冠层光能利用率的叶绿素荧光光谱探测
叶绿素荧光成像技术的原理与应用

叶绿素荧光成像技术的原理与应用一、引言叶绿素是植物中最重要的光合色素,是植物进行光合作用的基础。
溶剂化的叶绿素主要吸收蓝色和红色光,在500~600和650~700nm波长范围内,具有两个吸收峰。
叶绿素荧光成像技术是基于叶绿素发出的荧光信号来进行影像测量的一种实时、无创的模拟测量方法。
本文将介绍叶绿素荧光成像技术的原理、实验流程及其应用。
二、原理叶绿素荧光成像技术是基于叶绿素荧光的成像,叶绿素荧光受光强度和环境因素的影响而变化,可以反映植物的生长状态、光合作用效率和叶片生理变化等信息。
叶绿素荧光成像系统具有高时间分辨率、高空间分辨率的特点,可以获取全景、彩色、实时和定量信息。
叶绿素荧光成像技术主要是利用荧光成像仪和其他仪器支持,通过蓝/绿或红/绿激发光、荧光图像采集和分析等步骤,可以获得叶绿素的分布信息。
三、实验叶绿素荧光成像技术的实验主要分为两个步骤:激发和成像。
首先是激发,将叶片放入光合器中,用荧光成像仪对植物叶片进行光激发,根据荧光成像仪的激光幅度,可以调整植物叶片的荧光强度。
之后,进行成像,将植物叶片放到荧光成像仪中进行拍摄,获取叶绿素的发光信号。
最后,通过荧光照片的处理,可以计算叶片荧光强度和叶绿素荧光参数,如最大光化学利用率、植物光合作用效率等。
四、应用叶绿素荧光成像技术的应用非常广泛,主要涉及到生物学、生态学、农业、气象学,特别适用于植物生长状态监测、植物抗性研究、光合作用效率评估等。
一些具体的应用领域可以如下简要介绍:1.光合作用研究叶绿素荧光成像技术可用于研究植物的光合作用效率、光能利用和光保护机制。
典型的光合作用实验是通过比较光照和黑暗条件下植物的荧光变化来确定植物的光合反应和光保护机制。
2.气候变化影响研究在气候变化方面,叶绿素荧光成像技术可用于研究气候变化导致的植物响应和适应。
通过对多个季节的荧光成像分析可以确定气候变化对地上层和植物生长的影响。
3.生态环境研究叶绿素荧光成像技术可用于研究萎缩地区的植被恢复和生态系统的响应。
叶绿素荧光研究背景知识介绍

叶绿素荧光研究背景知识介绍前言近些年来,叶绿素荧光技术已经逐渐成为植物生理生态研究的热门方向。
荧光数据是植物光合性能方面的必要研究内容。
目前这种趋势由于叶绿素荧光检测仪的改进而得到发展。
然而荧光理论和数据解释仍然比较复杂。
就我们所了解的情况来看,目前许多研究者对荧光理论不是很清楚,仪器应用仅仅限于简单的数据说明的基础上,本文在此基础上,目的在于简单明晰地介绍相关理论和研究要点,以求简单明确地使用叶绿素荧光检测设备,充分分析实验数据,重点在于植物生理生态学技术的应用和限制。
荧光测量基础植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素荧光。
三个过程之间存在竞争,其中任何一个效率的增加都将造成另外两个产量的下降。
因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。
尽管叶绿素荧光的总量很小(一般仅占叶片吸收光能总量的1-2%),测量却非常简单。
荧光光谱不同于吸收光谱,其波长更长,因此荧光测量可以通过把叶片经过给定波长的光线的照射,同时测量发射光中波长较长的部分光线的量来实现。
有一点需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。
因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。
调制荧光仪的出现是荧光研究技术的革命性的创新。
在这类仪器中,测量光源是调制(高频率开关)的,其检测器也被调谐来仅仅检测被测量光激发的荧光。
