数值方法迭代法解线性方程组实验报告

合集下载

数值计算实验报告

数值计算实验报告

本科实验报告课程名称:计算机数值方法实验项目:方程求根、线性方程组的直接解法、线性方程组的迭代解法、代数插值实验地点:专业班级:学生姓名:指导教师:实验一方程求根}五、实验结果与分析二分法实验结果迭代法实验结果结果分析:本题目求根区间为[1,2],精度满足|x*-x n|<0.5×10-5,故二分法用公式|x*-x n|<(b-a)/ 2n,可求得二分次数并输出每次结果。

对迭代法首先要求建立迭代格式。

迭代格式经计算已输入程序之中,故直接给初值便可利用迭代法求出精度下的解。

六、讨论、心得每次的实验都是对已学过的理论知识的一种实战。

通过本次实验,我将二分法与迭代法的思路清晰化并且将其变成计算机设计语言编写出来,运用到了实际解决问题上感觉很好。

我自认为本次跟其他同学比较的优点在于我在二分法实现的时候首先利用换底公式将需要的二分次输输出,如此便很清晰明了的知道接下来每一步的意思。

迭代法给我的感觉便是高度的便捷简化,仅用几行代码便可以同样解决问题。

相比较二分法来说,我更喜欢迭代的思路。

实验二线性方程组的直接解法for(k=n-2;k>=0;k--){sum=0;for(j=k+1;j<n;j++)sum=sum+a[k][j]*x[j];x[k]=(b[k]-sum)/a[k][k];}for(i=0;i<n;i++)printf("x[%d]=%f ",i,x[i]); printf("\n"); //输出解向量x}五、实验结果与分析结果结果分析:如上图所示,输入线性方程组元数n=3,则会要求输入3*3的系数矩阵A与向量b构成的增广矩阵。

根据算法需要将系数矩阵A消元成上三角矩阵。

随后根据矩阵乘法公式变形做对应的回代。

六、讨论、心得本次实验在编写时候感觉还好,感觉将思路变成了程序设计语言,得以实现题目的要求。

但是在运行以及结果分析的时候,感觉到了本实验的一些不足之处:就是我的实验虽然可以实现不同的元数的线性方程组求解,但是缺少了分析初始条件——主元素不能为零。

数值分析计算方法实验报告

数值分析计算方法实验报告
break;
end;
end;
X=x;
disp('迭代结果:');
X
format short;
输出结果:
因为不收敛,故出现上述情况。
4.超松弛迭代法:
%SOR法求解实验1
%w=1.45
%方程组系数矩阵
clc;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
b=[10,5,-2,7]'
b=[10,5,-2,7]'
[m,n]=size(A);
if m~=n
error('矩阵A的行数和列数必须相同');
return;
end
if m~=size(b)
error('b的大小必须和A的行数或A的列数相同');
return;
end
if rank(A)~=rank([A,b])
error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');
3.实验环境及实验文件存档名
写出实验环境及实验文件存档名
4.实验结果及分析
输出计算结果,结果分析和小结等。
解:1.高斯列主元消去法:
%用高斯列主元消去法解实验1
%高斯列主元消元法求解线性方程组Ax=b
%A为输入矩阵系数,b为方程组右端系数
%方程组的解保存在x变量中
format long;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
return;
end
c=n+1;
A(:,c)=b;
for k=1:n-1

数值分析迭代法数值分析实验报告jacobi迭代和seidel迭代分析

数值分析迭代法数值分析实验报告jacobi迭代和seidel迭代分析

数值分析迭代法数值分析实验报告 jacobi迭代和seidel迭代分析导读:就爱阅读网友为您分享以下“数值分析实验报告jacobi迭代和seidel迭代分析”资讯,希望对您有所帮助,感谢您对的支持!数值分析实验报告一、实验目的1、了解熟悉jacobi迭代法和seidel迭代法的解法2、将原理与matlab语言结合起来,编程解决问题3、分析实验结果二、实验题目设线性方程组为2 2 31 201 31 x1 1 7 x801240 2 x 103 10 15 x 1 4考察用jacobi迭代法和seidel迭代法求解该线性方程组的收敛情况。

