)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a考点:对数的运算性质.专题:计算题;综合题.分析:利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.解答:解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:C.点评:本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.4.(5分)(2014•辽宁)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.解答:解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选B.点评:本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.5.(5分)(2014•辽宁)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)考点:复合命题的真假;平行向量与共线向量.专题:简易逻辑.分析:根据向量的有关概念和性质分别判断p,q的真假,利用复合命题之间的关系即可得到结论.解答:解:若•=0,•=0,则•=•,即(﹣)•=0,则•=0不一定成立,故命题p为假命题,若∥,∥,则∥平行,故命题q为真命题,则p∨q,为真命题,p∧q,(¬p)∧(¬q),p∨(¬q)都为假命题,故选:A.点评:本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断p,q的真假是解决本题的关键.6.(5分)(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24考点:计数原理的应用.专题:应用题;排列组合.分析:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理可得结论.解答:解:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理,6×4=24.故选:D.点评:本题考查排列知识的运用,考查乘法原理,先排人,再插入椅子是关键.7.(5分)(2014•辽宁)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:几何体是正方体切去两个圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面半径和高,把数据代入正方体与圆柱的体积公式计算.解答:解:由三视图知:几何体是正方体切去两个圆柱,正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积V=23﹣2××π×12×2=8﹣π.故选:B.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)(2014•辽宁)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>0考点:数列的函数特性.专题:函数的性质及应用;等差数列与等比数列.分析:由于数列{2}为递减数列,可得=<1,解出即可.解答:解:∵等差数列{a n}的公差为d,∴a n+1﹣a n=d,又数列{2}为递减数列,∴=<1,∴a1d<0.故选:C.点评:本题考查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识与基本技能方法,属于中档题.9.(5分)(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.解答:解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].即y=3sin(2x﹣).当函数递增时,由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B.点评:本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.10.(5分)(2014•辽宁)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:由题意先求出准线方程x=﹣2,再求出p,从而得到抛物线方程,写出第一象限的抛物线方程,设出切点,并求导,得到切线AB的斜率,再由两点的斜率公式得到方程,解出方程求出切点,再由两点的斜率公式求出BF的斜率.解答:解:∵点A(﹣2,3)在抛物线C:y2=2px的准线上,即准线方程为:x=﹣2,∴p>0,=﹣2即p=4,∴抛物线C:y2=8x,在第一象限的方程为y=2,设切点B(m,n),则n=2,又导数y′=2,则在切点处的斜率为,∴即m=2m,解得=2(舍去),∴切点B(8,8),又F(2,0),∴直线BF的斜率为,故选D.点评:本题主要考查抛物线的方程和性质,同时考查直线与抛物线相切,运用导数求切线的斜率等,是一道基础题.11.(5分)(2014•辽宁)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()C.[﹣6,﹣2]D.[﹣4,﹣3] A.[﹣5,﹣3]B.[﹣6,﹣]考点:函数恒成立问题;其他不等式的解法.专题:综合题;导数的综合应用;不等式的解法及应用.分析:分x=0,0<x≤1,﹣2≤x<0三种情况进行讨论,分离出参数a后转化为函数求最值即可,利用导数即可求得函数最值,注意最后要对a取交集.解答:解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立;当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥,令f(x)=,则f′(x)==﹣(*),当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,f(x)max=f(1)=﹣6,∴a≥﹣6;当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤,由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增,f(x)min=f(﹣1)=﹣2,∴a≤﹣2;综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].故选:C.点评:本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.12.(5分)(2014•辽宁)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C.D.考点:函数恒成立问题;绝对值不等式的解法.专题:综合题;函数的性质及应用.分析:依题意,构造函数f(x)=(0<k<),分x∈[0,],且y∈[0,];x∈[0,],且y∈[,1];x∈[0,],且y∈[,1];及当x∈[,1],且y∈[,1]时,四类情况讨论,可证得对所有x,y∈[0,1],|f(x)﹣f(y)|<恒成立,从而可得m≥,继而可得答案.解答:解:依题意,定义在[0,1]上的函数y=f(x)的斜率|k|<,依题意,k>0,构造函数f(x)=(0<k<),满足f(0)=f(1)=0,|f(x)﹣f(y)|<|x﹣y|.当x∈[0,],且y∈[0,]时,|f(x)﹣f(y)|=|kx﹣ky|=k|x﹣y|≤k|﹣0|=k×<;当x∈[0,],且y∈[,1],|f(x)﹣f(y)|=|kx﹣(k﹣ky)|=|k(x+y)﹣k|≤|k(1+)﹣k|=<;当y∈[0,],且x∈[,1]时,同理可得,|f(x)﹣f(y)|<;当x∈[,1],且y∈[,1]时,|f(x)﹣f(y)|=|(k﹣kx)﹣(k﹣ky)|=k|x﹣y|≤k×(1﹣)=<;综上所述,对所有x,y∈[0,1],|f(x)﹣f(y)|<,∵对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,∴m≥,即m的最小值为.故选:B.点评:本题考查函数恒成立问题,着重考查构造函数思想、分类讨论思想、函数方程思想与等价转化思想的综合运用,考查分析、推理及运算能力,属于难题.二、填空题:本大题共4小题,每小题5分。
2014年辽宁省高考数学试卷理科

2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>09.(5分)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣] C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.二、填空题:本大题共4小题,每小题5分。
2014辽宁高考数学理科

14高考辽宁(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.已知定义在[0,1]上的函数()f x 满足:①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12π D .18二、填空题13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x=上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .频率组距 /个19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.C20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.PA23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ; (2)当x MN ∈时,证明:221()[()]4x f x x f x +≤.参考答案一、选择题: 1. D解析: ∵A ∪B={x|x ≥1或x ≤0},∴()U C A B ={|01}x x <<.故选D.考点:(1)1.1.3集合的基本运算. 难度:A 备注:高频考点2. A解析:∵(2)(2)5z i i --=,∴522z i i -=-,∴()()55(2)2223222iz i i iii i +=+=+=+--+.解析2: ∵(2)(2)5z i i --=,∴5(2)(2)242z i i z z i i =--=---,∴472i z z i +=-,∴()()()()4724723222i i i z i i i i +++===+--+.解析3:设z a bi =+,代入到已经中(2)(2)5a bi i i +--=,整理2(24)5a b b a i +-+--=,根据复数相等的概念得25240a b b a +-=⎧⎨--=⎩,解得a=2,b=3,所以z =23i +. 考点:(1)11.2.2复数的代数运算;(2)13.1.1函数与方程思想. 难度:A 备注:高频考点 3. C解析:∵1030221a -<=<=,22122211log log 10,log log 3log 2133b c =<===>=, ∴c >a >b解析2:首先将c 化简:1221log log 33c ==.画函数22,log x y y x ==的图像,如图所示:通过观察图像得:c >a >b考点:(1)2.4.3指数函数的性质及应用;(2)2.5.2对数函数的图象与性质;(3)13.1.1函数与方程思想;(4)13.1.5特殊与一般思想.备注:易错题. 4. B 解析:A .若m ∥α,n ∥α,则m ,n 相交或平行或异面,故A 错;xB .若m ⊥α,n ⊂α,则m ⊥n ,故B 正确;C .若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错;D .若m ∥α,m ⊥n ,则n ∥α或n ⊂α或n ⊥α,故D 错. 考点:(1)9.4.1直线与平面平行的判定与性质;(2)9.5.1直线与平面垂直的判定与性质. 难度:B 备注:易错题. 5. A解析:若0a b ∙=,0b c ∙=,则0a c ∙=”是个假命题,理由如下:若0a b ∙=,0b c ∙=,则a b b c ∙=∙,所以0a b b c ∙-∙=,即()0a c b -∙=,则不能说明0a c ∙=成立;“若//,//a b b c ,则//a c ”为真命题,理由如下:若//,//a b b c ,设,a b b c λμ==(0λμ⋅≠),所以()()a c c λμλμ==,可得//a c .则p ∨q ,为真命题,p ∧q ,(¬p )∧(¬q ),p ∨(¬q )都为假命题.考点:(1)1.2.1四种命题的关系及真假判断;(2)5.1.3平面向量的共线问题;(3)5.3.1平面向量的数量积运算. 难度:B 备注:易错题. 6.D解析:第一步:3人全排,有33A =6种方法,第二步:3人全排形成4个空,在前3个或后3个或中间两个空中插入椅子,有4种方法,第三步:根据乘法原理可得所求坐法种数为6×4=24种.解析2:将6把椅子依次编号为1,2,3,,4,5,6,故任何两人不相邻的做法,可安排:“1,3,5,”,“1,3,6”,“1,4,6”,“2,4,6”号位置就坐,故总数为433A =24.考点:(1)10.6.1分类加法计数原理的应用;(2)10.6.2分步乘法计数原理的应用;(3)10.6.4排列问题. 难度:B备注:高频考点. 7. D解析: 由三视图知:几何体是正方体切去两个14圆柱, 正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积V=23﹣2×14×π×12×2=8﹣π.考点:(1)9.2.3由三视图求几何体的表面积、体积. 难度:B备注:高频考点 8.C解析:根据题意可得∵数列1{2}na a 为递减数列,∴111111111()()0222,22122nnn n n n a a a a a a a a a a d a a +++-->∴==>=,10a d ∴<.