因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下)存在的条件下进行测量。
目前绝大多数的荧光仪采用了调制系统,同时也强烈建议选择调制荧光仪(Kate Maxwell,2000)。
为什么荧光产量会发生改变?Kautsky效应和Beyond叶绿素荧光产量的变化最早在1960年被Kautsky和其合作者发现。
他们发现,当把植物叶片从黑暗中转入光下,荧光产量瞬间上升(大约在1秒左右)这种上升可以解释为光合途径中电子受体的还原(可接受电子的受体的减少)。
叶绿素荧光成像技术在植物生长中的应用

叶绿素荧光成像技术在植物生长中的应用叶绿素荧光成像技术,是一种非侵入式的植物生长观测方法。
它可以在不对植物造成任何伤害的情况下,实时地观测植物的光合作用和植物生长状态。
叶绿素荧光成像技术的应用范围十分广泛,包括植物生长研究、环境监测、农业生产等方面。
叶绿素荧光成像技术的基本原理是,利用叶绿素分子在光合作用中产生的荧光信号,来反映叶片的光合效率。
这种荧光信号可以通过特殊的摄像设备,即叶绿素荧光成像仪来采集。
通过对采集到的荧光图像进行处理,可以得到植物的光合作用效率、光能利用率等多项指标,从而揭示植物生长状态和环境条件对植物生长的影响。
在植物生长方面,叶绿素荧光成像技术的应用主要集中在三个方面:一、对不同生长环境下的植物进行光合作用效率观测。
利用叶绿素荧光成像仪可以在植物生长中实时地观测其光合作用的运作情况。
通过在不同环境和条件下对植物进行观测,可以更加准确地了解植物生长的条件和需求,为生产和研究提供参考。
二、对不同植物的生长状态进行监测。
叶绿素荧光成像技术还可以用于对不同植物的生长状态进行监测,从而判断不同的生长阶段、生长速度等。
这对于农业生产和植物育种方面都具有很大的意义,可以指导地面管理、育种选材等方面的工作。
三、对不同生物模型进行生长动态分析。
除了对植物进行观测之外,叶绿素荧光成像技术还可以用于对其他生物模型的生长状态进行监测。
例如,可以将该技术应用于对微生物、食品发酵过程等生物模型进行生长动态分析,从而更好地了解生物系统的生成规律和规律变化,为相关研究提供参考。
总之,叶绿素荧光成像技术的应用具有非常广泛、多样化的特点。
通过该技术可以实时地观测不同生境下植物的生长状态,从而更好地了解植物的光合作用效率、生长阶段等内容。
这对于农业生产、生物育种和环境监测都具有很大的实用价值。
因此,该技术的发展和应用前景十分广阔。
植物生理指标测定方法

植物生理指标测定方法植物生理指标是指用来衡量植物生理状况的具体参数或指标,在植物生理研究中起到了非常重要的作用。
植物生理指标测定方法主要包括以下几个方面:光合作用指标、呼吸作用指标、蒸腾作用指标、叶绿素指标、产量指标和抗逆性指标等。
1.光合作用指标的测定方法:(1)净光合速率的测定方法:通过光合速率仪测定植物叶片在光照条件下的净光合速率;(2)光饱和点和CO2抗饱和点的测定方法:通过对光合速率与光照强度或CO2浓度的关系进行测定,确定光饱和点和CO2抗饱和点;(3)光合色素含量的测定方法:通过分光光度计或高效液相色谱法测定叶片中的叶绿素a、叶绿素b和类胡萝卜素等光合色素的含量;(4)光合机构有效光能利用率的测定方法:通过光合色素荧光分析仪测定叶片的光能利用效率。
2.呼吸作用指标的测定方法:(1)总呼吸速率的测定方法:通过呼吸速率仪或气体分析仪测定植物组织在不同温度条件下的总呼吸速率;(2)细胞内呼吸速率的测定方法:通过氧和二氧化碳分压差法或氧电极法测定细胞内的呼吸速率。
3.蒸腾作用指标的测定方法:(1)蒸腾速率的测定方法:通过蒸腾速率仪测定植物叶片在不同光照和湿度条件下的蒸腾速率;(2)水分利用效率的测定方法:通过测量蒸腾速率和光合速率的比值来反映植物对水分的利用效率。