如果收敛,给出误差满足x(k) x(k 1)10 4的解。

三、实验原理将A 作如下分解A D L U这里a11D a22 0 a ,L 21 anna n100 a n2 0 0 a12 a1n 0 0 0 a2n ,0 00 0 JacobiU迭代矩阵为BJ D 1(L U)Seidel迭代矩阵为BS (D L) 1U它们的迭代格式都可化为x(k 1) Bx(k) g则迭代格式对任何初值都瘦脸的充要条件是迭代矩阵谱半径 (B) max k 1,其中, k是矩阵B的n个特征值,k 1,2 ,n 1 k nJacobi迭代矩阵的特征方程为det( I B J) 0Seidel迭代矩阵的特征方程为det( I B S) det( (D L) U) 0四、实验内容用matlab编写计算jacobi迭代矩程序,建立m文件如下:function[M]=BJ(A)D=diag(diag(A));L=tril(-A)+D;U=triu(-A)+D;M=inv(D)*(L+U);输入:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];&gt;&gt; [M]=BJ(A)M:M =0 -0.0500 0.1500 0.0500-0.1667 0 0 -0.38890.0250 -0.0500 0 0.0500-0.2000 0 0.2000 00 0.050.150.05 0.166700 0.3889 则jacobi迭代矩阵为:BJ 0.025 0.0500.05 0.2 00.20用matlab求jacobi迭代矩阵的特征根的算法如下:&gt;&gt; A=[0 -0.05 0.15 -0.05;-0.67 0 0 -0.39;0.025 -0.05 0 0.05;-0.2 0 0.2 0];[V,D]=eig(A)V =-0.1892 + 0.0450i -0.1892 - 0.0450i -0.3812 -0.5005-0.9467 -0.9467 0.8867 0.5461 -0.1528 - 0.1181i -0.1528 + 0.1181i -0.2099 -0.0466 -0.1056 + 0.1325i -0.1056 - 0.1325i 0.1561 0.6701D =-0.1774 + 0.0864i 0 0 0 0 -0.1774 - 0.0864i 0 0 0 0 0.2194 0 0 0 0 0.1355 则最大特征根为:0.2194 则(BJ) 0.2194 1,所以jacobi迭代法收敛用matlab编程jacobi迭代法求根的算法:function [n,x]=jacobi(A,b,X,nm,w)%用雅克比迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,nm为最大迭代次数,w 为误差精度%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵UM=inv(D)*(L+U); %计算迭代矩阵g=inv(D)*b; %计算迭代格式中的常数项%下面是迭代过程while n&lt;=nmx=M*X+g; %用迭代格式进行迭代if norm(x-X,2)&lt;wdisp(…迭代次数为‟);ndisp(…方程组的解为‟);xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp(…在最大迭代次数内不收敛!