不定积分-教案

合集下载

微积分 不定积分 教案

微积分 不定积分 教案

微积分不定积分教案第一章:不定积分的概念与性质教学目标:1. 理解不定积分的概念;2. 掌握不定积分的性质;3. 学会计算基本的不定积分。

教学内容:1. 不定积分的定义;2. 不定积分的符号表示;3. 不定积分的性质;4. 基本不等式的积分;5. 基本三角函数的积分。

教学活动:1. 引入不定积分的概念,引导学生理解不定积分表示的是一个函数的积累效果;2. 讲解不定积分的符号表示,让学生熟悉积分符号;3. 通过示例演示不定积分的性质,如线性函数的积分是线性函数的常数倍,指数函数的积分是指数函数的倒数等;4. 引导学生掌握基本不等式的积分公式,如\( \int x^n dx = \frac{x^{n+1}}{n+1} + C \);(n ≠-1);5. 教授基本三角函数的积分公式,如\( \int \sin x dx = -\cos x + C \),\( \int \cos x dx = \sin x + C \) 等;6. 进行课堂练习,巩固所学内容。

作业布置:1. 练习计算基本不等式的积分;2. 练习计算基本三角函数的积分;3. 完成课后习题。

第二章:换元积分法教学目标:1. 理解换元积分法的概念;2. 掌握换元积分法的步骤;3. 学会运用换元积分法计算不定积分。

教学内容:1. 换元积分法的定义;2. 换元积分法的步骤;3. 常用换元积分法;4. 换元积分法的应用。

教学活动:1. 引入换元积分法,让学生理解通过变量替换简化积分过程;2. 讲解换元积分法的步骤,如选择合适的换元变量,构造新的函数等;3. 介绍常用的换元积分法,如代数换元法、三角换元法等;4. 通过示例演示换元积分法的应用,如计算\( \int \sqrt{1+x^2} dx \) 等;5. 进行课堂练习,巩固所学内容。

作业布置:1. 练习运用换元积分法计算不定积分;2. 完成课后习题。

第三章:分部积分法教学目标:1. 理解分部积分法的概念;2. 掌握分部积分法的步骤;3. 学会运用分部积分法计算不定积分。

不定积分整章教案

不定积分整章教案

不定积分整章教案1 NO.设是定义在区间上的函数,如果存在函数,对于,f(x)F(x),x,II都有 , 或 , F(x),f(x)dF(x),f(x)dx则称函数为函数在区间上的一个. F(x)f(x)I2,,例如,cosx是的原函数,因为 .又因为, sinx(sinx),cosx(x),2x222,x ,所以x和x,1都是2的原函数. (x,1),2x一个函数若有原函数,原函数是否唯一?(不唯一,无数多个)同一函数的无数多个原函数之间是什么关系?如果,为函数在区间上的任意两个原函数, F(x)G(x)f(x)I,, , , (F(x)),f(x)(G(x)),f(x),于是有 ,,. (G(x),F(x)),G(x),F(x),f(x),f(x),0所以 ,或 .G(x),F(x),CG(x),F(x),C:任意两个原函数相差一个常数。