4.叶绿素指标的测定方法:(1)叶绿素含量的测定方法:通过叶绿素荧光分析仪或高效液相色谱法测定叶片中叶绿素a、叶绿素b和类胡萝卜素的含量;(2)叶绿素荧光动力学特性的测定方法:通过荧光指数、叶绿素荧光参数和叶绿素荧光成像等技术来评估叶绿素在光抑制和光保护状态下的变化。
5.产量指标的测定方法:(1)单株产量的测定方法:通过对植株生物量、籽粒数或实际产量的测定来计算出单株产量;(2)单穗产量的测定方法:通过对穗长、穗粒数和粒重的测定来计算出单穗产量;(3)单粒产量的测定方法:通过对单穗粒数和粒重的测定来计算出单粒产量。
6.抗逆性指标的测定方法:(1)抗氧化酶活性的测定方法:通过测定植物组织中抗氧化酶活性,如超氧化物歧化酶、过氧化氢酶和抗坏血酸过氧化物酶等的活性来反映植物的抗氧化能力;(2)渗透调节物质含量的测定方法:通过测定植物组织中渗透调节物质(如脯氨酸、脯氨酸激酶等)的含量来评估植物的胁迫适应能力;(3)膜脂过氧化程度的测定方法:通过测定植物组织中膜脂过氧化程度的指标,如丙二醛和过氧化氢含量来评估植物膜的稳定性。
叶绿素荧光参数fs

叶绿素荧光参数fs叶绿素荧光参数FS叶绿素荧光参数FS是指叶绿素分子在光合作用中发出的荧光信号。
它是研究植物光合效率和光合作用状况的重要指标之一。
FS的变化可以反映植物叶片的光合能力、光能利用效率以及光合作用过程中的光能分配情况。
下面将从FS的原理、测量方法以及应用领域等方面进行介绍。
一、FS的原理FS是通过测量叶绿素分子在光合作用中发出的荧光信号来获得的。
在光合作用中,光能被叶绿素吸收后,一部分被用于光合作用,而另一部分则被转化为热能释放。
然而,有一小部分光能会以荧光的形式重新辐射出来,这就是FS信号。
FS信号的强弱与植物的光合效率密切相关。
当植物光合效率高时,光能主要被用于光合作用,辐射出的荧光信号较弱;而当光合效率低时,光能利用不充分,辐射出的荧光信号较强。
因此,通过测量FS信号的强度,可以了解植物光合作用的效率和叶片的光能利用情况。
二、FS的测量方法测量FS信号可以通过荧光仪来实现。
一般情况下,测量过程包括暗适应、激发光照射和荧光信号采集等步骤。
将待测叶片暴露在强光照射下,使其处于暗适应状态。
这样可以使叶片中的荧光物质达到稳定状态,以便后续测量。
然后,使用激发光源照射叶片。
激发光的强度和波长可以根据实际需要进行调节。
叶绿素分子会吸收激发光的能量,一部分能量被用于光合作用,而另一部分则以荧光的形式辐射出来。
使用荧光探测器采集荧光信号,并将其转化为电信号。
荧光信号的强度可以通过荧光仪进行测量和记录。
三、FS的应用领域FS参数在植物生理学和农业科学研究中有着广泛的应用。
它可以用来评估植物的光合效率、光能利用率以及光合作用受到的限制因素等。
FS参数可以用于评估植物的光合效率。
通过测量FS信号的强度,可以判断植物光合作用的效率。
光合作用是植物生长和发育的重要过程,了解光合效率对于优化农作物的生产和提高光能利用效率具有重要意义。
FS参数还可以用于研究光合作用受到的限制因素。
光合作用受到光照强度、温度、土壤水分等多种因素的影响。
叶绿素荧光研究技术

叶绿素荧光研究技术叶绿素荧光是研究光合作用和植物生理过程的一个重要手段。
叶绿素荧光是叶绿素分子受到光照激发后,发射出的荧光信号。
该技术能够监测光合能力和光合调节机制,了解植物正常或异常生长状况,研究非光合组织如果实和种子的生理过程,评估植物生长环境的适应性等。
一、叶绿素荧光测量原理叶绿素分子吸收光能后,能量被转移给氧化还原反应中心。
当光强过大或光能无法被消耗时,多余的光能会被氧化还原反应中心转化为热量,导致光合系统的损伤。
而当光合系统接受的光能较少时,荧光的发射会增加。
因此,测量叶绿素荧光的强度和特性可以反映光合系统工作的性能。