解析 2 :由数列1{2}n a a 为递减数列,根据指数函数n y a =的性质,知10n a a <,得10,0n a a ><,或10,0n a a <>,当10,0n a a ><时,0d <,所以10a d <,,当10,0n a a <>时,0d >,所以10a d <,综上:10a d <.考点:(1)2.4.3指数函数的性质及应用;(2)6.2.2等差数列的基本量的计算;(3)13.1.3分类与整合思想.难度:B 备注:高频考点 9. B解析: 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得函数为 23sin 23sin 2233y x x πππ⎡⎤⎛⎫⎛⎫=-+=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以23222232k x k πππππ+≤-≤+,解得7131212k x k ππππ+≤≤+,所以函数在区间713[,]1212k k ππππ++上单调递减 ,所以A,C 都不正确;2222232k x k πππππ-+≤-≤+,解得71212k x k ππππ+≤≤+,所以函数在区间7,1212k k ππππ⎡⎤++⎢⎥⎣⎦上单调递增 ,当k=0时,函数在在区间7[,]1212ππ上单调递增. 考点:(1)4.4.1作y=Asin(wx+φ)的图象及图像变换(2);4.3.2三角函数的单调性与周期性. 难度:B 备注:高频考点 10. D解析:抛物线C :22y px =的准线方程为2px =-,焦点F (2,0),而点(2,3)A -在准线上,所以解得p=4,设B (m ,n ),抛物线在第一象限的方程为y =12y -'=,所以过点B的切线斜率为12k -=,而切线又过点A ,所以33n m -=+12-①,而点B 又在满足方程y =n =m=n=8,所以BF 的斜率为804823-=-.解析2:22y px =的准线方程为2px =-,焦点F (2,0),而点(2,3)A -在准线上,所以解得p=4,设直线AB 的方程为(3)2x k y =--,与方程22y px =联立,得22(3)2y pxx k y ⎧=⎨=--⎩,化简2824160y ky k -++=,26496640k k ∆=--=,所以k=2,(或k=-1舍去),将k=2代入2824160y ky k -++=中,可求得y=8,从而解得x=8,故B (8,8),所以BF 的斜率为804823-=-. 考点:(1)8.7.3直线与抛物线的位置关系;(2)3.1.3导数的几何意义. 难度:B备注:高频考点 11. C 解析:当0≤x ≤1时,ax 3-x 2+4x+3≥0可化为32341a x x x≥--+, 令()32341f x x x x =--+,则()432981f x x x x'=+-,当0≤x ≤1时,f ′(x )>0,f (x )在(0,1]上单调递增,f (x )max =f (1)=-6,∴a ≥-6;当-2≤x <0时,ax 3-x 2+4x+3≥0可化为32341a x x x≤--+, 当-2≤x <-1时,f ′(x )<0,f (x )单调递减,当-1<x <0时,f ′(x )>0,f (x )单调递增,f (x )min =f (-1)=-2,∴a ≤-2;综上所述,实数a 的取值范围是-6≤a ≤-2,即实数a 的取值范围是[-6,-2].考点:(1)3.2.2导数与函数单调性;(2)7.2.2一元二次不等式恒能恰成立问题. 难度:C备注:高频考点解析2:先证4k ≤.不妨设01y x ≤<≤,(1) 若12x y -≤ ,则1111|(x)()||x |2224f f y y -<-≤⨯=;(2) 若12x y ->,有12x y -+<-,则|(x)()||(x)(1)(0)()||(x)(1)|f f y f f f f y f f -=-+-≤-|(0)()|f f y +-1111111111|x 1||0|(1x)(x )()2222222224y y y <-+-=-+=+-+<+⨯-= 所以14k ≤.由于对称性,同理可证明当01x y ≤<≤时,14k ≤;故:14k ≤再证14k ≥.为了证明这一点,我们需要构造一族函数.我们构造如下函数:11(),[0,]22(x)11()(1),(,1]22x x f x x εε⎧-∈⎪⎪=⎨⎪--∈⎪⎩ (其中ε 是远小于12 的正数)显然有(0)(1)0f f ==.接下来再验证条件(2).同样不妨设01y x ≤<≤.(i )当1,[0,]2x y ∈ 时,11|(x)()|()|x ||x |22f f y y y ε-=--<-(ii )当1,[,1]2x y ∈时,11|(x)()||()(1x)()(1)|22f f y y εε-=-----11|()()||x |22y x y ε=--<-;(iii )当11[,1],[0,]22x y ∈∈时,11|(x)()||()(1x)()|22f f y y εε-=----11|()(1x y)||x |22y ε=---<-(因为此时有1x y x y --<-和1x y x y -++<-,所以(1x y)||x |y --<-).又因为11111|()(0)||()0|22242f f εε-=--=-,所以1142k ε>-,由于ε的任意性,令ε趋近与0,可得14k ≥. 由于对称性,同理可证明当01x y ≤<≤时,14k ≥; 综合14k ≤,所以只有14k =. 解析3 :依题意,由1|()()|||2f x f y x y -<-,得|()()|()()1||2f x f y f x f y x y x y --=<--,如图所示的函数y=f (x )满足的条件函数之一(函数y=f (x )的图像位于直线1l解析4:依题意,由1|()()|||2f x f y x y -<-,得|()()|()()1||2f x f y f x f y x y x y --=<--,13.1.3分类与整合思想.难度:D 备注:高频考点二、填空题 13.299解析:由程序框图知:第一次循环x=9,y=93+2=5,|5﹣9|=4>1; 第二次循环x=5,y=53+2=113,|113﹣5|=43>1;第三次循环x=113,y=119+2.|119+2﹣113|=49<1,满足条件|y ﹣x|<1,跳出循环,输出y=299.考点:(1)11.1.3程序框图的识别及应用. 难度:B 备注:高频考点 14.23解析:∵A (﹣1,﹣1),B (1,﹣1),C (1,1),D (﹣1,1), ∴正方体的ABCD 的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积()11231111182122113333S x dx x x --⎡⎤⎛⎫⎛⎫=-=-=---+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是82343=.考点:(1)10.5.5与面积、体积有关的几何概型(2)3.4.3利用定积分求曲线所围图形的面积. 难度:B 备注:高频考点 15.12解析:如图:由M 关于C 的焦点的对称点分别为A ,B ,得12,F F 分别是线段MA ,MB 的中点,而MN 的中点为Q ,根据中位线定义,易得212QF BN =,112QF AN = ∵Q 在椭圆C 上,∴|QF 1|+|QF 2|=2a=6,∴|AN|+|BN|=2×6=12.解析2:设M ,N 的中点坐标为P ,(),M M M x y ,(),N N N x y ,(),P P P x y ,(),A A A x y ,(),B B B x y ,则M A x x +=-M B x x +=2M A P x x x +=,0M A y y +=,0M B y y +=,2M N P y y y +=,所以AN BN +=6=,所以|AN|+|BN|=2×6=12.考点:(1)8.5.1椭圆的定义;(2)8.5.3椭圆的几何性质. 难度:C备注:高频考点 16. -2解析:∵224240a ab b c -+-=,∴222211542416c b a ab b a b ⎛⎫=-+=-+ ⎪⎝⎭,由柯西不等式得,22222152224164b b a b a a b ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫-++≥-=+⎢⎥⎢⎥⎢ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎣⎦⎣⎦, 故当|2a+b|最大时,有4462b a -=,∴32a b =,代入已知得210c b =,∴2223453451121122310222a b c b b b b b b ⎛⎫⎛⎫-+=-+=-=-- ⎪ ⎪⎝⎭⎝⎭,当12b =时,取得最小值为-2. 类似的,还可以这样构造式子:22532232b b c a ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,所以2222253332122232522b b ba ab a b ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-++≥-+=+⎢⎥⎢⎥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,剩下的步骤和解析1相同.解析2:∵224240a ab b c -+-=,∴()()225322388c a b a b =++-, 则()()225322388a b c a b c +=--≤,当32a b =时,取到等号,即|2|a b +取到最大值,将32a b =代入22424c a ab b =-+中,解得210c b =,下面步骤与解析1步骤一样.解析3:设t=2a+b ,则b=t-2a ,代入式子224240a ab b c -+-=中,整理可得22241840,a ta t c -+-=要保证关于a 的方程有解,则△=()()221842440t t c -⋅-≥,整理解t,t ≤|2|a b +≤,而只有△=0时,等号成立,即使|2|a b +最大,此时,()()1832322488t a b t a --+===⋅,即32a b =, 又()()22225552310888c t a b a b b ==+=+=, 所以223452411122222a b c b b b b ⎛⎫-+=-+=--≥- ⎪⎝⎭,当12b =时,上式取得最小值,解得3324a b ==,25102c b ==,所以当12b = ,34a =,52c =时,345a b c-+的最小值为-2.解析4:∵224240a ab b c -+-=,∴2215224b b c a ⎛⎫=-+ ⎪⎝⎭,设22b a θ-=,2θ=,则i n b θ=,2a θθ=,代入式子|2|a b +中,所以|2|c o ss i 1s i n ()a b θθθϕ+==+≤.当tan θ=时,等号成立,即2tan 22b a θ=-,整理得32a b =,代入到已知等式中解得210c b =, 所以223452411122222a b c b b b b ⎛⎫-+=-+=--≥- ⎪⎝⎭,当12b =时,上式取得最小值,解得33,24a b ==,25102c b ==,所以当12b = ,34a =,52c =时,345a b c-+的最小值解析5:令222244t a b a ab b =+=++,由已知可得22424c a ab b =-+,所以22222244144424424a a t a ab b b bc a ab b a a b b ⎛⎫++ ⎪++⎝⎭==-+⎛⎫-+ ⎪⎝⎭,设a x b =,则 ()()()()2222321441633111442442421(21)421121x t x x x c x x x x x x x x -++-==+=+=+-+-+-+-+-++-381415≤+=+.当且仅当42121x x -=-即32x =或12x =-(舍)时,等式成立,所以32b a =,即32a b =时,|2|a b +取到最大值,将32a b =代入22424c a ab b =-+中,解得210c b =,下面步骤与其他解析步骤一样.考点:(1)12.3.4柯西不等式与排序不等式的简单应用;(2)2.6.5二次函数的图象与性质;(3)13.1.4化归与转化思想. 难度:D备注:典例. 三、解答题 17.(1)a=3,c=2;(2)2327解析:(1)2BA BC ∙=,1cos 3B =,cos 2BA BC B ∴∙=,即6a c ⋅=①,由余弦定理可得2221cos 23a cb B ac +-==,化简整理得2213a c +=②,①②联立,解得,a=3,c=2;(2)1cos ,sin 33B B =∴=因为a=3,3b =,c=2,由余弦定理可得2227cos 29ac b C ab -+==,sin 9C∴==,7123cos()cos cos sin sin 9327B C B C B C ∴-=+=⋅=.(2)在△ABC 中,1cos ,sin 3B B =∴==sin sin b c B C =可得sinsin 9c B C b ==,a b c =>,C ∴为锐角,7cos 9C ∴==,7123cos()cos cos sin sin 9327B C B C B C ∴-=+=⋅=. 考点:(1)5.3.1平面向量的数量积运算;(2)4.6.2利用余弦定理求解三角形; 难度:B备注:高频考点 18.(1)0.108;(2)1.8,0.72.解析:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个” B 表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108,(Ⅱ)X 可能取的值为0,1,2,3,相应的概率为:()33(0)10.60.064P X C ==-=,()213(1)0.610.60.288P X C ==-=,()1223(2)0.610.60.432P X C ==-=,333(3)0.60.216P X C ===,随机变量X 的分布列为因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1﹣0.6)=0.72. 