‟);输入数据:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];X=[0;0;0;0];&gt;&gt; nm=100;&gt;&gt; w=1e-4;&gt;&gt; [n,x]=jacobi1(A,b,X,nm,w)迭代次数为n =6方程组的解为x =0.06870.16450.2352-0.1667n =6x =0.06870.16450.2352-0.1667所以,满足精度的根为x = 0.0687 0.1645 0.2352用matlab编程计算seidel迭代矩阵算法为:function[M]=BS(A)D=diag(diag(A));L=tril(-A)+D;U=triu(-A)+D;M=inv(D-L)*U;输入:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5]; &gt;&gt; [M]=BS(A)M =0 -0.0500 0.1500 0.0500 0 0.0083 -0.0250 -0.3972 -0.1667 迭代次数为6次0 -0.0017 0.0050 0.07110 0.0097 -0.0290 0.0042则seidel迭代矩阵为:0.150.05 0 0.05 00.0083 0.025 0.3972BS 0 0.00170.0050.0711 00.0097 0.0290.0042用matlab编程求得seidel矩阵的算法为:&gt;&gt; A=[0 -0.05 0.15 0.05;0 0.0083 -0.025 -0.3972;0 -0.0017 0.005 0.0711;0 0.0097 -0.029 0.0042];[V,D]=eig(A)V =1.0000 -0.1596 + 0.6750i -0.1596 - 0.6750i -0.91040 0.6965 0.6965 0.3924 0 -0.1250 + 0.0028i -0.1250 - 0.0028i 0.1313 0 0.0070 - 0.1348i 0.0070 + 0.1348i 0.0000D =0 0 0 0 0 0.0088 + 0.0768i 0 0 0 0 0.0088 - 0.0768i 0 0 0 0 -0.0001则特征根为 0 0.008+0.0768i 0.0088-0.0768i-0.0001则 (BS) 0.08 1,所以seidel迭代法收敛用seidel迭代法求根的算法为:function [n,x]=gaussseidel(A,b,X,nm,w)%用高斯-赛德尔迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,nm为最大迭代次数,w 为误差精度%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);I=eye(m); %生成m*m阶的单位矩阵D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵U M=inv(D-L)*U; %计算迭代矩阵g=inv(I-inv(D)*L)*(inv(D)*b); %计算迭代格式中的常数项%下面是迭代过程while n&lt;=nmx=M*X+g; %用迭代格式进行迭代if norm(x-X,2)&lt;wdisp(…迭代次数为‟);ndisp(…方程组的解为‟);xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp(…在最大迭代次数内不收敛!‟);disp(…最大迭代次数后的结果为‟);x输入数据:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];X=[0;0;0;0];nm=100;w=1e-4;[n,x]=gaussseidel(A,b,X,nm,w) 迭代次数为n =5方程组的解为x =0.06870.16450.2352-0.1667n =5x =0.06870.16450.2352-0.166满足精度的根为x =0.0687 0.1645 0.2352 -0.1667 迭代次数为5次五、实验分析从实验过程可以看到求出满足精度的根,seidel迭代要比jacobi迭代快,这是因为在jacobi迭代计算中,计算向量x(k 1)时是按分量的角标由小到大依次计算的。

