高等数学教案-不定积分
微积分 不定积分 教案

微积分不定积分教案第一章:不定积分的概念与性质教学目标:1. 理解不定积分的概念;2. 掌握不定积分的性质;3. 学会计算基本的不定积分。
教学内容:1. 不定积分的定义;2. 不定积分的符号表示;3. 不定积分的性质;4. 基本不等式的积分;5. 基本三角函数的积分。
教学活动:1. 引入不定积分的概念,引导学生理解不定积分表示的是一个函数的积累效果;2. 讲解不定积分的符号表示,让学生熟悉积分符号;3. 通过示例演示不定积分的性质,如线性函数的积分是线性函数的常数倍,指数函数的积分是指数函数的倒数等;4. 引导学生掌握基本不等式的积分公式,如\( \int x^n dx = \frac{x^{n+1}}{n+1} + C \);(n ≠-1);5. 教授基本三角函数的积分公式,如\( \int \sin x dx = -\cos x + C \),\( \int \cos x dx = \sin x + C \) 等;6. 进行课堂练习,巩固所学内容。
作业布置:1. 练习计算基本不等式的积分;2. 练习计算基本三角函数的积分;3. 完成课后习题。
第二章:换元积分法教学目标:1. 理解换元积分法的概念;2. 掌握换元积分法的步骤;3. 学会运用换元积分法计算不定积分。
教学内容:1. 换元积分法的定义;2. 换元积分法的步骤;3. 常用换元积分法;4. 换元积分法的应用。
教学活动:1. 引入换元积分法,让学生理解通过变量替换简化积分过程;2. 讲解换元积分法的步骤,如选择合适的换元变量,构造新的函数等;3. 介绍常用的换元积分法,如代数换元法、三角换元法等;4. 通过示例演示换元积分法的应用,如计算\( \int \sqrt{1+x^2} dx \) 等;5. 进行课堂练习,巩固所学内容。
作业布置:1. 练习运用换元积分法计算不定积分;2. 完成课后习题。
第三章:分部积分法教学目标:1. 理解分部积分法的概念;2. 掌握分部积分法的步骤;3. 学会运用分部积分法计算不定积分。
不定积分整章教案

不定积分整章教案1 NO.设是定义在区间上的函数,如果存在函数,对于,f(x)F(x),x,II都有 , 或 , F(x),f(x)dF(x),f(x)dx则称函数为函数在区间上的一个. F(x)f(x)I2,,例如,cosx是的原函数,因为 .又因为, sinx(sinx),cosx(x),2x222,x ,所以x和x,1都是2的原函数. (x,1),2x一个函数若有原函数,原函数是否唯一?(不唯一,无数多个)同一函数的无数多个原函数之间是什么关系?如果,为函数在区间上的任意两个原函数, F(x)G(x)f(x)I,, , , (F(x)),f(x)(G(x)),f(x),于是有 ,,. (G(x),F(x)),G(x),F(x),f(x),f(x),0所以 ,或 .G(x),F(x),CG(x),F(x),C:任意两个原函数相差一个常数。
函数的所有原函数称为的,记作:. f(x)f(x)f(x)dx,其中“x”称为积分号,称为被积函数,称为被积表达式,称f(x)f(x)dx,为积分变量.由前面的讨论可知:如果是的一个原函数,那么 . F(x)f(x)f(x)dx,F(x),C,dx 求. 2,1,x11,解由于,所以是的一个原函数,因此 (arctanx),arctanx221,x1,x2 NO.dx . ,arctanx,C2,1,x, 求. dxx,1,,1,,,1,,解当,(x),(,,1)x时,我们知道,,亦有 ,,,,1(x),x,,1 11,,,1,,,1即是的一个原函数,因此 ; xxxdx,x,C,,,1,1,11,当时,我们所要求的不定积分为 .因为,因此 ,,,1dx(lnx),,xx1 . dx,lnx,C,xd1)或 ; ,,f(x)dx,f(x),,df(x)dx,f(x)dx,,dx2), 或. F(x)dx,F(x),CdF(x),F(x),C,,如果函数在某一区间上连续,则在这区间上函数可积 f(x)f(x),,1x, (1) xdx,,C(,,,1),(是常数); (2) ; kkdx,kx,C,,,,111 (3) ; (4) ; dx,lnx,Cdx,arctanx,C2,,x1,xdx (5) ,arcsinx,C; (6) ; cosxdx,sinx,C,,21,x(7) ; (8) sinxdx,,cosx,C,dx2; ,secxdx,tanx,C2,,cosxdx2 (9) ,cscxdx,,cotx,C; (10) ; secxtanxdx,secx,C,,2,sinxxx (11); (12); cscx,cotxdx,,cscx,Cedx,e,C,,3 NO.xaxadx,,C (13); (14); (a,1)shxdx,chx,C,,lna(15). chxdx,shx,C,(1) [f(x),g(x)]dx,f(x)dx,g(x)dx,,,,事实上,,,[f(x)dx,g(x)dx],[f(x)dx],[g(x)dx],f(x),g(x). ,,,, :有限个函数的和的情况也有这一性质.