考点:(1)0.9.5二项分布的均值、方差;(2)13.1.7或然与必然思想. 难度:B 备注:典例19. (1)见解析;(2解析:(1)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系, 易得B (0,0,0),A (0,﹣1,D1,0),C (0,2,0),因而E (0,12,F12,0),所以EF =), BC =(0,2,0),因此EF BC ⋅=0,所以EF ⊥BC . (2)在图中,设平面BFC 的法向量1n =(0,0,1),平面BEF 的法向量2n =(x ,y ,z ), 又BF =(12,0),BE =(0,12), 由120n BF n BE ⎧⋅=⎪⎨⋅=⎪⎩ 解得其中一个法向量2n =(11), 设二面角E ﹣BF ﹣C 的大小为θ,由题意知θ为锐角,则cos θ=|cos <1n ,2n >|=12125n n n n ⋅=因此sin θ解析2: (几何法)(1)延长CB ,过点A 作AG ⊥BC 交G ,连接DG ,因为2AB BC BD ===,0120ABC DBC ∠=∠=所以ABC ∆≅BCD ∆ 所以AC=DC ,又因为030ACB DCB ∠=∠=,GB=BGG所以AGC ∆≅GCD ∆,所以090AGC DGC ∠=∠=,即DB ⊥CG 而AG ⊥CG ,所以CG ⊥平面AGD , 因为AD ⊂平面AGD ,所以CG ⊥AD因为E 、F 分别为AC 、DC 的中点. 所以EF//AD 所以CG ⊥EF (2)如图所示:过点E 分别作EO ⊥平面BDC ,交点O ,EH ⊥BF ,垂足H ,EM ⊥DC ,垂足M ,连接OH ,OM , 则四边形HOMF 是矩形,根据三垂线定理可得,EHO ∠是二面角E BF C --所求的平面角,因为2AB BC BD ===,0120ABC DBC ∠=∠=所以由余弦定理可得AC=DC=在直角三角形AGB 和直角三角形BGD 中,AG=GD=sin60AB ⋅=因为E 、F 分别为AC 、DC 的中点, 所以EF=12AD= 由三角形面积公式可得4EF EF h EM FC⋅====,所以4FM ==即4HO =. 在△EBF 中GHO M4EFEF H EH BF⋅===cos HO EHO EH ∠===. 因为cos 0EHO ∠>,所以EHO ∠为锐角所以sin 5EHO ∠==. 即二面角E BF C --所求的平面角EHO ∠考点:(1)9.5.1直线与平面垂直的判定与性质;(2).8.3求二面角. 难度:B备注:高频考点20. (1)221:12y C x -=;(2)102x y ⎛⎫--= ⎪ ⎪⎝⎭或102x y ⎛+-= ⎝⎭.解析:(1)设切点P (x 0,y 0),(x 0>0,y 0>0),则切线的斜率为0x y -, 可得切线的方程为0000()x y y x x y -=--,化为x 0x+y 0y=4. 令x=0,可得04y y =;令y=0,可得04x x =. ∴切线与x 轴正半轴,y 轴正半轴围成一个三角形的面积000014482S y x x y =⋅⋅=⋅ ∵2222000042x y x y =+≥⋅,当且仅当00x y =时取等号. ∴842S ≥=.此时P .由题意可得22221a b -=,c e a ===a 2=1,b 2=2.故双曲线C 1的方程为221:12y C x -=.(2)由(Ⅰ)可知双曲线C 10),即为椭圆C 2的焦点.可设椭圆C 2的方程为22221113x y b b +=+(b 1>0). 把P代入可得22112213b b +=+ 22112213b b +=+,解得213b =, 因此椭圆C 2的方程为22163x y +=.由题意可设直线l 的方程为A (x 1,y 1),B (x 2,y 2),联立2226x my x y ⎧=⎪⎨+=⎪⎩()22230m y ++-=,∴1212232y y y y m-+==+.∴1212()x x m y y +=++=()2212121226632m x x m y y y y m-=++=+()()11222,2,2,AP x y BPx y =--=-∵AP BP ⊥,∴0AP BP ⋅=,∴))1212121240x x x x y y y y ++++=,∴22110m-+=,解得1-或m=1-,因此直线l的方程为:102x y ⎛⎫---=⎪ ⎪⎝⎭或102x y ⎛+--= ⎝⎭. 考点:(1)8.5.2椭圆的标准方程;(2)5.4.3平面向量与解析几何的综合问题;(3)7.3.2利用基本不等式求最值;(4)13.1.2数形结合思想;(5)13.1.4化归与转化思想.难度:D 备注:典例21.(1)见解析;(2)见解析.解析:根据题意可得,f′(x )=﹣(1+sinx )(π+2x )﹣2x ﹣23cosx (Ⅰ)∵当x ∈(0,2π)时,f′(x )<0, ∴函数f (x )在(0,2π)上为减函数,又f (0)=π﹣83>0,f (2π)=﹣π2-163<0;∴存在唯一的x 0∈(0,2π),使f (x 0)=0;(Ⅱ)考虑函数h (x )=3()cos 1sin x xx π-+﹣4ln (3﹣2πx ),x ∈[2π,π],令t=π﹣x ,则x ∈[2π,π]时,t ∈[0,2π],记u (t )=h (π﹣t )=3cos 1sin t tt +﹣4ln (1+2πt ),则u′(t )=3()(2)(1sin )f t t t π++,由(Ⅰ)得,当t ∈(0,x 0)时,u′(t )<0;在(0,x 0)上u (x )是增函数,又u (0)=0,∴当t ∈(,x 0]时,u (t )>0, ∴u (t )在(0,x 0]上无零点;在(x 0,2π)上u (t )是减函数,由u (x 0)>0,u (2π)=﹣4ln2<0, ∴存在唯一的t 1∈(x 0,2π),使u (t 1)=0;∴存在唯一的t 1∈(0,2π),使u (t 1)=0;∴存在唯一的x 1=π﹣t 1∈(2π,π),使h (x 1)=h (π﹣t 1)=u (t 1)=0;∵当x ∈(2π,π)时,1+sinx >0,∴g (x )=(1+sinx )h (x )与h (x )有相同的零点,∴存在唯一的x 1∈(2π,π),使g (x 1)=0,∵x 1=π﹣t 1,t 1>x 0,∴x 0+x 1<π.考点:(1)3.1.2导数的运算;(2)3.2.2导数与函数单调性;(3)3.2.3导数与函数极值;(4)3.2.4导数与函数最值;(5)3.2.6导数与函数零点、方程的根. 难度:D备注:典例22. (1)见解析;(2)见解析.解析:(1)∵PG=PD,∴∠PDG=∠PGD,∵PD为切线,∴∠PDA=∠DBA,∵∠PGD=∠EGA,∴∠DBA=∠EGA,∴∠DBA+∠BAD=∠EGA+∠BDA,∴∠NDA=∠PFA,∵AF⊥EP,∴∠PFA=90°.∴∠BDA=90°,∴AB为圆的直径;(2)连接BC,DC,则∵AB为圆的直径,∴∠BDA=∠ACB=90°,在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,∴Rt△BDA≌Rt△ACB,∴∠DAB=∠CBA,∵∠DCB=∠DAB,∴∠DCB=∠CBA,∴DC∥AB,∵AB⊥EP,∴DC⊥EP,∴∠DCE为直角,∴ED为圆的直径,∵AB为圆的直径,∴AB=ED.考点:(1)12.1.5圆的切线的性质与判定;难度:B备注:高频考点23. (1)cos 2sin x y θθ=⎧⎨=⎩(0≤θ<2π,θ为参数);(2)34sin 2cos ραα=-.解析:(1)在曲线C 上任意取一点(x ,y ),由题意可得点(x ,2y)在圆x 2+y 2=1上, ∴x 2+24y =1,即曲线C 的方程为 x 2+24y =1,化为参数方程为cos 2sin x y θθ=⎧⎨=⎩(0≤θ<2π,θ为参数).(2)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩,可得10x y =⎧⎨=⎩,02x y =⎧⎨=⎩,不妨设P 1(1,0)、P 2(0,2), 则线段P 1P 2的中点坐标为(12,1), 再根据与l 垂直的直线的斜率为12,故所求的直线的方程为y-1=12(x-12),即x-2y+32=0.再根据x=ρcos α、y=ρsin α 可得所求的直线的极坐标方程为ρcos α-2ρsin α+32=0,即34sin 2cos ραα=-.考点:(1)12.2.3极坐标方程的综合应用;(2)12.2.4参数方程与普通方程的互化;12.2.1极坐标和直角坐标的互化. 难度:B 备注:典例 24. (1)[0,43];(2)见解析. 解析:(1)由f (x )=2|x ﹣1|+x ﹣1≤1 可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②.解①求得1≤x≤43,解②求得 0≤x<1.综上,原不等式的解集为[0,43]. (2)由g (x )=16x 2﹣8x+1≤4,求得14-≤x≤34,∴N=[14-,34],∴M∩N=[0,34].∵当x ∈M∩N 时,f (x )=1﹣x ,x 2f (x )+x[f (x )]2 =xf (x )[x+f (x )]=21142x ⎛⎫-- ⎪⎝⎭≤14,故要证的不等式成立.考点:(1)1.1.3集合的基本运算;(2)12.3.2绝对值不等式的证明. 难度:C 备注:典例.。
辽宁高考数学理科试卷(带详解)教学内容

2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|U R A x x ==≤0},{|B x x =≥1},则集合()U A B =U ð( ) A .{|x x ≥0} B .{|x x ≤1} C .{|0x ≤x ≤1} D .{|01}x x <<【测量目标】集合的基本运算. 【考查方式】集合的并集、补集. 【难易程度】容易 【参考答案】D【试题分析】由题意可知,A B U ={|01}x x x ≤或≥,所以()U A B =U ð{|01}x x <<.故选D. 2.设复数z 满足(2i)(2i)5z --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 【测量目标】复数的基本性质和运算.【考查方式】复数的基本运算. 【难易程度】容易 【参考答案】A【试题分析】由(2i)(2i)5z --=,得52i 2iz -=-,故z =23i +.故选A. 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 【测量目标】对数的基本运算.【考查方式】对数的大小比较. 【难易程度】容易 【参考答案】C【试题分析】因为13021a -<=<,21log 03b =<,121log 3c =>121log 2c ==1,所以c a b >>.故选C.4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥【测量目标】空间直线与直线,直线与平面的位置关系. 【考查方式】线线平行、垂直,线面平行、垂直的判定. 【难易程度】容易 【参考答案】B【试题分析】由题可知,若//,//,m n αα则m 与n 平行、相交或异面,所以A 错误;若m α⊥,n α⊂,则m n ⊥,故B 正确;若m α⊥,m n ⊥,则//n α或n α⊂,故C 错误.若//m α,m n ⊥,则//n α或n α⊥或n 与α相交,故D 错误.故选B.5.设,,a b c 是非零向量,已知命题P :若0⋅=a b ,0⋅=b c ,则0⋅=a c ;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝⌝∧D .()p q ⌝∨【测量目标】向量的平行与垂直,真假命题的判定. 【考查方式】利用向量之间的位置关系对命题的真假进行判定. 【难易程度】容易 【参考答案】A【试题分析】由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当0≠b 时,,a c 一定共线,故命题q 是真命题.故p q ∨为真命题.故选A.6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .24 【测量目标】排列组合.【考查方式】利用插空法进行排列组合. 【难易程度】容易 【参考答案】D【试题分析】这是一个元素不相邻问题,采用插空法,3334A C 24=.故选D.7.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .π82-D .π84-第7题图 【测量目标】几何体的体积、三视图.【考查方式】利用三视图对体积的考查. 【难易程度】容易 【参考答案】B【试题分析】根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分(占柱的14)后余下的部分,故该几何体体积为2×2×2-2×14×π×2=8-π.故选B.8.设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d > 【测量目标】等差数列的基本性质.【考查方式】利用等差数列的性质对首项和公差的正负进行判断. 【难易程度】容易 【参考答案】C 【试题分析】令12n n b a a =,因为数列{}12n a a 为递减数列,所以111111122()212n n n n n nb a a a a a a d b a a +++==-=<,所得10a d <.故选C.9.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( ) A .在区间π7π[,]1212上单调递减 B .在区间π7π[,]1212上单调递增 C .在区间ππ[,]63-上单调递减 D .