数值分析与算法 简单迭代法求解线性方程组

数值分析与算法 简单迭代法求解线性方程组

简单迭代法求解线性方程组1.原理:将原线性方程组Ax=b中系数矩阵的主对角线移到一边并将其系数化为一,然后在给定迭代初值的情况下通过迭代的方法求解线性方程组的值。

2.C语言实现方式:(1)计算迭代矩阵:将系数矩阵的所有值分别处以各自所在行的主对角线值,然后将主对角线赋值为0。

(2)输入迭代初值,进行迭代将迭代初值存入y[n]矩阵,然后利用迭代式nn=nn+x[i][j]*y[j];y[i]=nn+b[i];经过有限次迭代得到误差要求以内的值3.源程序如下:#include<iostream>#include<math.h>#include<iomanip>using namespace std;#define kk 50 //定义最大方程元数int n,i,c,j,hh,gg,mm;double A[kk][kk],x[kk][kk],b[kk],y[kk],a[kk],z[kk],m,nn,d,e=1,w,fff ;void main(){cout<<"输入的方程元数"<<endl; //数据的输入cin>>n;cout<<"请输入方程系数矩阵:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j];cout<<"请输入右边向量:"<<endl;for(i=0;i<n;i++)cin>>b[i];cout<<"输入你想要的迭代精度(建议1e-5以上)!"<<endl; cin>>fff;cout<<"输入最大迭代次数(建议300次以上)!"<<endl; cin>>mm;//计算出迭代矩阵for(i=0;i<n;i++){b[i]=b[i]/A[i][i];for(j=0;j<n;j++){if(i==j){x[i][i]=0;}else{x[i][j]=-A[i][j]/A[i][i];}}}//输出迭代矩阵cout<<"计算出迭代矩阵为:"<<endl;for(i=0;i<n;i++){for(j=0;j<n;j++)cout<<x[i][j]<<" ";cout<<b[i]<<" ";cout<<endl;}//赋迭代初值cout<<"输入迭代初值"<<endl;for(i=0;i<n;i++)cin>>y[i];int f=1;//简单迭代法cout<<" ";for(i=1;i<n+1;i++)cout<<'\t'<<"X["<<i<<"]"<<" "<<'\t';cout<<"精度";cout<<endl;cout<<"迭代初值为: ";cout<<setiosflags(ios::fixed);for(i=0;i<n;i++)cout<<y[i]<<" ";cout<<endl;while(e>fff){for(i=0;i<n;i++){z[i]=y[i];nn=0;for(j=0;j<n;j++){nn=nn+x[i][j]*y[j];y[i]=nn+b[i];}e=fabs(z[0]-y[0]);if(fabs(z[i]-y[i])>e)e=fabs(z[i]-y[i]);if(i==0){cout<<setiosflags(ios::fixed);cout<<"第"<<setw(3)<<setprecision(3)<<f++<<"次迭代"<<" "; }cout<<setiosflags(ios::fixed);cout<<setw(8)<<setprecision(8)<<y[i]<<" ";}cout<<e;cout<<endl;if(f>mm){cout<<"迭代次数大于"<<mm<<"次"<<endl;cout<<"认为方程发散,迭代不收敛"<<endl;exit(1);}}cout<<endl;cout<<endl;cout<<"方程迭代了"<<f-1<<"次,达到你所要求的精度"<<fff<<endl;cout<<"最后结果为:"<<endl;cout<<endl;for(i=0;i<n;i++){cout<<"X"<<"["<<i+1<<"]"<<"="<<y[i];cout<<endl;}exit(1);}4.实验数据和结果:按照提示依次输入方程元数,系数矩阵,右边向量和迭代初值。

数值分析实验报告--解线性方程组的迭代法及其并行算法

数值分析实验报告--解线性方程组的迭代法及其并行算法

disp('请注意:高斯-塞德尔迭代的结果没有达 到给定的精度,并且迭代次数已经超过最大迭 代次数max1,方程组的精确解jX和迭代向量X 如下: ') X=X';jX=jX' end end X=X';D,U,L,jX=jX'
高斯-塞德尔的输入为:
A=[10 2 3;2 10 1;3 1 10]; b=[1;1;2]; X0=[0 0 0]'; X=gsdddy(A,b,X0,inf, 0.001,100) A=[10 2 3;2 10 1;3 1 10]; 请注意:因为对角矩阵 D 非奇异,所以此方程组有解.
0.0301 0.0758 0.1834
8.心得体会:
这已经是第三次实验了, 或多或少我已经对 MATLAB 有了更多的了 解与深入的学习。通过这次实验我了解了雅可比迭代法和高斯- 塞德尔迭代法的基本思想,虽然我们不能熟练编出程序,但还是 能看明白的。运行起来也比较容易,让我跟好的了解迭代法的多 样性,使平常手算的题能得到很好的验证。通过这次实验让我对 MATLAB 又有了更深一层的认识,使我对这门课兴趣也更加浓厚。
运行雅可比迭代程序输入: A=[10
b=[1;1;2];X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,100)
2 3;2 10 1;3 1 10];
结果为:
k= 1 X=
0.1000 k= 2 X= 0.0200 k= 3 X= 0.0400 k= 4 X= 0.0276 k= 5 X= 0.0314 k= 6 X= 0.0294 k= 7 X= 0.0301 k= 8 X= 0.0297
6、 设计思想:先化简,把对角线的项提到左边,其它项