函数的所有原函数称为的,记作:. f(x)f(x)f(x)dx,其中“x”称为积分号,称为被积函数,称为被积表达式,称f(x)f(x)dx,为积分变量.由前面的讨论可知:如果是的一个原函数,那么 . F(x)f(x)f(x)dx,F(x),C,dx 求. 2,1,x11,解由于,所以是的一个原函数,因此 (arctanx),arctanx221,x1,x2 NO.dx . ,arctanx,C2,1,x, 求. dxx,1,,1,,,1,,解当,(x),(,,1)x时,我们知道,,亦有 ,,,,1(x),x,,1 11,,,1,,,1即是的一个原函数,因此 ; xxxdx,x,C,,,1,1,11,当时,我们所要求的不定积分为 .因为,因此 ,,,1dx(lnx),,xx1 . dx,lnx,C,xd1)或 ; ,,f(x)dx,f(x),,df(x)dx,f(x)dx,,dx2), 或. F(x)dx,F(x),CdF(x),F(x),C,,如果函数在某一区间上连续,则在这区间上函数可积 f(x)f(x),,1x, (1) xdx,,C(,,,1),(是常数); (2) ; kkdx,kx,C,,,,111 (3) ; (4) ; dx,lnx,Cdx,arctanx,C2,,x1,xdx (5) ,arcsinx,C; (6) ; cosxdx,sinx,C,,21,x(7) ; (8) sinxdx,,cosx,C,dx2; ,secxdx,tanx,C2,,cosxdx2 (9) ,cscxdx,,cotx,C; (10) ; secxtanxdx,secx,C,,2,sinxxx (11); (12); cscx,cotxdx,,cscx,Cedx,e,C,,3 NO.xaxadx,,C (13); (14); (a,1)shxdx,chx,C,,lna(15). chxdx,shx,C,(1) [f(x),g(x)]dx,f(x)dx,g(x)dx,,,,事实上,,,[f(x)dx,g(x)dx],[f(x)dx],[g(x)dx],f(x),g(x). ,,,, :有限个函数的和的情况也有这一性质.(为常数,). kk,0kf(x)dx,kf(x)dx,,1 求. [3,2x,,5sinx]dx2,x1dx 解 [3,2x,,5sinx]dx,3dx,2xdx,,5sinxdx22,,,,,xx221,,xx ,3(x,C),2(,C),(,C),5(,cosx,C) 12342,2,112 ,. 3x,x,,5cosx,Cx2xx1,, . dx2,xx(1,)21111xx1,,解 ,(,)dx,dx,dxdx22,,,2,xx1,x1,xxx(1,),. ,Carctanx,lnx4x 求dx. 2,x1,4224,1,1(,1)(,1),1xxxx 解 dxdxdx== 222,,,x1,1,1,xx4 NO.1122, (x,1,)dx,xdx,dx,dx22,,,,,1,1xx3x ,,x,arctanx,C. 3x2 求 sindx,2x112 解 sindx,(1,cosx)dx,(1,cosx)dx,,,22211 ,. [dx,cosxdx],(x,sinx),C,,221 已知曲线在其上点的切线斜率,且曲线经过点P(x,y)k,x45y, ,求此曲线方程. (2)2 1 解设曲线方程为,,由假设, y,f(x)f(x),x4x112故 ,= ,,,,fx,fxdx,xdxx,C ,,84图5.1-1 2x5即 y,,C,为常数,曲线经过点(2,),以此点坐标代入方程,得 C82254x y,,2 ,解得 .因此所求方程为. ,,CC,28282 已知某产品的边际收入函数为,xR(x),60,2x,2x(为销售量),求总收入函数. R(x)2解 , R(x),R(x)dx,(60,2x,2x)dx,,223 . ,60x,x,x,C3当时,,从而,于是 x,0R,0C,0223 R(x),60x,x,x35 NO.求. cos2xdx,1解 x,u ,令2,得 cos2xdx,cos2xd(2x),,2111 , cos2xd(2x),cosudu,sinu,C,2221代回原变量,得 . cos2xdx,sin2x,C,2一般的我们有如下结论:设u是的连续函数,且, f(u)f(u)du,F(u),C,设,,有连续的导数,则=. u,,(x),(x)F[,(x)],Cf[,(x)],(x)dx,dF[,(x)]证明只需证明 ,即可. ,f[,(x)],(x)dxdF[,(x)]dF[,(x)],,,,,又由,故 ,F[,(x)],(x)F(u),f(u),f[,(x)],(x)dxdx1 求. dx,3,2x解令,则,故 u,3,2xdu,,2dxdx1d(3,2x)1du11. ,,,,,,lnu,C,,ln3,2x,C,,,3,2x23,2x2u22求,tanxdx.sinx解 = 因为, dx,sinxdx,dcosxtanxdx,,cosx设 u,cosx,则,因此, du,,sinxdxsinxdu ,tanxdx,=. dx,,,lnu,C,,lncosx,C,,cosxu练习:. ,cotxdx,lnsinx,C熟练以后,可直接写出结果:1 求. dx22,,ax6 NO.1111x1x1,dx,d(),arctan,C 解 =. dx,2,22,xxaaaaa,ax221,()1,()aadx 求(a>). 