二、叶绿素荧光参数1.Fv/Fm:最大光化学效率,反映PSII反应中心的状态,值接近0.8时表明植物处于良好的生长状态;2.Fv/Fo:PSII光化学效率,反映感光物质的活性;3.Fm/Fo:光合色素电子传递量,反映光合色素的电子传递能力;4.ETR:PSII电子传递速率,根据荧光叶片的调制的能量进行计算;5.NPQ:非光化学淬灭,表征过量光能和植物应激状态的多巴胺合成。
三、叶绿素荧光测量方法1.便携式叶绿素荧光仪(PAM):PAM技术适用于野外生态学、环境评估和植物生理等领域研究。
优点是操作简单,适用范围广,可以直接用于测量植物的光合效率、叶片蒸腾等。
2.受控环境下的叶绿素荧光分析仪:此类仪器通常配备一个收集样本荧光的光电探测器和一个稳定的光源。
与PAM相比,仪器的体积较大,需要受控环境条件下进行测量,但有更高的精度和稳定性。
3.瞬态叶绿素荧光测量:瞬态叶绿素荧光测量方法能够提供叶绿素荧光曲线的全面信息。
它利用激光闪光对植物进行刺激,然后通过检测荧光信号的时间和强度来得到更准确的数据,并推断光合电子传递的很多参数。
四、叶绿素荧光研究应用1.光合调节机制研究:通过测量叶绿素荧光参数,可以识别植物光合调节机制的不同特征,对了解光合作用的调控机制具有重要意义。
2.植物逆境胁迫研究:叶绿素荧光参数能够反映植物受到逆境胁迫时的生理和生化变化,如光强强度、干旱和高温等环境条件下的光合能力和耐受性。
叶绿素荧光参数
叶绿素荧光参数简介叶绿素荧光参数是研究叶绿素光合作用过程中的关键指标之一。
叶绿素荧光是指当叶绿素受到光照激发后所发出的能量释放过程。
通过测量叶绿素荧光参数,可以了解植物的光合作用效率、光合速率、叶绿素光化学反应等信息,从而评估植物的生长状态、健康状况和环境胁迫情况。
叶绿素荧光参数的测量方法叶绿素荧光成像叶绿素荧光成像是一种非侵入性、高时空分辨率的叶绿素荧光测量方法。
通过专用的成像设备,可以在植物表面获取叶片的荧光成像图像。
这些图像可以用来分析植物叶片的荧光分布情况,定量评估叶片的荧光强度和荧光参数。
叶绿素荧光曲线叶绿素荧光曲线是测量叶绿素荧光参数的一种常用方法。
通过将叶片暗适应一段时间后,在连续光照的条件下测量叶绿素荧光强度的变化,得到一条特定的曲线。
根据这条曲线可以获得多个关键的叶绿素荧光参数。
叶绿素荧光参数的计算根据叶绿素荧光曲线或荧光成像数据,可以计算出一系列叶绿素荧光参数。
常见的叶绿素荧光参数包括:•Fv/Fm:最大光化学效率(maximum quantum efficiency of PSII)•Fv/F0:有效光化学效率(effective quantum efficiency of PSII)•Y(II):光化学效率(quantum yield of PSII)•NPQ:非光化学淬灭(non-photochemical quenching)•qP:光化学淬灭(photochemical quenching)•qN:非光化学淬灭(non-photochemical quenching)这些参数可以提供有关植物光合作用效率和光合速率的重要信息,并且可以用于判断植物的光合作用状况和适应性。
叶绿素荧光参数的应用植物生理研究叶绿素荧光参数可用于研究植物的生理过程,如光合作用、呼吸作用、光能利用效率、非光化学淬灭等。
通过对比不同生理状态下的叶绿素荧光参数,可以揭示植物对环境变化的响应机制,评估植物的适应能力和生长状况。
叶绿素荧光参数及意义精选全文
精选全文完整版(可编辑修改)叶绿素荧光参数及意义叶绿素荧光参数是研究光合作用和植物生理状态的重要指标。
它可以最准确地反映植物叶片的光合能力、光合作用效率以及受到的环境胁迫程度。
在过去几十年中,叶绿素荧光参数已经成为光合作用研究领域的重要手段之一,被广泛应用于植物生理生态学、作物育种和环境生态学等多个领域。
叶绿素荧光是叶绿体中叶绿素在光合作用过程中放出的微弱荧光。