在区间ππ[,]63-上单调递增 【测量目标】三角函数的平移及性质.【考查方式】求正弦型三角函数平移后的单调区间. 【难易程度】容易 【参考答案】B【试题分析】由题可知,将函数π3sin(2)3y x =+的图像向右平移π2个单位长度得到函数2π3sin(2)3y x =-的图像,令π2π2k -+≤2π23x -≤π2π2k +,k ∈Z ,即ππ12k +≤x ≤7ππ12k +,k ∈Z 时,函数单调递增,即函数2π3sin(2)3y x =-的单调递增区间为π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z ,可知当0k =时,函数在区间π7π,1212⎡⎤⎢⎥⎣⎦上单调递增.故选B.10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .43【测量目标】抛物线的几何性质,直线与抛物线的位置关系.【考查方式】求过抛物线准线并与抛物线相切的直线的斜率. 【难易程度】中等 【参考答案】D【试题分析】因为抛物线C :22y px =的准线为2px =-,且点(2,3)A -在准线上,所以p =4.设直线AB 的方程为2(3)x m y +=-,与抛物线方程28y x =联立得到2824160y my m -++=,由题易知V =0,解得m =12- (舍)或者m =2,这时B 点的坐标为(8,8),而焦点F 的坐标为(2,0),故直线BF 的斜率804823BF k -==-.故选D.11.当[2,1]x ∈-时,不等式3243ax x x -++≥0恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]--【测量目标】函数的导函数、单调区间、最值. 【考查方式】通过给定函数值的范围,利用导函数求函数的单调区间并找出未知量的范围. 【难易程度】中等 【参考答案】C【试题分析】当2-≤0x <时,不等式转化为a ≤2343x x x --,令2343()(2x x f x x--=-≤0)x <, 则24489(9)(1)'()x x x x f x x x -++--+==,故()f x 在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤14321+-=--.当0x =时,()g x 恒成立.当0x <≤1时,a ≥2343x x x --,令2343()(0x x g x x x --=<≤1),则24489(9)(1)'()x x x x g x x x-++--+==, 故()g x 在(0,1]上单调递增,此时有a ≥14361--=-.综上,6-≤a ≤2-.故选C.12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12πD .18【测量目标】函数概念的新定义,不等式的性质.【考查方式】给出新定义的函数,利用给定条件求解未知量的范围. 【难易程度】中等 【参考答案】B【试题分析】不妨设0≤y ≤x ≤1.当x y -≤12时,11|()()|||()22f x f y x y x y -<-=-≤14. 12x y ->时,|()()|()(1)(()(0))f x f y f x f f y f -=---≤1()(1)()(0)2f x f f y f -+-< 111110()2224x y x y -+-=--+<.故min 14k =.故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .第13题图 【测量目标】程序框图的运算.【考查方式】利用程序框图进行基本运算. 【难易程度】容易 【参考答案】299【试题分析】当9x =时,5y =,则4y x -=;当5x =时,113y =,则43y x -=;当113x =时,299y =,则419y x -=<.故输出299y =.14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .第14题图 【测量目标】定积分的求解,随机事件的概率.【考查方式】利用定积分求出面积比,进而求出随机事件的概率. 【难易程度】容易 【参考答案】23【试题分析】正方形ABCD 的面积S =2×2=4,阴影部分的面积1231111182(1)d 2()33S x x x x --=-=-=⎰,故质点落在阴影区域的概率82343P ==.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .【测量目标】椭圆的定义及几何性质.【考查方式】椭圆的焦点以及椭圆的几何性质求解相关弧长. 【难易程度】中等 【参考答案】12【试题分析】取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点1F 的对称点为A ,点M 关于C 的焦点2F 的对称点为B ,则有112GF AN =,212GF BN =,所以122()412AN BN GF GF a +=+==.16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .【测量目标】基本不等式的基本应用.【考查方式】利用基本不等式求最值. 【难易程度】较难 【参考答案】-2【试题分析】由题知2222(2)3(43)c a b a b =-+++.221(43)(1)3a b ++≥222(2)43a b a b +⇔+≥23(2)4a b +,即2c ≥25(2)4a b +,当且仅当2243113a b =,即236a b λ==(同号)时, 2a b +240c λ=.223451111(4)288a b c λλλ-+=-=--≥2-, 当且仅当315,,422a b c ===时,345a b c-+取最小值2-.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在△ABC 中,内角,,A B C 的对边,,a b c 且a c >,已知2BA BC ⋅=u u u r u u u r ,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.【测量目标】两角差的余弦公式、向量的数量积.【考查方式】利用正弦定理和余弦定理解三角形中的边和角. 【难易程度】中等【试题分析】(1)由2BA BC ⋅=u u u r u u u r 得,cos 2c a B ⋅=,又1cos 3B =,所以6ac =.由余弦定理,得2222cos a c b ac B +=+.又3b =,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得2,33,2a c a c ====或. 因为a c >,3,2a c ∴==. (2)在△ABC中,sin 3B ===由正弦定理,得2sin sin 339c CB b ==⋅=,又因为a b c =>,所以C为锐角,因此7cos 9C ===. 于是cos()cos cos sin sin B C B C B C -=+=1723393927⋅+⋅=. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:第18题图将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .【测量目标】频率分布直方图,随机事件的概率随机变量的期望和方差. 【考查方式】以频率分布直方图为载体计算事件的概率、分布列、期望、方差. 【难易程度】中等 【试题分析】(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯= , 2()0.003500.15P A =⨯=,()0.60.60.1520.108P B =⨯⨯⨯=.(Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为X 0 1 2 3 P0.0640.2880.4320.21619. (本小题满分12分)如图,△ABC 和BCD △所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E F 、分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.第19题图1【测量目标】线线垂直的判定,二面角的正弦值.【考查方式】通过找线、面之间的位置关系,证明线线垂直,求二面角的三角函数值. 【难易程度】中等 【试题分析】(1)证明: (方法一)过E 作EO BC ⊥,垂足为O ,连OF ,第19题图2由△ABC ≌△DBC 可证出△FOC ≌△EOC ,所以π2EOC FOC ∠=∠=,即FO BC ⊥, 又EO BC ⊥,因此BC ⊥平面EFO , 又EF ⊂平面EFO ,所以EF BC ⊥.(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.第19题图3易得(0,0,0),(0,3)B A -,3,1,0)D -,(0,2,0)C ,因而1331(0,,0)22E F ,所以33((0,2,0)EF BC ==u u u r u u ur ,因此0EF BC ⋅=u u u r u u u r ,从而EF BC ⊥u u u r u u u r ,所以EF BC ⊥.(2)(方法一)在图2中,过O 作OG BF ⊥,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG BF ⊥,由三垂线定理知EG 垂直BF . 因此EGO ∠为二面角E BF C --的平面角; 在△EOC 中,113cos30222EO EC BC ==⋅=o ,由△BGO ∽△BFC知,34BO OG FC BC =⋅=,因此tan 2EOEGO OG∠==,从而sin EGO ∠=255,即二面角E BF C --的正弦值为255. (方法二)在图3中,平面BFC 的一个法向量为1(0,0,1)=n ,设平面BEF 的法向量2(,,)x y z =n ,又3113(,,0),(0,,)22BF BE ==u u u r u u u r ,由220BF BE ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n 得其中一个2(1,3,1)=-n ,设二面角E BF C --的大小为θ,且由题意知θ为锐角,则121212,cos |cos ,|||||||5θ=<>==⋅n n n n n n ,因sin θ=5=255,即二面角E BF C --的正弦值为255.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线22122:1x y C a b-=过点P 且离心率为3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.第20题图1【测量目标】直线与圆的位置关系,双曲线的标准方程及几何性质,椭圆的几何性质,直线与椭圆的位置关系.【考查方式】利用圆的切线的关系,双曲线的离心率求双曲线方程,通过椭圆与双曲线的的几何性质求解椭圆方程求出直线方程. 【难易程度】较难【试题分析】(1)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当00x y =时00x y 有最大值,即S 有最小值,因此点P得坐标为 ,由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (2)由(1)知2C的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >.由P 在2C 上,得22112213b b +=+,解得213b =,因此2C 方程为22163x y +=. 显然,l 不是直线0y =.设l的方程为x my =+1122(,),(,)A x y B x y由22163x my x y ⎧=⎪⎨+=⎪⎩得22(2)30m y ++-=,又12,y y 是方程的根,因此122122232y y m y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩①②,由1122x my x my ==1212221212122()66()32x x m y y m x x m y y y y m ⎧+=++=⎪⎪⎨-⎪=+++=⎪+⎩③④因1122),)AP x y BP x y ==u u u r u u u r由题意知0AP BP ⋅=u u u r u u u r ,所以12121212))40x x x x y y y y ++++=⑤ ,将①,②,③,④代入⑤式整理得22110m -+=,解得12m =-或12m =-+,因此直线l 的方程为1)0x y --=,或1)0x y +=.21. (本小题满分12分)已知函数8()(cos )(π2)(sin 1)3f x x x x x =-+-+,2()3(π)cos 4(1sin )ln(3)πx g x x x x =--+-. 证明:(1)存在唯一0π(0,)2x ∈,使0()0f x =;(2)存在唯一1π(,π)2x ∈,使1()0g x =,且对(1)中的0x 有01πx x +<. 【测量目标】函数的零点.【考查方式】利用函数导函数的性质求解三角函数中的零点问题. 【难易程度】较难【试题分析】(1)当π(0,)2x ∈时,2'()(1sin )(π2)2cos 03f x x x x x =-++--<,函数()f x 在π(0,)2上为减函数,又28π16(0)π0,()π0323f f =->=--<,所以存在唯一0π(0,)2x ∈,使0()0f x =. (2)考虑函数3(π)cos 2π()4ln(3),[,π]1sin π2x x h x x x x -=--∈+,令πt x =-,则π[,π]2x ∈时,π[0,]2t ∈,记3cos 2()(π)4ln(1)1sin πt t u t h t t t =-=-++,则3()'()(π2)(1sin )f t u t t t =++ , 由(1)得,当0(0,)t x ∈时,'()0u t >,当0π(,)2t x ∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点.