matlab线性方程组数值求解实验报告

matlab线性方程组数值求解实验报告

湖南大学电气与信息工程学院 《数值计算》课程 上机实验报告一. 实验目的:了解gauss 消去法和迭代法matlab 算法实现求任意方程组的根。

二. 实验内容:用gauss 消去法和迭代法求解下列线性方程组:263234323923321321321=++=++=++x x x x x x x x x1.求出gauss 消去法的上三角矩阵和方程组的解321,,x x x ,并在命令窗口显示;2.显示迭代法求解过程中所有结果(,,,,,,,,,321131*********NN N x x x x x x x x x ⋯⋯)要求求解精度达到10^-5.三. 算法介绍或方法基础1) 消去法:消元过程:设0)0(11≠a ,令乘数)0(11)0(11/a a m i i -=,做(消去第i 个方程组的i x )操作1i m ×第1个方程+第i 个方程(i=2,3,.....n )则第i 个方程变为1)1(2)1(2...i n in i b x a x a =++ 这样消去第2,3,。

,n 个方程的变元i x 后。

原线性方程组变为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++)1()1(2)1(2)1(2)1(22)1(22)0(1)0(11)0(11... . .... ...n n nn n n n n n b x a x a b x a x a b x a x a 这样就完成了第1步消元。

回代过程:在最后的一方程中解出n x ,得:)1()1(/--=n nn n n n a b x再将n x 的值代入倒数第二个方程,解出1-n x ,依次往上反推,即可求出方程组的解: 其通项为3,...1-n 2,-n k /)()1(1)1()1(=-=-+=--∑k kk nk j j k kj k kk a x abx高斯赛德尔迭代法:由雅可比迭代公式可知,在迭代的每一步计算过程中是用()k x的全部分量来计算()1+k x的所有分量,显然在计算第i 个分量()1+k ix 时,已经计算出的最新分量()()1111+-+k i k x ,...,x 没有被利用,从直观上看,最新计算出的分量可能比旧的分量要好些.因此,对这些最新计算出来的第1+k 次近似()1+k x 的分量()1+k jx 加以利用,就得到所谓解方程组的高斯—塞德(Gauss-Seidel )迭代法.把矩阵A 分解成U L D A --= (6)其中()nn a ,...,a ,a diag D 2211=,U ,L --分别为A 的主对角元除外的下三角和上三角部分,于是,方程组(1)便可以写成 ()b Ux x L D +=-即 22f x B x +=其中()()b L D f ,U L D B 1212---=-= (7)以2B 为迭代矩阵构成的迭代法(公式)()()221f x B x k k +=+ (8)称为高斯—塞德尔迭代法(公式),用 量表示的形式为⎩⎨⎧[],...,,k ,n ,,i x a x a b a xi j n i j )k (j ij )k (j ij i ii)k (i21021111111==∑∑--=-=+=++ (9)由此看出,高斯—塞德尔迭代法的一个明显的优点是,在电算时,只需一组存储单元(计算出()1+k ix 后()k ix 不再使用,所以用()1+k ix 冲掉()k ix ,以便存放近似解.四.程序1)消去法:function x=gauss(A,b)n=length(b);A=[A,b];for k=1:(n-1)A((k+1):n,(k+1):(n+1))=A((k+1):n,(k+1):(n+1))... -A((k+1):n,k)/A(k,k)*A(k,(k+1):(n+1));A((k+1):n,k)=zeros(n-k,1);Aendx=zeros(n,1);x(n)=A(n,n+1)/A(n,n);for k=n-1:-1:1x(k,:)=(A(k,n+1)-A(k,(k+1):n)*x((k+1):n))/A(k,k);end2)迭代法:function EX()a=input('请输入系数矩阵a:');b=input('请输入矩阵b:');N=input('请输入最大迭代次数N:');esp=input('请输入近似解的误差限:');if any(diag(a))==0error('系数矩阵错误,迭代终止!')endD=diag(diag(a));X0=zeros(size(b));x1=0;x2=0;x3=0;X1=[x1;x2;x3];h=inv(D)*b;B=inv(D)*(D-a);B1=triu(B);B2=tril(B);k=1;fprintf('高斯-赛德尔迭代法');fprintf('第0次迭代得:')disp(X1');while k<=Nx1=h(1,1)+B1(1,:)*X0;X1=[x1;x2;x3];x2=h(2,1)+B1(2,:)*X0+B2(2,:)*X1;X1=[x1;x2;x3];x3=h(3,1)+B2(3,:)*X1;X1=[x1;x2;x3];if norm(X1-X0,inf)<espfprintf('已满足误差限。