通过测量叶片上的叶绿素荧光信号,可以得到一系列荧光参数,如最大荧光(Fm)、有效量子效率(Yield)、非光化学猝灭(NPQ)、电子传递速率(ETR)等。
这些参数可以描述叶片叶绿素在光合作用中的能量捕获、能量转化和耗散过程,从而反映光合作用的效率和健康程度。
其中,最大荧光(Fm)是表示光合电子传递受到的最大阻抗的参数,它反映了叶绿体最基本的功能状态。
有效量子效率(Yield)是表示光合作用电子传递能力的参数,它反映了叶绿体在光合作用中的能量转化效率。
非光化学猝灭(NPQ)是表示光合作用中耗散多余能量的作用,它反映了植物面临压力时的调节机制。
1.评估光合作用效率:叶绿素荧光参数可以反映植物叶片的光合作用效率,从而评估植物的生长和发育情况。
通过测量和分析叶绿素荧光参数,可以判断光合作用是否受到限制,了解植物的生理状态,为植物育种和种植管理提供参考。
2.检测环境胁迫:环境因素对植物光合作用的影响是复杂而多样的,而叶绿素荧光参数可以对环境胁迫产生的影响进行敏感和准确地检测。
通过测量叶绿素荧光参数,可以评估植物对光照、温度、水分和营养等环境因素的耐受能力,提供对环境胁迫的早期预警。
3.研究植物适应性和响应机制:叶绿素荧光参数对比分析可以揭示植物对环境变化的适应性和响应机制。
通过对不同物种、不同品种、不同生长阶段或不同环境条件下叶绿素荧光参数的比较研究,可以深入了解植物的光合作用机理和抗逆性能,为植物育种和生态环境保护提供理论基础。
4.监测植物生长和健康状态:叶绿素荧光参数可以用于监测植物的生长和健康状态。
叶绿素荧光测定原理
叶绿素荧光测定原理叶绿素荧光测定原理是一种常用的技术,用于评估植物叶片的生理状态和光合作用效率。
它基于植物叶绿素分子在吸收光能后的荧光发射。
叶绿素是植物叶片中的主要光合色素,可吸收光能并将其转化为化学能以供光合作用使用。
然而,当植物无法有效利用光能时,一部分光能将会以热量的形式散失,而另一部分则会以荧光的形式重新辐射出去。
叶绿素荧光即是指这部分重新辐射的光。
叶绿素荧光的强度与植物内部的光合活性和光捕获效率密切相关。
在高效的光合作用状态下,葡萄糖和ATP能够积极参与荧光发射预处理,使得荧光发射的量子产生率较低。
相反,在光合活性低下或应激条件下,荧光发射量子产生率增加。
叶绿素荧光测定根据荧光发射的强度来评估植物叶片的生理状态和光合作用效率。
测量过程中通常会使用一个叶绿素荧光测定仪,该仪器包括一个光源、一个探测器和一个数据处理系统。
在测定过程中,光源会提供一个特定波长的光照以激发叶绿素分子的荧光发射。
这个波长通常是蓝光,因为叶绿素荧光主要在红-蓝光区域发射。
探测器接收并测量叶绿素荧光的强度,然后将数据传输给数据处理系统进行分析和计算。
数据处理系统可以使用不同的参数来表示叶绿素荧光的强度,并且这些参数具有不同的生理意义。
例如,最常用的参数是几个荧光信号(F0,Fm和Fv),它们代表了基础荧光、最大荧光和可变荧光。
这些参数可以用来计算光合作用效率指数(PI)和非光化学猝灭(NPQ)等指标,从而客观评估光合作用过程中的能量捕获和耗散。
总之,叶绿素荧光测定原理是基于叶绿素分子在吸收光能后产生的荧光发射的特性来评估植物叶片的生理状况和光合作用效率。
这一原理的准确性和可重复性使得叶绿素荧光成为了一个重要的检测手段,用于研究植物的光合代谢和应对环境应激的能力。
叶绿素荧光介绍范文
叶绿素荧光介绍范文叶绿素荧光是指在光合作用过程中,叶绿素分子吸收光能后,发生激发态跃迁并发出荧光的现象。
叶绿素荧光是一种非常重要的生物物理过程,具有广泛的应用价值。
本文将介绍叶绿素荧光的原理、测量方法以及在科研和实际应用中的应用。
叶绿素是植物和一些藻类的主要光合色素,通过吸收可见光谱范围内的光能完成光合作用。
当叶绿素分子吸收光子能量后,电子被激发到高能态,形成激发态叶绿素分子。