在0π(,)2x 上()u t 是减函数,由0π()0,()4ln 202u x u >=-<,存在唯一的10π(,)2t x ∈ ,使1()0u t =.所以存在唯一的10π(,)2t x ∈使1()0u t =.因此存在唯一的11ππ(,π)2x t =-∈,使111()()()0h x h t u t π=-==.因为当π(,π)2x ∈时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1π(,π)2x ∈,使1()0g x =.因1110π,x t t x =->,所以01πx x +<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于,D G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (1)求证:AB 为圆的直径;(2)若AC BD =,求证:AB ED =.第22题图1【测量目标】几何证明选讲.【考查方式】利用圆的性质证明相关结论. 【难易程度】中等 【试题分析】(1)因为PD PG =,所以PDG PGD ∠=∠.由于PD 为切线,故PDA DBA ∠=∠,又由于PGD EGA ∠=∠,故DBA EGA ∠=∠,所以DBA BAD EGA BAD ∠+∠=∠+∠,从而BDA PFA ∠=∠.由于AF 垂直EP ,所以90PFA ∠=o,于是90BDA ∠=o,故AB 是直径. (2)连接BC ,DC .第22题图2由于AB 是直径,故∠BDA =∠ACB =90°,在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .由于,AB EP ⊥所以,DC EP DCE ⊥∠为直角,于是ED 是直径,由(1)得ED =AB .23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程. 【测量目标】坐标系与参数方程.【考查方式】参数方程与极坐标方程转化为普通方程进行求解. 【难易程度】中等【试题分析】(1)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=,故C 得参数方程为 cos 2sin x t y t⎧⎨⎩== (t为参数).(2)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得10x y =⎧⎨=⎩或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12P P 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化极坐标方程,并整理得 2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()f x ≤1的解集为M ,()g x ≤4的解集为N .(1)求M ;(2)当x M N ∈I 时,证明:22()[()]x f x x f x +≤14. 【测量目标】不等式选讲,集合的简单运算.【考查方式】函数与集合结合证明不等式. 【难易程度】中等 【试题分析】(1)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当x ≥1时,由()33f x x =-≤1得x ≤43,故1≤x ≤43; 当1x <时,由()1f x x =-≤1得x ≥0,故0≤1x <; 所以()f x ≤1的解集为{|0M x =≤x ≤4}3.(2)由2()1681g x x x =-+≤4得2116()4x -≤4,解得14-≤x ≤34,因此1{|4N x =-≤x ≤3}4,故{|0M N x =I ≤x ≤3}4.当x M N ∈I 时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+211()(1)()42x f x x x x =⋅=-=--≤14.。
2014年普通高等学校招生全国统一考试(辽宁卷)数学(理科)

2014年普通高等学校招生全国统一考试(辽宁卷)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014辽宁,理1)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=().A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案:D解析:∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.2.(2014辽宁,理2)设复数z满足(z-2i)(2-i)=5,则z=().A.2+3iB.2-3iC.3+2iD.3-2i答案:A解析:∵(z-2i)(2-i)=5,∴z-2i=.∴z=2i+=2i+=2i+2+i=2+3i.故选A.3.(2014辽宁,理3)已知a=,b=log2,c=lo,则().A.a>b>cB.a>c>bC.c>a>bD.c>b>a答案:C解析:∵0<a=<20=1,b=log2<log21=0,c=lo>lo=1,∴c>a>b.故选C.4.(2014辽宁,理4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是().A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α答案:B解析:对A:m,n还可能异面、相交,故A不正确.对C:n还可能在平面α内,故C不正确.对D:n还可能在α内,故D 不正确.对B:由线面垂直的定义可知正确.5.(2014辽宁,理5)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c,则下列命题中真命题是().A.p∨qB.p∧qC.( p)∧( q)D.p∨( q)答案:A解析:对命题p中的a与c可能为共线向量,故命题p为假命题.由a,b,c为非零向量,可知命题q为真命题.故p∨q 为真命题.故选A.6.(2014辽宁,理6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为().A.144B.120C.72D.24答案:D解析:插空法.在已排好的三把椅子产生的4个空档中选出3个插入3人即可.故排法种数为=24.故选D.7.(2014辽宁,理7)某几何体三视图如图所示,则该几何体的体积为().A.8-2πB.8-πC.8-D.8-答案:B解析:由三视图知,原几何体是棱长为2的正方体挖去两个底面半径为1,高为2的四分之一圆柱,故几何体的体积为8-2×π×2×=8-π.故选B.8.(2014辽宁,理8)设等差数列{a n}的公差为d,若数列{}为递减数列,则().A.d<0B.d>0C.a1d<0D.a1d>0答案:C解析:∵数列{}为递减数列,∴,n∈N*,∴a1a n>a1a n+1,∴a1(a n+1-a n)<0.∵{a n}为公差为d的等差数列,∴a1d<0.故选C.9.(2014辽宁,理9)将函数y=3sin的图象向右平移个单位长度,所得图象对应的函数().A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增答案:B解析:设平移后的函数为f(x),则f(x)=3sin=3sin=-3sin.令2kπ-≤2x+≤2kπ+,k∈Z,解得f(x)的递减区间为,k∈Z,同理得递增区间为,k∈Z.从而可判断得B正确.10.(2014辽宁,理10)已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C 的焦点为F,则直线BF的斜率为().A.B.C.D.答案:D解析:由题意可知准线方程x=-=-2,∴p=4,∴抛物线方程为y2=8x.由已知易得过点A与抛物线y2=8x相切的直线斜率存在,设为k,且k>0,则可得切线方程为y-3=k(x+2).联立方程消去x得ky2-8y+24+16k=0.(*) 由相切得Δ=64-4k(24+16k)=0,解得k=或k=-2(舍去),代入(*)解得y=8,把y=8代入y2=8x,得x=8,即切点B 的坐标为(8,8),又焦点F为(2,0),故直线BF的斜率为.11.(2014辽宁,理11)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是().A.[-5,-3]B.C.[-6,-2]D.[-4,-3]答案:C解析:∵当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,即当x∈[-2,1]时,不等式ax3≥x2-4x-3(*)恒成立.(1)当x=0时,a∈R.(2)当0<x≤1时,由(*)得a≥恒成立.设f(x)=,则f'(x)=-.当0<x≤1时,x-9<0,x+1>0,∴f'(x)>0,∴f(x)在(0,1]上单调递增.当0<x≤1时,可知a≥f(x)max=f(1)=-6.(3)当-2≤x<0时,由(*)得a≤.令f'(x)=0,得x=-1或x=9(舍).∴当-2≤x<-1时,f'(x)<0,当-1<x<0时,f'(x)>0,∴f(x)在[-2,-1)上递减,在(-1,0)上递增.∴x∈[-2,0)时,f(x)min=f(-1)=-1-4+3=-2.∴可知a≤f(x)min=-2.综上所述,当x∈[-2,1]时,实数a的取值范围为-6≤a≤-2.故选C.12.(2014辽宁,理12)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<|x-y|.若对所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,则k的最小值为().A.B.C.D.答案:B解析:不妨令0≤x<y≤1,则|f(x)-f(y)|<|x-y|.法一:2|f(x)-f(y)|=|f(x)-f(0)+f(x)-f(y)-[f(y)-f(1)]|≤|f(x)-f(0)|+|f(x)-f(y)|+|f(y)-f(1)|<|x-0|+|x-y|+|y-1|=x+(y-x)+(1-y)=,即得|f(x)-f(y)|<,对所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,只需k大于|f(x)-f(y)|的最大值即可.故k≥.因此k的最小值为.法二:当|x-y|≤时,|f(x)-f(y)|<|x-y|≤,当|x-y|>时,|f(x)-f(y)|=|[f(x)-f(1)]-[f(y)-f(0)]|≤|f(x)-f(1)|+|f(y)-f(0)|<|x-1|+|y-0|=(1-x)+y=(y-x)<,对所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,只需k大于|f(x)-f(y)|的最大值即可.故k≥.因此k的最小值为.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2014辽宁,理13)执行右侧的程序框图,若输入x=9,则输出y=.答案:解析:输入x=9,则y=5,|y-x|=4>1,执行否,x=5,y=,|y-x|=>1,执行否,x=,y=,|y-x|=<1,执行是,输出y=. 14.(2014辽宁,理14)正方形的四个顶点A(-1,-1),B(1,-1),C(1,1),D(-1,1)分别在抛物线y=-x2和y=x2上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是.答案:解析:由题意可知空白区域的面积为[x2-(-x2)]d x=x3.又正方形的面积为4,∴阴影部分的面积为4-,∴所求概率为.15.(2014辽宁,理15)已知椭圆C:=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=.答案:12解析:如图,设MN的中点为P,则由F1是AM的中点,可知|AN|=2|PF1|.同理可得可知|BN|=2|PF2|.∴|AN|+|BN|=2(|PF1|+|PF2|).根据椭圆定义得|PF1|+|PF2|=2a=6,∴|AN|+|BN|=12.16.(2014辽宁,理16)对于c>0,当非零实数a,b满足4a2-2ab+4b2-c=0且使|2a+b|最大时,的最小值为.答案:-2解析:要求|2a+b|最大值,只需求(2a+b)2的最大值.∵4a2-2ab+4b2-c=0,∴4a2+b2=c+2ab-3b2.∴(2a+b)2=4a2+b2+4ab=c+2ab-3b2+4ab=c+6ab-3b2=c+3b(2a-b)=c+·2b(2a-b)≤c+=c+,即(2a+b)2≤c,当且仅当2b=2a-b,即3b=2a时取到等号,即(2a+b)2取到最大值.故3b=2a时,|2a+b|取到最大值.把3b=2a,即b=代入4a2-2ab+4b2-c=0,可得c=a2.∴-2.∴当时,取到最小值-2.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(2014辽宁,理17)在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知=2,cos B=,b=3.求:(1)a和c的值;(2)cos(B-C)的值.分析:(1)将条件中的·=2,转化为边角的量表示,可得a与c的关系,再结合余弦定理列方程组求解.(2)由(1)及正弦定理可得sin C,进而求出cos C,再由两角差的余弦公式求出cos(B-C)的值.解:(1)由·=2,得c·a cos B=2.又cos B=,所以ac=6.由余弦定理,得a2+c2=b2+2ac cos B.又b=3,所以a2+c2=9+2×2=13.解得a=2,c=3或a=3,c=2.因a>c,所以a=3,c=2.