数值分析_线性方程组迭代解法Hilbert矩阵

数值分析_线性方程组迭代解法Hilbert矩阵

0.999427 1.000368 1.000068 0.999538 1.003545 0.999834 1.000724 1.002775 0.99582 x 9 0.99888 0.9983 0.99933 0.995748 0.999679
0.996358 0.999739
1.002141 1.001106 1.001204 1.001784 1.005742 1.00315 1.00155 1.00181 1.002206 1.00062
1.000066 0.999977 1.000001 1.000041 0.998534 1.000054 0.999712 0.999029 1.005874 1.000672 1.00175 1.004447
0.996128 0.998886 0.998141 0.994858 10 x 0.993805 0.998912 0.998328 0.998514 0.999227 1.000283 1.000399 1.001125 1.005241 1.001468 1.001894 1.002573 1.006835 1.001551 1.001869 1.002117
数值分析课程上机报告
数值分析第二次上机实习报告
——线性方程组迭代解法
一、问题描述
设 Hn = [hij ] ∈ Rn×n 是 Hilbert 矩阵, 即 hij = 对 n = 2,3,4,…15, 1 i + j −1
1 x ∈ R n×n ,及 bn = H n x ,用 SOR 迭代法和共轭梯度法来求解,并与直 取= 1
四、计算结果及其分析
1. 超松弛迭代法分析 令初始向量 x0=u(1,1,……)T,给定不同的初始向量与松弛因子,计算不同情 况下解的情况。计算结果如下。

高斯-赛德尔法--数值分析线性方程组的迭代解法

高斯-赛德尔法--数值分析线性方程组的迭代解法
高斯赛德尔法数值分析线性方程组的迭代解法线性方程组的迭代解法迭代法求解线性方程组高斯赛德尔迭代法高斯赛德尔迭代法原理高斯赛德尔迭代赛德尔迭代法线性方程组的解法pkpm线性方程组解法非线性方程数值解法
实验六、高斯-塞德尔法
一、实验目的
通过本实验学习线性方程组的迭代解法。掌握高斯-赛德尔迭代法编程。
二、计算公式
}
if(k==T)printf("\nNo");
else
printf("\n",k);
for(i=0;i<M;i++)
printf("x(%d)=%15.7f\n",i+1,x[i]);
}
四、例题
书P189页例6:用高斯-塞德尔迭代解线性方程组:
取 使得
#include<math.h>
#define M 3
#define N 4
main()
{
double a[M][N]={{8,-3,2,20},
{4,11,-1,33},
{6,3,12,36},
};
double x[M]={0,0,0};//初值
double r,t,q,eps=0.0000202;//需要精度
if(j!=i)q=q+a[i][j]*x[j];
x[i]=(a[i][N-1]-q)/a[i][i];
if(fabs(x[i]-t)>r)r=fabs(x[i]-t);
}
if(r<eps)break;
printf("\nk=%d,",k);
for(i=0;i<M;i++)
printf("\nx[%d]=%lf",i,x[i]);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。

2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。

3.实验原理:简要说明本实验项目所涉及的理论知识。

4.实验环境:实验用的软、硬件环境。

5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。

概括整个实验过程。

对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。

对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。

对于创新性,还应注明其创新点、特色。

6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。

7.实验结论(结果):根据实验过程中得到的结果,做出结论。

8.实验小结:本次实验心得体会、思考和建议。

9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。

相关文档
最新文档