0,22ax,xd()dx1dxxa 解 ,,,arcsin,C. ,,,22aaxxa,x221,()1,()aa1求. dx22,,xa 1111解由于,所以 ,(,)22ax,ax,a2x,adx111111 ,(,)dx,(dx,dx)22,,,,,,,,2axaxa2axaxa,xa111 ,[d(x,a),d(x,a)],,2ax,ax,a1x,a1 ,, ln,C. [lnx,a,lnx,a],C2ax,a2a3求. sinxdx,322 解 sinxdx,sinxsinxdx,,(1,cosx)d(cosx),,,132 ,=. ,cosx,cosx,C,d(cosx),cosxd(cosx),,322求与 . cosxdxsinxdx,,1,cos2x11x12 解 =. dx,dx,cos2xdx,,sin2x,Ccosxdx,,,,22224 1,cos2xx12 . sinxdx,dx,,sin2x,C,,224求. cscxdx,7 NO.xxx2d()secd()dxdx222解 ,,,cscxdx,,,,,,xxxxxsinx22sincostancostan22222xd(tan)x2 ,. ,,Clntan,x2tan2xx22sinsin1,cosxx22又 =. ,,cscx,cotxtan,xsinxsinx2cos2所以上述不定积分又可表示为. cscxdx,lncscx,cotx,C,练习: secxdx,lnsecx,tanx,C,求sin2xcos3xdx. ,解利用积化和差公式1 , sin,cos,,,,sin(,,,),sin(,,,)21得 , sin2xcos3x,,,sin5x,sinx2111所以 sin2xcos3xdx, (sin5x,sinx)dx,sin5xdx,sinxdx,,,,22211 ,. ,cos5x,cosx,C102设函数,,严格单调、可导且,设具有原函x,,(t),(t),0f[,(t)],(t),1数.则,,(x)f[,(t)],(t)dt],其中是的反函数. x,,(t)f(x)dx,[,1,,t,,(x) ,1 证设 ,,[F(,(x)),C],f(x),只需证 f[,(t)],(t)dt,F(t),C,1ddFtdt(),1而 ,,f[,(t)],(t),,f[,(t)],f(x). F,x,,(()),,(t)dxdtdx8 NO.dx求. ,1,x2 解作变量代换 x,t( 以消去根式),于是,,从而x,tdx,2tdtdxt1 ,2dt,2(1,)dt ,,,1,t1,t1,x,2t,2ln(1,t),C,2x,2ln(1,x),C.22求aa,xdx (>). 0,解积分难点在于被积函数中的根号,为去掉根号,令,,22 , , 则 ,, x,asint,,t,dx,acostdta,x,acost222222 a,xdx,acost,acostdt,acostdt ,,,21,cos2ta12,, ,adt,t,sin2t,C, ,,,222,,22xx,ax回代变量,由cos,,得 ,, sint,t,arcsintaaa222axxa,x22 故有 a,xdx,(arcsin,),C 2,2aa2axx22 ,arcsin,a,x,C. 22adx 求> (a0),22x,a22解利用三角公式 1,tant,sect来化去根式,,,2 设 dx,asectdt << ,则 , (,)x,atantt22222222 ,于是 x,a,a,atant,a1,tant,asect9 NO.2asectdx,,dt,,sectdt . ,lnsect,tant,C,22asectx,a22x,xa由 sec,,得 , 因此, tant,taa22xx,adx ,ln(,),C ,22aax,a22 C,C,lna, 其中 . ,ln(x,x,a),C11dx 求(a> 0),22xa,解设x>,令, 0x,acht22 利用公式cht,sht,1 有222222 , dx,ashtdtx,a,a(cht,1),asht,ashtdxasht于是有 ,dt,t,C, ,,22ashtx,a22,xaxt注意:,,,,两边取导数得 eshtchtaa22 t,ln(x,x,a),lnadx22所以 ,ln(x,x,a),CC,C,lna,其中 . 11,22x,adx求 ,x1,e2dtx2 解为化去根式,令x,lnt,2lnt,则,, dx,e,tt21,,ttdx ,dt,2dt ,,,x(1,)(1,)tttt1,e10 NO.11,, ,2,dt,2[lnt,ln1,t],C ,,,t1,t,,2t,, . ,ln,C,,1,t,,2x,,edxx将回代得 . ,,Ct,eln,,,xx1,e,e1,,,,dx求 . 2,2x,4x,3dx1dx1dx 解 ,,2,,,31222x,4x,322x,2x,(x,1),22111x,1 ,d(x,1),,2arctan,C,112222(x,1),()222,arctan2(x,1),C . 2dx 求 . ,24x,9dx1d(2x)dx 解 ,,,,,2222224x,9(2x),3(2x),312 . ,ln(2x,4x,9),C211 NO.,,,,,, ,移项得, . (uv),uv,uvuv,(uv),uv对这个等式两边求不定积分,得,,. (1) uvdx,uv,uvdx,,简便起见,公式(1)常写成下面的形式:. (2) udv,uv,vdu,,求. xcosxdx,解这个积分用换元积分法不易求得结果。