(2)在△ABC中,sin B=,由正弦定理,得sin C=sin B=·.因a=b>c,所以C为锐角,因此cos C=.于是cos(B-C)=cos B cos C+sin B sin C=··.18.(本小题满分12分)(2014辽宁,理18)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).分析:(1)先由频率分布直方图计算出日销售量不低于100和日销售量低于50的概率.再由3天中连续2天日销售量不低于100,可分为第1,2天或第2,3天日销售量不低于100两种情况,从而由独立事件概率公式求值.(2)由题意知随机变量X服从二项分布,则可列出分布列及求出期望、方差.解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=·(1-0.6)3=0.064,P(X=1)=·0.6(1-0.6)2=0.288,P(X=2)=·0.62(1-0.6)=0.432,P(X=3)=·0.63=0.216.分布列为X0 1 2 3P0.064 0.288 0.432 0.216因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.19.(本小题满分12分)(2014辽宁,理19)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.分析:法一:几何法.(1)证明线线垂直,可由线面垂直证得,可寻求过EF的平面与BC垂直即可.(2)由面面垂直可得线面垂直,再利用线面垂直性质构造二面角求解.法二:建立空间直角坐标系.(1)求各点坐标,利用向量垂直的条件证明线线垂直.(2)平面BFC的法向量易求出,平面BEF的法向量可运用法向量条件求得,再运用公式求出两法向量夹角的余弦值,进而求出所求正弦值.(1)证明:(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC.图1所以∠EOC=∠FOC=,即FO⊥BC.又EO⊥BC,因此BC⊥面EFO.又EF⊂面EFO,所以EF⊥BC.图2(方法二)由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系.易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而E,F,所以,=(0,2,0),因此·=0.从而,所以EF⊥BC.(2)解:(方法一)在图1中,过O作OG⊥BF,垂足为G,连EG.由平面ABC⊥平面BDC,从而EO⊥面BDC.又OG⊥BF,由三垂线定理知EG⊥BF.因此∠EGO为二面角E-BF-C的平面角.在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,OG=·FC=,因此tan∠EGO==2.从而sin∠EGO=,即二面角E-BF-C正弦值为.(方法二)在图2中,平面BFC的一个法向量为n1=(0,0,1).设平面BEF的法向量n2=(x,y,z).又.由得其中一个n2=(1,-,1).设二面角E-BF-C大小为θ,且由题意知θ为锐角,则cosθ=|cos<n1,n2>|=.因此sinθ=,即所求二面角正弦值为.20.(本小题满分12分)(2014辽宁,理20)圆x2+y2=4的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).双曲线C1:=1过点P且离心率为.(1)求C1的方程;(2)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点.若以线段AB为直径的圆过点P,求l的方程.分析:(1)设出切点P的坐标,利用直线和圆相切的性质,求出切线,进而求出切线与坐标轴的交点,运用基本不等式求出取最值时P的坐标代入双曲线方程求得结果.(2)运用待定系数法求出椭圆方程,将以AB为直径的圆过点P转化为·=0,运用韦达定理求解.解:(1)设切点坐标为(x0,y0)(x0>0,y0>0),则切线斜率为-,切线方程为y-y0=-(x-x0),即x0x+y0y=4.此时,两个坐标轴的正半轴与切线围成的三角形面积为S=··.由=4≥2x0y0,知当且仅当x0=y0=时x0y0有最大值,即S有最小值.因此点P的坐标为().由题意知解得a2=1,b2=2.故C1方程为x2-=1.(2)由(1)知C2的焦点坐标为(-,0),(,0),由此设C2的方程为=1,其中b1>0.由P()在C2上,得=1,解得=3.因此C2方程为=1.显然,l不是直线y=0.设l的方程为x=my+,点A(x1,y1),B(x2,y2).由得(m2+2)y2+2my-3=0.又y1,y2是方程的根,因此由x1=my1+,x2=my2+,得因为=(-x1,-y1),=(-x2,-y2).由题意知·=0,所以x1x2-(x1+x2)+y1y2-(y1+y2)+4=0.⑤将①,②,③,④代入⑤式整理,得2m2-2m+4-11=0.解得m=-1或m=-+1.因此直线l的方程为x-y-=0或x+y-=0.21.(本小题满分12分)(2014辽宁,理21)已知函数f(x)=(cos x-x)(π+2x)-(sin x+1),g(x)=3(x-π)cos x-4(1+sinx)ln.证明:(1)存在唯一x0∈,使f(x0)=0;(2)存在唯一x1∈,使g(x1)=0,且对(1)中的x0,有x0+x1<π.分析:(1)先判断f(x)的单调性,再运用根的存在性定理证明.(2)可构造函数h(x)=,再换元后,结合(1)可求出x0与x1的关系.证明:(1)当x∈时,f'(x)=-(1+sin x)(π+2x)-2x-cos x<0,函数f(x)在上为减函数.又f(0)=π->0,f=-π2-<0,所以存在唯一x0∈,使f(x0)=0.(2)考虑函数h(x)=-4ln,x∈.令t=π-x,则x∈时,t∈.记u(t)=h(π-t)=-4ln,则u'(t)=.由(1)得,当t∈(0,x0)时,u'(t)>0.当t∈时,u'(t)<0.在(0,x0)上u(t)是增函数.又u(0)=0,从而当t∈(0,x0]时,u(t)>0.所以u(t)在(0,x0]上无零点.在上u(t)为减函数,由u(x0)>0,u=-4ln2<0,知存在唯一t1∈,使u(t1)=0.所以存在唯一的t1∈,使u(t1)=0.因此存在唯一的x1=π-t1∈,使h(x1)=h(π-t1)=u(t1)=0.因为当x∈时,1+sin x>0,故g(x)=(1+sin x)h(x)与h(x)有相同的零点,所以存在唯一的x1∈,使g(x1)=0,因为x1=π-t1,t1>x0,所以x0+x1<π.请考生在第22,23,24三题中任选一题做答.如果多做,则按所做的第一题记分.做答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)(2014辽宁,理22)选修4—1:几何证明选讲如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.分析:(1)证明AB是直径,即证明∠BDA=90°.由∠PFA=90°,从而寻求∠BDA=∠PFA就可证明.(2)要证AB=DE,即证DE为直径,连DC,即证∠DCE=90°,从而只需证明AB∥DC即可.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA.又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.由于AF⊥EP,所以∠PFA=90°.于是∠BDA=90°.故AB是直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB.于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.23.(本小题满分10分)(2014辽宁,理23)选修4—4:坐标系与参数方程将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.分析:(1)利用相关点法先求出直角坐标方程,再写出参数方程.(2)先联立方程求出P1,P2两点的坐标,进而求出P1P2的中点坐标,得到与l垂直的直线方程,再化为极坐标方程.解:(1)设(x1,y1)为圆上的点,在已知变换下变为C上点(x,y),依题意,得由=1,得x2+=1,即曲线C的方程为x2+=1.故C的参数方程为(t为参数).(2)由解得不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为,所求直线斜率为k=,于是所求直线方程为y-1=,化为极坐标方程,并整理得2ρcosθ-4ρsinθ=-3,即ρ=.24.(本小题满分10分)(2014辽宁,理24)选修4—5:不等式选讲设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(1)求M;(2)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤.分析:(1)分类讨论去绝对值符号即可.(2)在x∈M∩N的条件下,先化简x2f(x)+x[f(x)]2,再配方求其最大值即可.解:(1)f(x)=当x≥1时,由f(x)=3x-3≤1得x≤,故1≤x≤;当x<1时,由f(x)=1-x≤1得x≥0,故0≤x<1.所以f(x)≤1的解集为M=.(2)证明:由g(x)=16x2-8x+1≤4,得16≤4,解得-≤x≤.因此N=.故M∩N=.当x∈M∩N时,f(x)=1-x,于是x2f(x)+x·[f(x)]2=xf(x)[x+f(x)]=x·f(x)=x(1-x)=.。
2014年辽宁高考数学理科试卷(带详解)

2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|U R A x x ==≤0},{|B x x =≥1},则集合()U A B = ð( ) A .{|x x ≥0} B .{|x x ≤1} C .{|0x ≤x ≤1} D .{|01}x x <<【测量目标】集合的基本运算. 【考查方式】集合的并集、补集. 【难易程度】容易 【参考答案】D【试题分析】由题意可知,A B ={|01}x x x ≤或≥,所以()U A B = ð{|01}x x <<.故选D. 2.设复数z 满足(2i)(2i)5z --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 【测量目标】复数的基本性质和运算.【考查方式】复数的基本运算. 【难易程度】容易 【参考答案】A【试题分析】由(2i)(2i)5z --=,得52i 2iz -=-,故z =23i +.故选A. 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 【测量目标】对数的基本运算.【考查方式】对数的大小比较. 【难易程度】容易 【参考答案】C【试题分析】因为13021a -<=<,21log 03b =<,121log 3c =>121log 2c ==1,所以c a b >>.故选C.4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥【测量目标】空间直线与直线,直线与平面的位置关系. 【考查方式】线线平行、垂直,线面平行、垂直的判定. 【难易程度】容易 【参考答案】B 【试题分析】由题可知,若//,//,m n αα则m 与n 平行、相交或异面,所以A 错误;若m α⊥,n α⊂,则m n ⊥,故B 正确;若m α⊥,m n ⊥,则//n α或n α⊂,故C 错误.若//m α,m n ⊥,则//n α或n α⊥或n 与α相交,故D 错误.故选B.5.设,,a b c 是非零向量,已知命题P :若0⋅=a b ,0⋅=b c ,则0⋅=a c ;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝⌝∧D .()p q ⌝∨【测量目标】向量的平行与垂直,真假命题的判定. 【考查方式】利用向量之间的位置关系对命题的真假进行判定. 【难易程度】容易 【参考答案】A【试题分析】由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当0≠b 时,,a c 一定共线,故命题q 是真命题.故p q ∨为真命题.故选A.6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .24 【测量目标】排列组合.【考查方式】利用插空法进行排列组合. 【难易程度】容易 【参考答案】D【试题分析】这是一个元素不相邻问题,采用插空法,3334A C 24=.故选D.7.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .π82-D .π84-第7题图 【测量目标】几何体的体积、三视图.【考查方式】利用三视图对体积的考查. 【难易程度】容易 【参考答案】B【试题分析】根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分(占柱的14)后余下的部分,故该几何体体积为2×2×2-2×14×π×2=8-π.故选B.8.设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >【测量目标】等差数列的基本性质.【考查方式】利用等差数列的性质对首项和公差的正负进行判断. 【难易程度】容易 【参考答案】C 【试题分析】令12n n b a a =,因为数列{}12n a a 为递减数列,所以111111122()212n n n n n nb a a a a a a d b a a +++==-=<,所得10a d <.故选C.9.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( ) A .在区间π7π[,]1212上单调递减 B .在区间π7π[,]1212上单调递增 C .在区间ππ[,]63-上单调递减 D .在区间ππ[,]63-上单调递增 【测量目标】三角函数的平移及性质.