受到环境因素的影响,一部分激发态叶绿素分子会通过非辐射跃迁和辐射跃迁的方式返回基态状态,释放出荧光能量。
透过测量和分析叶绿素荧光信号的强度和特性,可以得到一系列与光合作用相关的参数,揭示植物光合效率、光能利用和生理状态等信息。
叶绿素荧光的测量方法主要有两大类,即暗态和光态测量。
暗态荧光测量是在暗室或在减光条件下进行的,可以获得植物的荧光最大强度(Fm)和基线荧光(Fo)。
光态荧光测量则是在光照条件下进行的,通过测量荧光上升曲线,可以得到植物的最大光能利用率(Fv/Fm)和各个光合参数的变化情况。
叶绿素荧光在科研领域中广泛应用于植物生理生态学、植物营养和环境生态等研究中。
首先,叶绿素荧光可用于评估植物的光合效率和光能利用率,解析光合系统的功能状态。
通过测量和分析叶绿素荧光信号,可以得到Fv/Fm、ΦPSII等参数来评估光合效率和光合系统的效能。
其次,叶绿素荧光还可用于评估植物的生理状态和逆境胁迫。
逆境条件(如高温、干旱、盐碱等)会导致光合机构和光合膜的破坏,进一步影响光合效率和荧光参数的变化。
通过测量叶绿素荧光,可以揭示植物在逆境下的应对机制和生理变化。
此外,叶绿素荧光还可以应用于植物的品种筛选和产量预测,帮助农业生产的改良和优化。
叶绿素荧光在实际应用中也具有广泛的价值。
例如,在植物病害与虫害防治中,叶绿素荧光可以作为一个快速而灵敏的指标来评估植物的抗病性和抗虫性。
通过监测植物的荧光参数,可以及早发现植物的应激状态并采取相应的防治措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
INTRODUCTION
Terrestrial ecosystems can fix about 60Gt of carbon annually through the physiological process of photosynthesis. Meanwhile, autotrophic and heterotrophic respirations on the earth’s surface release about the same amount of carbon back into the atmosphere thereby closing the terrestrial carbon cycle (Janzen, 2004). Even tiny alterations in the terrestrial carbon balance are likely to cause significant change on atmospheric CO2 concentrations. For this reason, the estimation of landatmosphere carbon cycle is becoming a focus in the research of global climate change. Among most of the productivity models, only the models based on light-use efficiency (LUE) are widely used in regional and global vegetation productivity estimation, because of their advantages of simplicity in calculation and less input parameters (Potter et al., 1993; Running et al., 1999; Xiao et al., 2005; Hilker et al., 2008).