高等数学教案-不定积分

高等数学教案-不定积分
安玉伟等《高等数学定理 方法 问题》
作业布置
课后习题微积分标准化作业
大纲要求
掌握换元积分法
教 学 基 本 内 容
1.定理:(第一换元积分法)设 有原函数 ,且 是可导函数,则 ,该公式称为第一换元公式.
2.几种常用的凑微分求解的积分形式:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
3.若 是 在区间 上的一个原函数,即 = ,则 也是 在区间 上的原函数.即一个函数如果存在原函数,则其原函数有无穷多个.
4.定理:设函数 是 在区间 上的一个原函数,那么 在区间 上的任意一个原函数可以表示为 ,其中 是任意常数.
二.不定积分的概念
定义:如果 是 在区间 上的一个原函数,则 在区间 上带有任意常数的原函数 称为 在区间 上的不定积分,记作 ,即 = ,其中, 称为积分号, 称为被积函数, 称为被积表达式, 称为积分变量,任意常数 称为积分常数.
高等数学教学教案
第4章不定积分
授课序号01
教 学 基 本 指 标
教学课题
第4章第1节不定积分的概念与性质
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
原函数与不定积分的概念
教学难点
原函数的概念
参考教材
同济七版《高等数学》武汉大学同济大学 《微积分学习指导》
安玉伟等《高等数学定理 方法 问题》
例2.求 .
例3.求 .
例4.求 .
例5.求 .
例6.求 .
例7.求 .
例8求 .
例9.建立递推公式 .

不定积分的概念教案

不定积分的概念教案

不定积分的概念教案Lesson Plan on the Concept of Indefinite Integral教学目标:1.了解不定积分的基本概念及意义。

2.掌握不定积分的符号表示和性质。

3.学会计算基本的不定积分。

教学内容:Introduction:In this lesson, we will introduce the concept of indefinite integral and understand its significance.We will also explore the notation and properties of indefinite integrals.引入:本节课我们将介绍不定积分的基本概念及其意义。

我们将探讨不定积分的符号表示和性质。

Section 1: Definition and Significance of Indefinite Integral1.1 Definition:An indefinite integral of a function f(x) is a function whose derivative is f(x), and it is denoted by ∫f(x)dx.The process of finding an indefinite integral is called antiderivative.1.2 Significance:Indefinite integrals play a crucial role in calculus.They are used tosolve problems involving area, volume, and accumulation.They also provide the foundation for calculating definite integrals, which are used to find exact values of functions.1.1 定义:函数f(x)的不定积分是一个导数为f(x)的函数,用符号∫f(x)dx表示。

不定积分教案范文

不定积分教案范文

不定积分教案范文一、教学目标:1.熟练掌握不定积分的概念和性质。

2.能够运用基本积分公式求不定积分。

3.能够运用换元法、分部积分法、有理函数积分法等方法求解不定积分。

4.能够运用不定积分的性质解决实际问题。

二、教学内容:1.不定积分的基本概念和性质。

2.基本积分公式及其运用。

3.换元法求不定积分。

4.分部积分法求不定积分。

5.有理函数积分法求不定积分。

6.不定积分的应用。

三、教学过程:1.不定积分的基本概念和性质:不定积分是微积分中的重要内容,是函数的一个全体定义域上的原函数集合。

具体来说,设函数 f(x) 在区间 [a, b] 上连续,则函数 F(x)在区间 [a, b] 上的不定积分是 f(x) 的一个原函数,记作∫f(x)dx=F(x)+C,其中 F(x) 称为 f(x) 的一个原函数,C 为任意常数。

不定积分具有以下性质:(1)积分的线性性质:∫[af(x)+bg(x)]dx=a∫f(x)dx+b∫g(x)dx;(2)积分和求导的逆关系:如果F(x)是f(x)的一个原函数,则F'(x)=f(x);(3)换元积分法:设 F(x) 是 f(x) 的一个原函数,g(x) 是可导函数,则∫f[g(x)]g'(x)dx=F[g(x)]+C;(4)分部积分法:设 F(x) 和 G(x) 分别是 f(x) 和 g(x) 的原函数,则∫f(x)g'(x)dx=F(x)g(x)-∫F'(x)g(x)dx。