【考查方式】求正弦型三角函数平移后的单调区间. 【难易程度】容易 【参考答案】B【试题分析】由题可知,将函数π3sin(2)3y x =+的图像向右平移π2个单位长度得到函数2π3sin(2)3y x =-的图像,令π2π2k -+≤2π23x -≤π2π2k +,k ∈Z ,即ππ12k +≤x ≤7ππ12k +,k ∈Z 时,函数单调递增,即函数2π3sin(2)3y x =-的单调递增区间为π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z ,可知当0k =时,函数在区间π7π,1212⎡⎤⎢⎥⎣⎦上单调递增.故选B.10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .43【测量目标】抛物线的几何性质,直线与抛物线的位置关系.【考查方式】求过抛物线准线并与抛物线相切的直线的斜率. 【难易程度】中等 【参考答案】D【试题分析】因为抛物线C :22y px =的准线为2px =-,且点(2,3)A -在准线上,所以p =4.设直线AB 的方程为2(3)x m y +=-,与抛物线方程28y x =联立得到2824160y my m -++=,由题易知 =0,解得m =12- (舍)或者m =2,这时B 点的坐标为(8,8),而焦点F 的坐标为(2,0),故直线BF 的斜率804823BF k -==-.故选D.11.当[2,1]x ∈-时,不等式3243ax x x -++≥0恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]--【测量目标】函数的导函数、单调区间、最值. 【考查方式】通过给定函数值的范围,利用导函数求函数的单调区间并找出未知量的范围. 【难易程度】中等 【参考答案】C【试题分析】当2-≤0x <时,不等式转化为a ≤2343x x x --,令2343()(2x x f x x--=-≤0)x <, 则24489(9)(1)'()x x x x f x x x -++--+==,故()f x 在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤14321+-=--.当0x =时,()g x 恒成立.当0x <≤1时,a ≥2343x x x --,令2343()(0x x g x x x --=<≤1),则24489(9)(1)'()x x x x g x x x-++--+==, 故()g x 在(0,1]上单调递增,此时有a ≥14361--=-. 综上,6-≤a ≤2-.故选C.12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12πD .18 【测量目标】函数概念的新定义,不等式的性质.【考查方式】给出新定义的函数,利用给定条件求解未知量的范围. 【难易程度】中等 【参考答案】B【试题分析】不妨设0≤y ≤x ≤1.当x y -≤12时,11|()()|||()22f x f y x y x y -<-=-≤14. 12x y ->时,|()()|()(1)(()(0))f x f y f x f f y f -=---≤1()(1)()(0)2f x f f y f -+-< 111110()2224x y x y -+-=--+<.故min 14k =.故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .第13题图 【测量目标】程序框图的运算.【考查方式】利用程序框图进行基本运算. 【难易程度】容易 【参考答案】299【试题分析】当9x =时,5y =,则4y x -=;当5x =时,113y =,则43y x -=;当113x =时,299y =,则419y x -=<.故输出299y =.14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .第14题图 【测量目标】定积分的求解,随机事件的概率.【考查方式】利用定积分求出面积比,进而求出随机事件的概率. 【难易程度】容易 【参考答案】23【试题分析】正方形ABCD 的面积S =2×2=4,阴影部分的面积1231111182(1)d 2()33S x x x x --=-=-=⎰,故质点落在阴影区域的概率82343P ==.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .【测量目标】椭圆的定义及几何性质.【考查方式】椭圆的焦点以及椭圆的几何性质求解相关弧长. 【难易程度】中等 【参考答案】12【试题分析】取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点1F 的对称点为A ,点M 关于C 的焦点2F 的对称点为B ,则有112G F A N =,212GF BN =,所以122()412AN BN GF GF a +=+==.16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .【测量目标】基本不等式的基本应用.【考查方式】利用基本不等式求最值. 【难易程度】较难 【参考答案】-2【试题分析】由题知2222(2)3(43)c a b a b =-+++.221(43)(1)3a b ++≥222(2)43a b a b +⇔+≥23(2)4a b +,即2c ≥25(2)4a b +,当且仅当2243113a b =,即236a b λ==(同号)时, 2a b +取得最大值85c ,此时240c λ=. 223451111(4)288a b c λλλ-+=-=--≥2-, 当且仅当315,,422a b c ===时,345a b c-+取最小值2-.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在△ABC 中,内角,,A B C 的对边,,a b c 且a c >,已知2BA BC ⋅= ,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.【测量目标】两角差的余弦公式、向量的数量积.【考查方式】利用正弦定理和余弦定理解三角形中的边和角. 【难易程度】中等【试题分析】(1)由2BA BC ⋅= 得,cos 2c a B ⋅=,又1cos 3B =,所以6ac =.由余弦定理,得2222cos a c b ac B +=+.又3b =,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得2,33,2a c a c ====或. 因为a c >,3,2a c ∴==. (2)在△ABC 中,22122sin 1cos 1().33B B =-=-=由正弦定理,得22242sin sin 339c CB b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=. 于是cos()cos cos sin sin B C B C B C -=+=17224223393927⋅+⋅=. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:第18题图将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .【测量目标】频率分布直方图,随机事件的概率随机变量的期望和方差. 【考查方式】以频率分布直方图为载体计算事件的概率、分布列、期望、方差. 【难易程度】中等 【试题分析】(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯= , 2()0.003500.15P A =⨯=,()0.60.60.1520.108P B =⨯⨯⨯=.(Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=, 123(1)0.6(10.6)0.288P X C ==⋅-=, 223(2)0.6(10.6)0.432P X C ==⋅-=, 333(3)0.60.216P X C ==⋅=,分布列为X0 1 2 3P 0.064 0.288 0.432 0.216因为(3,0.6)X B ,所以期望为()30.6 1.8E X =⨯=,方差()30.6(10.6)0.72D X =⨯⨯-=. 19. (本小题满分12分)如图,△ABC 和BCD △所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E F 、分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.第19题图1【测量目标】线线垂直的判定,二面角的正弦值.【考查方式】通过找线、面之间的位置关系,证明线线垂直,求二面角的三角函数值. 【难易程度】中等 【试题分析】(1)证明: (方法一)过E 作EO BC ⊥,垂足为O ,连OF ,第19题图2由△ABC ≌△DBC 可证出△FOC ≌△EOC ,所以π2EOC FOC ∠=∠=,即FO BC ⊥, 又EO BC ⊥,因此BC ⊥平面EFO , 又EF ⊂平面EFO ,所以EF BC ⊥.(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.第19题图3易得(0,0,0),(0,1,3)B A -,(3,1,0)D -,(0,2,0)C ,因而1331(0,,),(,,0)2222E F ,所以33(,0,),(0,2,0)22EF BC =-=,因此0EF BC ⋅= ,从而EF BC ⊥ ,所以EF BC ⊥.(2)(方法一)在图2中,过O 作OG BF ⊥,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG BF ⊥,由三垂线定理知EG 垂直BF . 因此EGO ∠为二面角E BF C --的平面角; 在△EOC 中,113cos30222EO EC BC ==⋅= ,由△BGO ∽△BFC 知,34BO OG FC BC =⋅=,因此tan 2EO EGO OG ∠==,从而sin EGO ∠=255,即二面角E BF C --的正弦值为255. (方法二)在图3中,平面BFC 的一个法向量为1(0,0,1)=n ,设平面BEF 的法向量2(,,)x y z =n ,又3113(,,0),(0,,)2222BF BE == ,由220BF BE ⎧⋅=⎪⎨⋅=⎪⎩n n 得其中一个2(1,3,1)=-n ,设二面角E BF C --的大小为θ,且由题意知θ为锐角,则121212,1cos |cos ,|||||||5θ=<>==⋅n n n n n n ,因sin θ=25=255,即二面角E BF C --的正弦值为255.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线22122:1x y C a b-=过点P 且离心率为3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.第20题图1【测量目标】直线与圆的位置关系,双曲线的标准方程及几何性质,椭圆的几何性质,直线与椭圆的位置关系.【考查方式】利用圆的切线的关系,双曲线的离心率求双曲线方程,通过椭圆与双曲线的的几何性质求解椭圆方程求出直线方程. 【难易程度】较难【试题分析】(1)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当002x y ==时00x y 有最大值,即S 有最小值,因此点P 得坐标为(2,2) ,由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (2)由(1)知2C 的焦点坐标为(3,0),(3,0)-,由此2C 的方程为22221113x y b b +=+,其中10b >. 由(2,2)P 在2C 上,得22112213b b +=+,解得213b =,因此2C 方程为22163x y +=. 显然,l 不是直线0y =.设l 的方程为3x my =+,点1122(,),(,)A x y B x y由223163x my x y ⎧=+⎪⎨+=⎪⎩ 得22(2)2330m y my ++-=,又12,y y 是方程的根,因此12212223232my y m y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩①②,由11223,3x my x my =+=+得1212222121212243()232663()32x x m y y m m x x m y y m y y m ⎧+=++=⎪⎪+⎨-⎪=+++=⎪+⎩③④ 因1122(2,2),(2,2)AP x y BP x y =--=--由题意知0AP BP ⋅= ,所以121212122()2()40x x x x y y y y -++-++=⑤ ,将①,②,③,④代入⑤式整理得222646110m m -+-=,解得3612m =-或3612m =-+,因此直线l 的方程为 36(1)302x y ---=,或36(1)302x y +--=.21. (本小题满分12分)已知函数8()(cos )(π2)(sin 1)3f x x x x x =-+-+,2()3(π)cos 4(1sin )ln(3)πx g x x x x =--+-. 证明:(1)存在唯一0π(0,)2x ∈,使0()0f x =;(2)存在唯一1π(,π)2x ∈,使1()0g x =,且对(1)中的0x 有01πx x +<. 【测量目标】函数的零点.【考查方式】利用函数导函数的性质求解三角函数中的零点问题. 