Citation format: Cheng Z H and Liu L Y. 2010. Estimating light-use efficiency by the separated Solar-induced chlorophyll fluorescence from canopy spectral data. Journal of Remote Sensing. 14(2): 356—371
CHENG Zhanhui1,2, LIU Liangyun1
1. Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100190, China; 2. College of Information and Electrical Engineering, China Agriculture University, Beijing 100083, China
LUE is a critical parameter in the primary production models, which can be defined as the efficiency of plant converting absorbed light energy into dry matter. At regional or global scale, LUE can only be estimated by prior parameters, such as land cover types, light, temperature and water status retrieved from remote sensing or in situ measurements. Therefore, the development of the LUE based productivity models is limited. So far, the Eddy covariance (EC) technique is the only way to measure carbon dioxide and water-heat exchange between atmosphere and vegetation canopy directly. This method can acquire LUE on canopy or landscape scale, and verify the remote sensing production estimation on regional scale. Light absorbed by a leaf can be dissipated as heat, or used for photochemistry, or emitted as fluorescence, there is a reciprocal relationship among three of them. Chlorophyll fluorescence (ChlF) is considered as an ideal probe of photosynthetic activity because of the characteristics of rapid and non-invasive
Abstract: Light-use efficiency (LUE) is a critical parameter in many primary production models for estimating ecosystem carbon exchange. The application of these models on regional and global scale is restricted because of the difficulty of retrieving LUE from airborne and satellite remote sensing images. Vegetation chlorophyll fluorescence is a direct indicator of plant physiology. In this paper, a diurnal experiment was carried on maize on July 5, 2008. The canopy radiance spectra and tower-based flux data were acquired synchronously to test the possibility of retrieving LUE by the solar-induced vegetation ChlF signals. The canopy net primary production (NEP) values were calculated using eddy covariance measurement by a CSAT3-Li7500 Flux system, and the gross primary production (GPP) was also calculated by adding the simulated day time respiration. Two kinds of LUE based on GPP (LUEGPP) and NEP (LUENEP) were defined by dividing the absorbed photosynthetic active radiation (APAR). The ChlF signals at 760nm and 688nm were also separated from the reflected radiance spectra based on Fraunhofer line depth algorithm in the two oxygen absorption bands. The ChlF signals were strongly correlated with photosynthetic active radiation (PAR), especially the ChlF at 760nm (R2>0.99). Both NEP and GPP had a significant correlation with ChlF. Furthermore, LUEGPP was negatively correlated with the ChlF’s relative intensity at 688nm and 760nm, with a correlation coefficient R2 of 0.6331 and 0.7861 respectively. Moreover, the LUE models based on the solar-induced vegetation ChlF signals were compared to some popular vegetation Indices (VIs) from the canopy reflected spectra. Canopy LUEGPP was proved able to be estimated from the remotely sensed ChlF signals. Key words: spectra, chlorophyll fluorescence, light-use efficiency (LUE), primary production CLC number: TP79 Document code: A
CHENG Zhanhui et al.: Estimating light-use efficiency by the separated Solar-induced chlorophyll fluorescence from canopy spectral data