2.基本积分公式及其运用:(1)常数函数积分:∫kdx=kx+C,其中 k 为常数。

(2)幂函数积分:∫x^n dx=(n+1)x^(n+1)/(n+1)+C,其中 n 为任意实数,n ≠ -1(3)指数函数积分:∫e^xdx=e^x+C。

(4)三角函数积分:a. ∫sinxdx=-cosx+C;b. ∫cosxdx=sinx+C。

(5)倒数函数积分:∫1/xdx=ln,x,+C。

不定积分教案

不定积分教案

第五章不定积分教学安排说明章节题目:5.1 不定积分的概念5.2 不定积分的性质5.3 换元积分法5.4 分部积分法学时分配:共6学时。

5.1 不定积分的概念1学时5.2 不定积分的性质1学时5.3 换元积分法2学时5.4 分部积分法2学时本章教学目的与要求:理解并掌握原函数与不定积分的概念;熟练掌握不定积分的基本公式和基本积分方法,熟练地利用换元积分法与分部积分法求不定积分。

课堂教学方案(一)课程名称:5.1 不定积分的概念;5.2 不定积分的性质授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:理解并掌握原函数与不定积分的概念;熟练掌握不定积分的基本公式,了解不定积分的基本运算法则,能够用不定积分的基本公式和性质求不定积分教学重点、难点:教学重点:原函数和不定积分的概念,不定积分的性质及几何意义,不定积分的基本公式;教学难点:不定积分的概念及几何意义和用不定积分的性质求不定积分。

教学内容5.1 不定积分的概念1.原函数与不定积分在微分学中,我们讨论了求已知函数的导数与微分的问题。

但是,在科学、技术和经济的许多问题中,常常还需要解决相反的问题,也就是要由一个函数的已知导数(或微分),求出这个函数。

这种由函数的已知导数(或微分)去求原来的函数的运算,称为不定积分,这是积分学的基本问题之一。

定义1 如果函数)(x f 与)(x F 为定义在某同一区间内的函数,并且处处都有 )()('x f x F =或d ()()d F x f x x =,则称)(x F 是)(x f 的一个..原函数. 根据导数公式或微分公式,我们很容易得出一些简单函数的原函数.如x x cos )(sin =', 故x sin 是x cos 的一个原函数;x x cos )1(sin ='+, 故1sin +x 也是x cos 的一个原函数;x x 2)(2=', 故2x 是x 2的一个原函数;x x 2)2(2='+, 故2x 也是x 2的一个原函数.......由此可见,一个函数的原函数并不是唯一的.对此有以下两点需要说明:第一,若在某区间内)(x F 为)(x f 的一个原函数,即)()(x f x F =',则对任意常数C , 由于)())((x f C x F ='+,所以函数C x F +)(都是)(x f 的原函数.这说明如果函数)(x f 有原函数,那么它就有无限多个原函数.第二,若在某区间内)(x F 为)(x f 的一个原函数,那么,)(x f 的其它原函数和)(x F 有什么关系?设()x Φ是)(x f 在同一区间上的另一个原函数,即()()x f x 'Φ=,于是有[()()]()()0,x F x x F x '''Φ-=Φ-=由于导数恒为零的函数必为常数,因此11()()()x F x C C Φ-=为某个常数,即1()().x F x C Φ=+这说明)(x f 的任意两个原函数之间只差一个常数.因此,如果)(x F 是)(x f 的一个原函数,则)(x f 的全体原函数可以表示为C x F +)( (其中C 为任意常数).为了更方便地表述一个函数的全体原函数,我们引入下面不定积分的概念.2.不定积分的概念定义2 函数)(x f 在某区间内的全体原函数称为)(x f 在该区间内的不定积分,记为()d f x x ,其中记号⎰称为积分号,)(x f 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量.即 ()d ()f x x F x C =+⎰.这说明,要计算函数的不定积分,只需求出它的一个原函数,再加上任意常数C 就可以了.例1 求x x f 2)(=的不定积分.解:因为x x 2)(2=',所以2()d 2d .f x x x x x C ==+⎰⎰例2 求x e x f =)(的不定积分.解:因为x x e e =')(,所以()d d .x x f x x e x e C ==+⎰⎰3.不定积分学的几何意义不定积分的几何意义:若)(x F 是)(x f 的一个原函数,则称)(x F y =的图象为)(x f 的一条积分曲线.于是,)(x f 的不定积分在几何上表示)(x f 的某一条积分曲线沿纵轴方向任意平移所得一组积分曲线组成的曲线族.若在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行(如图4-1),任意两条曲线的纵坐标之间相差一个常数.给定一个初始条件,就可以确定一个常数C 的值,因而就确定了一个原函数,于是就确定了一条积分曲线.例3设曲线通过点)2,1(,且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.解:设所求的曲线方程为)(x f y =,按题设,曲线上任一点),(y x 处的切线斜率为,2d d x xy = 说明)(x f y =是x 2的一个原函数.因为x 2的全体原函数为C x x x +=⎰2d 2, 所以曲线方程为C x x f y +==2)(,又由于曲线过点)2,1(,故2)1(=f , ,21=+C 解得1=C ,于是所求曲线为 2()1y f x x ==+.例4 一物体作直线运动,速度为时,物体所经过的当s t s m t t v 1,/12)(2=+=路程为3m ,求物体的运动方程。