(为常数,). kk,0kf(x)dx,kf(x)dx,,1 求. [3,2x,,5sinx]dx2,x1dx 解 [3,2x,,5sinx]dx,3dx,2xdx,,5sinxdx22,,,,,xx221,,xx ,3(x,C),2(,C),(,C),5(,cosx,C) 12342,2,112 ,. 3x,x,,5cosx,Cx2xx1,, . dx2,xx(1,)21111xx1,,解 ,(,)dx,dx,dxdx22,,,2,xx1,x1,xxx(1,),. ,Carctanx,lnx4x 求dx. 2,x1,4224,1,1(,1)(,1),1xxxx 解 dxdxdx== 222,,,x1,1,1,xx4 NO.1122, (x,1,)dx,xdx,dx,dx22,,,,,1,1xx3x ,,x,arctanx,C. 3x2 求 sindx,2x112 解 sindx,(1,cosx)dx,(1,cosx)dx,,,22211 ,. [dx,cosxdx],(x,sinx),C,,221 已知曲线在其上点的切线斜率,且曲线经过点P(x,y)k,x45y, ,求此曲线方程. (2)2 1 解设曲线方程为,,由假设, y,f(x)f(x),x4x112故 ,= ,,,,fx,fxdx,xdxx,C ,,84图5.1-1 2x5即 y,,C,为常数,曲线经过点(2,),以此点坐标代入方程,得 C82254x y,,2 ,解得 .因此所求方程为. ,,CC,28282 已知某产品的边际收入函数为,xR(x),60,2x,2x(为销售量),求总收入函数. R(x)2解 , R(x),R(x)dx,(60,2x,2x)dx,,223 . ,60x,x,x,C3当时,,从而,于是 x,0R,0C,0223 R(x),60x,x,x35 NO.求. cos2xdx,1解 x,u ,令2,得 cos2xdx,cos2xd(2x),,2111 , cos2xd(2x),cosudu,sinu,C,2221代回原变量,得 . cos2xdx,sin2x,C,2一般的我们有如下结论:设u是的连续函数,且, f(u)f(u)du,F(u),C,设,,有连续的导数,则=. u,,(x),(x)F[,(x)],Cf[,(x)],(x)dx,dF[,(x)]证明只需证明 ,即可. ,f[,(x)],(x)dxdF[,(x)]dF[,(x)],,,,,又由,故 ,F[,(x)],(x)F(u),f(u),f[,(x)],(x)dxdx1 求. dx,3,2x解令,则,故 u,3,2xdu,,2dxdx1d(3,2x)1du11. ,,,,,,lnu,C,,ln3,2x,C,,,3,2x23,2x2u22求,tanxdx.sinx解 = 因为, dx,sinxdx,dcosxtanxdx,,cosx设 u,cosx,则,因此, du,,sinxdxsinxdu ,tanxdx,=. dx,,,lnu,C,,lncosx,C,,cosxu练习:. ,cotxdx,lnsinx,C熟练以后,可直接写出结果:1 求. dx22,,ax6 NO.1111x1x1,dx,d(),arctan,C 解 =. dx,2,22,xxaaaaa,ax221,()1,()aadx 求(a>). 0,22ax,xd()dx1dxxa 解 ,,,arcsin,C. ,,,22aaxxa,x221,()1,()aa1求. dx22,,xa 1111解由于,所以 ,(,)22ax,ax,a2x,adx111111 ,(,)dx,(dx,dx)22,,,,,,,,2axaxa2axaxa,xa111 ,[d(x,a),d(x,a)],,2ax,ax,a1x,a1 ,, ln,C. [lnx,a,lnx,a],C2ax,a2a3求. sinxdx,322 解 sinxdx,sinxsinxdx,,(1,cosx)d(cosx),,,132 ,=. ,cosx,cosx,C,d(cosx),cosxd(cosx),,322求与 . cosxdxsinxdx,,1,cos2x11x12 解 =. dx,dx,cos2xdx,,sin2x,Ccosxdx,,,,22224 1,cos2xx12 . sinxdx,dx,,sin2x,C,,224求. cscxdx,7 NO.xxx2d()secd()dxdx222解 ,,,cscxdx,,,,,,xxxxxsinx22sincostancostan22222xd(tan)x2 ,. ,,Clntan,x2tan2xx22sinsin1,cosxx22又 =. ,,cscx,cotxtan,xsinxsinx2cos2所以上述不定积分又可表示为. cscxdx,lncscx,cotx,C,练习: secxdx,lnsecx,tanx,C,求sin2xcos3xdx. ,解利用积化和差公式1 , sin,cos,,,,sin(,,,),sin(,,,)21得 , sin2xcos3x,,,sin5x,sinx2111所以 sin2xcos3xdx, (sin5x,sinx)dx,sin5xdx,sinxdx,,,,22211 ,. ,cos5x,cosx,C102设函数,,严格单调、可导且,设具有原函x,,(t),(t),0f[,(t)],(t),1数.则,,(x)f[,(t)],(t)dt],其中是的反函数. x,,(t)f(x)dx,[,1,,t,,(x) ,1 证设 ,,[F(,(x)),C],f(x),只需证 f[,(t)],(t)dt,F(t),C,1ddFtdt(),1而 ,,f[,(t)],(t),,f[,(t)],f(x). F,x,,(()),,(t)dxdtdx8 NO.dx求. ,1,x2 解作变量代换 x,t( 以消去根式),于是,,从而x,tdx,2tdtdxt1 ,2dt,2(1,)dt ,,,1,t1,t1,x,2t,2ln(1,t),C,2x,2ln(1,x),C.22求aa,xdx (>). 0,解积分难点在于被积函数中的根号,为去掉根号,令,,22 , , 则 ,, x,asint,,t,dx,acostdta,x,acost222222 a,xdx,acost,acostdt,acostdt ,,,21,cos2ta12,, ,adt,t,sin2t,C, ,,,222,,22xx,ax回代变量,由cos,,得 ,, sint,t,arcsintaaa222axxa,x22 故有 a,xdx,(arcsin,),C 2,2aa2axx22 ,arcsin,a,x,C. 22adx 求> (a0),22x,a22解利用三角公式 1,tant,sect来化去根式,,,2 设 dx,asectdt << ,则 , (,)x,atantt22222222 ,于是 x,a,a,atant,a1,tant,asect9 NO.2asectdx,,dt,,sectdt . ,lnsect,tant,C,22asectx,a22x,xa由 sec,,得 , 因此, tant,taa22xx,adx ,ln(,),C ,22aax,a22 C,C,lna, 其中 . ,ln(x,x,a),C11dx 求(a> 0),22xa,解设x>,令, 0x,acht22 利用公式cht,sht,1 有222222 , dx,ashtdtx,a,a(cht,1),asht,ashtdxasht于是有 ,dt,t,C, ,,22ashtx,a22,xaxt注意:,,,,两边取导数得 eshtchtaa22 t,ln(x,x,a),lnadx22所以 ,ln(x,x,a),CC,C,lna,其中 . 11,22x,adx求 ,x1,e2dtx2 解为化去根式,令x,lnt,2lnt,则,, dx,e,tt21,,ttdx ,dt,2dt ,,,x(1,)(1,)tttt1,e10 NO.11,, ,2,dt,2[lnt,ln1,t],C ,,,t1,t,,2t,, . ,ln,C,,1,t,,2x,,edxx将回代得 . ,,Ct,eln,,,xx1,e,e1,,,,dx求 . 2,2x,4x,3dx1dx1dx 解 ,,2,,,31222x,4x,322x,2x,(x,1),22111x,1 ,d(x,1),,2arctan,C,112222(x,1),()222,arctan2(x,1),C . 2dx 求 . ,24x,9dx1d(2x)dx 解 ,,,,,2222224x,9(2x),3(2x),312 . ,ln(2x,4x,9),C211 NO.,,,,,, ,移项得, . (uv),uv,uvuv,(uv),uv对这个等式两边求不定积分,得,,. (1) uvdx,uv,uvdx,,简便起见,公式(1)常写成下面的形式:. (2) udv,uv,vdu,,求. xcosxdx,解这个积分用换元积分法不易求得结果。