【难易程度】较难【试题分析】(1)当π(0,)2x ∈时,2'()(1sin )(π2)2cos 03f x x x x x =-++--<,函数()f x 在π(0,)2上为减函数,又28π16(0)π0,()π0323f f =->=--<,所以存在唯一0π(0,)2x ∈,使0()0f x =. (2)考虑函数3(π)cos 2π()4ln(3),[,π]1sin π2x x h x x x x -=--∈+,令πt x =-,则π[,π]2x ∈时,π[0,]2t ∈,记3cos 2()(π)4ln(1)1sin πt t u t h t t t =-=-++,则3()'()(π2)(1sin )f t u t t t =++ ,由(1)得,当0(0,)t x ∈时,'()0u t >,当0π(,)2t x ∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点.在0π(,)2x 上()u t 是减函数,由0π()0,()4ln 202u x u >=-<,存在唯一的10π(,)2t x ∈ ,使1()0u t =.所以存在唯一的10π(,)2t x ∈使1()0u t =.因此存在唯一的11ππ(,π)2x t =-∈,使111()()()h x h t u t π=-==. 因为当π(,π)2x ∈时,1sin 0x +>,故()(1s i n )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1π(,π)2x ∈,使1()0g x =.因1110π,x t t x =->,所以01πx x +<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于,D G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (1)求证:AB 为圆的直径; (2)若AC BD =,求证:AB ED =.第22题图1【测量目标】几何证明选讲.【考查方式】利用圆的性质证明相关结论. 【难易程度】中等 【试题分析】(1)因为PD PG =,所以PDG PGD ∠=∠.由于PD 为切线,故P D A D B A ∠=∠,又由于PGD EGA ∠=∠,故DBA EGA ∠=∠,所以D B A B A DE G A B A ∠+∠=∠+∠,从而BDA PFA ∠=∠. 由于AF 垂直EP ,所以90PFA ∠=,于是90BDA ∠=,故AB 是直径. (2)连接BC ,DC.第22题图2由于AB 是直径,故∠BDA =∠ACB =90°,在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .由于,AB EP ⊥所以,DC EP DCE ⊥∠为直角,于是ED 是直径,由(1)得ED =AB .23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程. 【测量目标】坐标系与参数方程.【考查方式】参数方程与极坐标方程转化为普通方程进行求解. 【难易程度】中等【试题分析】(1)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=,故C 得参数方程为 cos 2sin x t y t⎧⎨⎩== (t 为参数).(2)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得10x y =⎧⎨=⎩或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12PP 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化极坐标方程,并整理得 2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()f x ≤1的解集为M ,()g x ≤4的解集为N .(1)求M ;(2)当x M N ∈ 时,证明:22()[()]x f x x f x +≤14. 【测量目标】不等式选讲,集合的简单运算.【考查方式】函数与集合结合证明不等式. 【难易程度】中等【试题分析】(1)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当x ≥1时,由()33f x x =-≤1得x ≤43,故1≤x ≤43; 当1x <时,由()1f x x =-≤1得x ≥0,故0≤1x <; 所以()f x ≤1的解集为{|0M x =≤x ≤4}3.(2)由2()1681g x x x =-+≤4得2116()4x -≤4,解得14-≤x ≤34,因此1{|4N x =-≤x ≤3}4,故{|0M N x = ≤x ≤3}4.当x M N ∈ 时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+211()(1)()42x f x x x x =⋅=-=--≤14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年辽宁省高考数学试卷(理科)一、选择题:本大题共 小题,每小题 分,在每小题给出的四个选项中,只有一项是符合题目要求的..( 分)已知全集✞,✌⌧⌧≤ ❝, ⌧⌧≥ ❝,则集合∁✞(✌∪ ) ()✌. ⌧⌧≥ ❝ . ⌧⌧≤ ❝ . ⌧≤⌧≤ ❝ . ⌧<⌧< ❝.( 分)设复数 满足( ﹣ ♓)( ﹣♓) ,则 ()✌. ♓ . ﹣ ♓ . ♓ . ﹣ ♓.( 分)已知♋,♌●☐♑ ,♍●☐♑,则()✌.♋>♌>♍ .♋>♍>♌ .♍>♋>♌ .♍>♌>♋.( 分)已知❍,⏹表示两条不同直线,↑表示平面,下列说法正确的是()✌.若❍∥↑,⏹∥↑,则❍∥⏹ .若❍⊥↑,⏹⊂↑,则❍⊥⏹.若❍⊥↑,❍⊥⏹,则⏹∥↑ .若❍∥↑,❍⊥⏹,则⏹⊥↑.( 分)设,,是非零向量,已知命题☐:若❿ ,❿ ,则❿ ;命题❑:若∥,∥,则∥,则下列命题中真命题是()✌.☐∨❑ .☐∧❑ .(¬☐)∧(¬❑) .☐∨(¬❑).( 分) 把椅子排成一排, 人随机就座,任何两人不相邻的坐法种数为()✌. . . ..( 分)某几何体三视图如图所示,则该几何体的体积为()✌. ﹣ ⇨ . ﹣⇨ . ﹣ . ﹣.( 分)设等差数列 ♋⏹❝的公差为♎,若数列 ❝为递减数列,则()✌.♎< .♎> .♋ ♎< .♋ ♎>.( 分)将函数⍓ ♦♓⏹( ⌧)的图象向右平移个单位长度,所得图象对应的函数()✌.在区间☯, 上单调递减 .在区间☯, 上单调递增.在区间☯﹣, 上单调递减 .在区间☯﹣, 上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.二、填空题:本大题共4小题,每小题5分。
考生根据要求作答.13.(5分)执行如图的程序框图,若输入x=9,则输出y=.14.(5分)正方形的四个顶点A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1)分别在抛物线y=﹣x2和y=x2上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是.15.(5分)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=.16.(5分)对于c>0,当非零实数a,b满足4a2﹣2ab+4b2﹣c=0且使|2a+b|最大时,﹣+的最小值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.18.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).19.(12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E﹣BF﹣C的正弦值.20.(12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1:﹣=1过点P且离心率为.(Ⅰ)求C1的方程;(Ⅱ)若椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.21.(12分)已知函数f(x)=(cosx﹣x)(π+2x)﹣(sinx+1)g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣)证明:(Ⅰ)存在唯一x0∈(0,),使f(x0)=0;(Ⅱ)存在唯一x1∈(,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1<π.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.选修4-1:几何证明选讲.22.(10分)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.选修4-4:坐标系与参数方程23.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.不等式选讲24.设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤.2014年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}【解答】解:A∪B={x|x≥1或x≤0},∴C U(A∪B)={x|0<x<1},故选:D.2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i【解答】解:由(z﹣2i)(2﹣i)=5,得:,∴z=2+3i.故选:A.3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【解答】解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:C.4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选B.5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)【解答】解:若•=0,•=0,则•=•,即(﹣)•=0,则•=0不一定成立,故命题p为假命题,若∥,∥,则∥平行,故命题q为真命题,则p∨q,为真命题,p∧q,(¬p)∧(¬q),p∨(¬q)都为假命题,故选:A.6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24【解答】解:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理,6×4=24.故选:D.7.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的柱体,其底面面积S=2×2﹣2××π×12=4﹣,柱体的高h=2,故该几何体的体积V=Sh=8﹣π,故选:B8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>0【解答】解:∵等差数列{a n}的公差为d,∴a n+1﹣a n=d,又数列{2}为递减数列,∴=<1,∴a1d<0.故选:C.9.(5分)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增【解答】解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].即y=3sin(2x﹣).当函数递增时,由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B.10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.【解答】解:∵点A(﹣2,3)在抛物线C:y2=2px的准线上,即准线方程为:x=﹣2,∴p>0,=﹣2即p=4,∴抛物线C:y2=8x,在第一象限的方程为y=2,设切点B(m,n),则n=2,又导数y′=2,则在切点处的斜率为,∴即m=2m,解得=2(舍去),∴切点B(8,8),又F(2,0),∴直线BF的斜率为,故选D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]【解答】解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立;当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥,令f(x)=,则f′(x)==﹣(*),当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,f(x)max=f(1)=﹣6,∴a≥﹣6;当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤,由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增,f(x)min=f(﹣1)=﹣2,∴a≤﹣2;综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].故选:C.12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.【解答】解:依题意,定义在[0,1]上的函数y=f(x)的斜率|k|<,依题意可设k>0,构造函数f(x)=(0<k<),满足f(0)=f(1)=0,|f(x)﹣f(y)|<|x﹣y|.当x∈[0,],且y∈[0,]时,|f(x)﹣f(y)|=|kx﹣ky|=k|x﹣y|≤k|﹣0|=k×<;当x∈[0,],且y∈[,1],|f(x)﹣f(y)|=|kx﹣(k﹣ky)|=|k(x+y)﹣k|≤|k(1+)﹣k|=<;当y∈[0,],且x∈[,1]时,同理可得,|f(x)﹣f(y)|<;当x∈[,1],且y∈[,1]时,|f(x)﹣f(y)|=|(k﹣kx)﹣(k﹣ky)|=k|x ﹣y|≤k×(1﹣)=<;综上所述,对所有x,y∈[0,1],|f(x)﹣f(y)|<,∵对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,∴m≥,即m的最小值为.故选:B.二、填空题:本大题共4小题,每小题5分。