微积分 不定积分 教案

微积分 不定积分 教案

微积分不定积分教案一、教学目标1. 理解不定积分的概念和物理意义。

2. 掌握基本积分公式和积分方法。

3. 能够运用不定积分解决实际问题。

二、教学内容1. 不定积分的定义和性质。

2. 基本积分公式:幂函数、指数函数、对数函数、三角函数的积分。

3. 换元积分法:代数换元、三角换元。

4. 分部积分法。

5. 积分在物理、经济学等领域的应用。

三、教学重点与难点1. 重点:不定积分的概念、性质和基本积分公式。

2. 难点:换元积分法、分部积分法的运用。

四、教学方法与手段1. 采用讲授法,讲解不定积分的概念、性质和积分方法。

2. 利用多媒体课件,展示积分过程和应用实例。

3. 引导学生通过讨论、练习,巩固所学知识。

五、教学安排1. 第一课时:介绍不定积分的定义、性质和基本积分公式。

2. 第二课时:讲解换元积分法。

3. 第三课时:讲解分部积分法。

4. 第四课时:举例分析不定积分在实际问题中的应用。

5. 第五课时:课堂练习和总结。

六、教学评估1. 课堂练习:布置相关的不定积分题目,检查学生对基本积分公式和积分方法的掌握程度。

2. 课后作业:布置综合性的不定积分题目,要求学生在课后完成,以检验学生对课堂内容的理解和应用能力。

3. 课堂讨论:鼓励学生积极参与课堂讨论,提问和解答问题,评估学生对不定积分概念的理解和分析问题的能力。

七、教学资源1. 教材:选用权威的微积分教材,提供系统的理论知识。

2. 多媒体课件:制作精美的多媒体课件,通过图像、动画等形式展示积分过程,增强学生的直观理解。

3. 练习题库:整理一套丰富的练习题库,包括不同难度层次的题目,以满足不同学生的学习需求。

4. 应用案例:收集一些实际问题,用于讲解不定积分在实际中的应用。

八、教学建议1. 强化基础知识:在学习不定积分之前,确保学生掌握了函数、极限、导数等基本概念,以便能够顺利理解不定积分的性质和计算方法。

2. 逐步引导:从简单的积分公式开始,逐步引导学生掌握更复杂的积分方法,避免一开始就给出复杂的公式和方法,让学生能够逐步建立信心。

高等数学第四章不定积分教案

高等数学第四章不定积分教案

第四章 不定积分知识结构图: ⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧分部积分法第二换元积分法第一换元积分法直接积分法求不定积分基本公式性质几何意义定义不定积分原函数教学目的要求:1.理解原函数与不定积分的概念,理解两者的关系,理解不定积分与导数的关系;掌握不定积分的几何意义与基本性质。

2.理解与掌握积分的基本公式,掌握不定积分的基本运算,会熟练地用直接积分法、第一类换元积分法、第二换元积分法(代数换元)、分部积分法求不定积分。

3.了解不定积分在经济问题中的应用。

教学重点:1.原函数与不定积分的概念2.不定积分的性质与基本积分公式 3.直接积分法 4.换元积分法 5.分部积分法 教学难点:1.不定积分的几何意义2.凑微分法、分部积分法求不定积分第一节 不定积分的概念与基本公式【教学内容】原函数与不定积分的概念、不定积分的几何意义、不定积分的基本性质、不定积分的基本公式。

直接积分法求函数的不定积分。

【教学目的】理解原函数与不定积分的概念,理解不定积分的几何意义;理解并掌握不定积分的基本性质;熟练掌握用直接积分法计算一些简单函数的不定积分。

【教学重点】1.;;4.不定积分的基本性质;5.不定积分的基本公式;6.直接积分法计算不定积分。

【教学难点】1.理解不定积分的几何意义;2.记忆不定积分公式。

【教学时数】2学时 【教学进程】一、原函数与不定积分的概念(一)原函数的概念前面我们所学的知识是:已知一个函数,求这个函数的导数;在现实生活中往往有:已知一个函数的导数,求原来这个函数的问题,如:①已知曲线上任意一点p(x,y)处的切线斜率为x k 2=,求此曲线的方程。