高等数学教案-不定积分

du
2
f
(
u )d(
u );
(5)
f
(1) u
1 u2
du
f
(1 )d( u
1 ); u
(6)
f
(ln u)
1 u
du
Байду номын сангаас
f
(ln u)d(ln
u);
(7) f (sin u) cos udu f (sin u)d(sin u);
(8) f (cos u) sin udu f (cos u)d(cos u); (9) f (tan u) sec2 udu f (tan u)d(tan u);
f (u)
二.第二换元积分法
1.定理:(第二换元积分法)设 x (t) 是单调的可导函数,且 (t) 0 ,又设 f [ (t)] (t) 的一个原
函数为 (t) ,则 f (x)dx = [ 1(x)] C ,该公式称为第二换元公式.
2.常用的第二换元积分法:
(1)含有根式 n ax b 时,令 n ax b t ;
新知识课
黑板多媒体结合
作业布置 课后习题
教 学 基本内容
一.分部积分法
1.定理:设 u u(x), v v(x) 在区间 I 上都有连续的导数,则有 u(x)v(x)dx u(x)v(x) u(x)v(x)dx ,
简记为 uvdx uv uv dx ,或 udv uv v du ,称为分部积分公式.
数.即一个函数如果存在原函数,则其原函数有无穷多个.
4.定理:设函数 F (x) 是 f (x) 在区间 I 上的一个原函数,那么 f (x) 在区间 I 上的任意一个原函数可以表示 为 F (x) C ,其中 C 是任意常数.
第四章不定积分教案

第四章 不定积分§4-1 不定积分的概念与性质一、原函数与不定积分1.定义1 如果对任一I x ∈,都有)()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。
例如:x x cos )(sin =',即x sin 是x cos 的原函数。
2211)1l n ([xx x+='++,即)1ln(2x x ++是211x+的原函数。
2.原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。
注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。
设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。
注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即 C x G x F =-)()( (C 为常数)注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。
3.定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为⎰dx x f )(。
如果)(x F 为)(x f 的一个原函数,则C x F dx x f +=⎰)()(,(C 为任意常数) 例1. 因为 23)3(x x =', 得⎰+=C x ds x 332例2. 因为,0>x 时,x x 1)(ln =';0<x 时,xx x x 1)(1])[ln(='--='-,得 xx 1)||(l n =',因此有 ⎰+=C x dx x ||ln 1例3. 设曲线过点)2,1(,且其上任一点的斜率为该点横坐标的两倍,求曲线的方程。
微积分 不定积分 教案

微积分不定积分教案一、教学目标1. 理解不定积分的概念和物理意义。
2. 掌握基本积分公式和积分方法。
3. 能够运用不定积分解决实际问题。
二、教学内容1. 不定积分的定义和性质。
2. 基本积分公式:幂函数、指数函数、对数函数、三角函数的积分。
3. 换元积分法:代数换元、三角换元。
4. 分部积分法。
5. 积分在物理、经济学等领域的应用。
三、教学重点与难点1. 重点:不定积分的概念、性质和基本积分公式。
2. 难点:换元积分法、分部积分法的运用。
四、教学方法与手段1. 采用讲授法,讲解不定积分的概念、性质和积分方法。
2. 利用多媒体课件,展示积分过程和应用实例。
3. 引导学生通过讨论、练习,巩固所学知识。
五、教学安排1. 第一课时:介绍不定积分的定义、性质和基本积分公式。
2. 第二课时:讲解换元积分法。
3. 第三课时:讲解分部积分法。
4. 第四课时:举例分析不定积分在实际问题中的应用。
5. 第五课时:课堂练习和总结。