②已知某产品的边际成本MC ,要求该产品总成本的变化规律()C C q =. 1.原函数定义定义4.1 设)(x f 是定义在区间I 内的已知函数.如果存在可导函数)(x F ,使对于任意的I x ∈,都有)()(x f x F ='或dx x f x dF )()(=则称函数)(x F 是函数)(x f 的一个原函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.2不定积分的几何意义
不定积分 的几何意义就是,其表示了 的一族积分曲线 .这族积分曲线可由积分曲线 向上或向下平移得到,且在相同的横坐标的点处,任一曲线的切线有相同的斜率,即有平行的切线.
4.1.3基本积分公式表
1.求原函数或不定积分与求导数或求微分互为逆运算.
(1) ,或 ;
(2) ,或 .
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
*(7) ;
*(8) ;
*(9) ;
*(10) .Biblioteka 授课序号03教 学 基 本 指 标
教学课题
第4章第3节分部积分法
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
分部积分法
教学难点
分部积分法
参考教材
作业布置
课后习题微积分标准化作业
例题讲解
例4.38求不定积分 .
例4.39求不定积分 .
例4.40求不定积分 .
注多次使用分部积分时, 和 的选取类型要与第一次的保持一致,否则将回到原积分.本例选取幂函数为 ,正(余)弦函数为 .并两次使用了分部积分法.
分部积分法的使用熟练后, 与 的选取不必写出,只要把被积表达式凑成 的形式,即可使用分部积分公式.
大纲要求
熟练掌握分部积分法.
教 学 基 本 内 容
定理4.4设 , 在区间 上都有连续的导数,则有 ,即 ,简记为 .
注1.分部积分法应用的基本步骤可归纳为:
= .
2. 和 的选取非常关键.选取 和 一般要遵循下面两个原则:
(1)由 要容易求得 ;
(2) 要比 容易积分.
经验所知,很多情况下可用如下方法选取 和 ,按照反三角函数、对数函数、幂函数、三角函数、指数函数(即“反、对、幂、三、指”)的顺序把排在前面的函数选作 ,把排在后面的那个函数选作 , 与 的乘积凑成 .
高等数学教学教案
第4章不定积分
授课序号01
教 学 基 本 指 标
教学课题
第4章第1节不定积分的概念与性质
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
原函数与不定积分的概念,直接积分法
教学难点
直接积分法
参考教材
作业布置
课后习题微积分标准化作业
大纲要求
1.理解原函数与不定积分的概念,了解原函数存在定理.
2.掌握不定积分的基本公式,掌握不定积分的性质.
教 学 基 本 内 容
1.原函数的定义
定义4.1设函数 与 在区间 上有定义,并且在该区间内的任一点都有 或 ,那么函数 就称为函数 在区间 上的一个原函数.
定理4.1(原函数存在定理)若函数 在区间 上连续,则在该区间上一定存在可导函数 ,使得对任意 都有 .即区间上的连续函数一定有原函数.
例题讲解
例4.14求不定积分 .
例4.15求不定积分 .
例4.16求不定积分 .
例4.17求不定积分 .
例4.18求不定积分 .
例4.19求不定积分 .
例4.20求不定积分 .
例4.21求不定积分 .
例4.22求不定积分 .
例4.23求不定积分 .
例4.24求不定积分 .
例4.25求不定积分 .
例4.26求不定积分 .
,该公式称为第二换元公式.其中 为函数 的反函数.
2.常用的第二换元积分法:
(1)含有根式 时,令 ;
(2)同时含有根式 和根式 ( )时,令 ,其中 是 的最小公倍数;
(3)含有根式 时,令 ;
(4)含有根式 时,令 ;
(5)含有根式 时,令 ;
(6)当被积函数的分母次幂较高时,还有经常用倒代换.
授课序号04
教 学 基 本 指 标
教学课题
第4章第4节有理函数的积分
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
有理函数和简单无理函数的积分
教学难点
有理函数和简单无理函数的积分
参考教材
作业布置
课后习题微积分标准化作业
大纲要求
掌握简单有理函数的不定积分的求法.
2.分解原理:按照分母 中因式的情况,可以有如下形式的部分分式.
(1)对于分母中每个形如 的因式,它所对应的部分分式形式为
,
其中 , , , 都是常数,特殊地,当 时,对应部分分式形式为 .
(2)对于分母中每个形如 的因式,它所对应的部分分式形式为 ,其中 , , , , , , , 都是常数,特殊地,当 时,对应部分分式形式为 .把所有的部分分式形式加起来,使之等于被积函数 ,依照恒等关系求出待定系数.
1.定理4.2(第一换元积分法设 有原函数 ,且 是可导函数,则

2.几种常用的凑微分求解的积分形式:
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
(7) ;
(8) ;
(9) ;
(10) ;
(11) ;
(12) .
4.2.2第二类换元积分法
1.定理4.3(第二换元积分法)设 是单调的可导函数,且 ,又设 的一个原函数为 ,则
授课序号02
教 学 基 本 指 标
教学课题
第4章第2节换元积分法
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
第一类换元积分法与第二类换元积分法
教学难点
第二类换元积分法
参考教材
作业布置
课后习题微积分标准化作业
大纲要求
熟练掌握不定积分的第一类、第二类换元积分法
教 学 基 本 内 容
例4.27求不定积分 .
例4.28求不定积分 .
例4.29求不定积分 .
例4.30求
例4.31求不定积分 .
例4.32求不定积分 .
例4.33求 .
例4.34求 .
例4.35求 .
例4.36求不定积分 .
例4.37求不定积分求 .
在基本积分公式表中,再添加几个常用的积分公式(其中常数 ):
(1) ;
3.有理真分式的积分最终归结为如下面两种部分分式的积分:
(1) ;(2) , .
对于(1)
对于(2)做适当的换元,令 ,则 .
当 时,被积函数变形为 ,
此时记作 , ,则有
.
若 ,借助于上述记法,则
.
上式最后一个不定积分记作 ,当 时,根据积分基本公式可得
.
当 时,利用分部积分法可得
即 ,
于是 ,
从而 .
2.(1) ( 为常数);
(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;(8) ;
(9) ;(10) ;
(11) ;(12) ;
(13) .
4.1.4不定积分的性质
性质4.1
性质4.2 ( 为非零常数).
这个结论可以推广到有限多个函数的线性运算的不定积分.
例题讲解
例4.1求不定积分 .
例4.2求不定积分 .
例4.3求经过点 ,且其上任一点处的切线斜率为 的曲线方程.
例4.4求不定积分 .
例4.5求不定积分 .
例4.6求不定积分 .
例4.7求不定积分 .
例4.8求不定积分 .
例4.9求不定积分 .
例4.10求不定积分 .
例4.11求不定积分 .
例4.12求不定积分 .
例4.13求不定积分 .
教 学 基 本 内 容
4.4.1有理函数的相关概念
两个多项式函数的商 称为有理函数,也称为有理分式函数.有理分式的一般表达式为 ,
其中 , 为自然数; , , ,, 及 , , , 都是实数,并且 , .
在有理分式中,当 时,称之为真分式;当 时,称之为假分式.
4.4.2有理真分式的积分
1.任一多项式在实数范围内都可分解为一次因式和二次质因式的乘积;
注(1)若 是 在区间 上的一个原函数,即 = ,则 也是 在区间 上的原函数.即一个函数如果存在原函数,则其原函数有无穷多个.
(2) 的任意两个原函数只相差一个常数.设函数 是 在区间 上的一个原函数,那么 在区间 上的任意一个原函数可以表示为 ,其中 是任意常数.
2.不定积分的定义
定义4.2在区间 上,函数 的全体原函数称为 在区间 上的不定积分,记作 .其中 称为积分号, 称为被积函数, 称为被积表达式, 称为积分变量.
例4.41求不定积分 .
例4.42求不定积分 .
例4.43求不定积分 .
例4.44求不定积分 .
例4.45求不定积分 .
多次应用分部积分后得到一个关于所求积分的方程(产生循环的结果),通过求解方程得到不定积分.这一方法也称为“循环积分法”.需要注意的是:求解方程得到不定积分后一定要加上积分常数.
例4.46求不定积分 .
根据此递推公式,则由 开始可计算出 .如当 时,得
例题讲解
例4.48求不定积分 .
例4.49求不定积分 .
例4.50求不定积分 .
有理真分式函数分解为部分分式之和的形式采用了待定系数法,除此之外还可采用赋值法,即对 取特殊值的方法,来确定部分分式分子中的待定常数,如例4.50中方法二所示.
例4.51求不定积分 .
相关文档
最新文档