六、教学评估1. 课堂练习:布置相关的不定积分题目,检查学生对基本积分公式和积分方法的掌握程度。
2. 课后作业:布置综合性的不定积分题目,要求学生在课后完成,以检验学生对课堂内容的理解和应用能力。
3. 课堂讨论:鼓励学生积极参与课堂讨论,提问和解答问题,评估学生对不定积分概念的理解和分析问题的能力。
七、教学资源1. 教材:选用权威的微积分教材,提供系统的理论知识。
2. 多媒体课件:制作精美的多媒体课件,通过图像、动画等形式展示积分过程,增强学生的直观理解。
3. 练习题库:整理一套丰富的练习题库,包括不同难度层次的题目,以满足不同学生的学习需求。
4. 应用案例:收集一些实际问题,用于讲解不定积分在实际中的应用。
八、教学建议1. 强化基础知识:在学习不定积分之前,确保学生掌握了函数、极限、导数等基本概念,以便能够顺利理解不定积分的性质和计算方法。
2. 逐步引导:从简单的积分公式开始,逐步引导学生掌握更复杂的积分方法,避免一开始就给出复杂的公式和方法,让学生能够逐步建立信心。
高职高等数学教案第四章不定积分

第四章 不定积分§4-1 不定积分的概念与性质一、不定积分的概念1.原函数定义定义1:如果在区间I 上,可导函数()F x 的导数为()f x ,即对任一xI ,都有()()F x f x 或()()dF x f x dx ,则称()F x 为()f x 在区间I 上的一个原函数。
例:(sin )cos x x ,则sin x 是cos x 的一个原函数;1(sin 1)(sin )(sin 3)cos 2x xx x ,则都是cos x 的原函数。
2.原函数性质定理1:如果()f x 在区间I 上连续,则在该区间原函数一定存在。
定理2:如果()F x 是()f x 的一个原函数,则()F x C 是()f x 的全体原函数,且任一原函数与()F x 只差一个常数。
例:验证2211cos 2,sin 2,cos 233x x x 都是sin 2x 的原函数 证:2211(cos 2)sin 233(sin 2)sin 2(cos 2)sin 2x x x x xx,则三个函数都是sin 2x 的原函数3.不定积分定义定义2:()f x 的全体原函数称为()f x 的不定积分,记作()f x dx ,其中称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量。
说明:如果()F x 是()f x 在区间I 上的一个原函数,则()F x C 就是()f x 的不定积分,即()()f x dxF x C例1:求23x dx解:因为32()3x x ,所以3x 是23x 的一个原函数则233x dx x C例2:求1dx x解:当0x时,1(ln )x x当0x 时,11ln()x xx 所以1 ln ||(0)dx x C xx4.不定积分几何意义在相同横坐标的点处切线是平行的,切线斜率都为()f x ,可由()yF x 沿y 轴平移得到。
例:一条积分曲线过点(1,3),且平移后与231y x x 重合,求该曲线方程解:设2()31f x x x C由于曲线过(1,3) 则3131C ,2C2()31f x xx二、不定积分性质性质1:[()()]()()f x g x dx f x dx g x dx性质2:()(0)()0(0)kf x dx k kf x dxdxC k性质3:(())(),()()f x dx f x f x dx f x C三、基本积分表(1)kdx kx C (k 是常数) (2)111ααx dxx C α(3)1ln ||dx x C x (4)x xe dx e C (5)ln x xa a dxC a(6)sin cos xdxxC(7)cos sin xdx x C (8)221sec tan cos dx xdx x C x(9)221csc cot sin dx xdx x C x (10)sec tan sec x xdx xC(11)csc cot csc x dx xC (12)21arctan 1dxx C x(13)21arcsin 1dx x C x例1:求51dx x解:55154111514dx x dxx CC x x例2:求x xdx解:313522223512x x xdx x dxCx C例3:求3(sin )xx dx解:433(sin )sin cos 4x x x dx xdxx dxxC例4:求2(1)x dx x解:22(1)211(2)x x x dx dx x dx xx x2122ln ||2x xdx dxdx xx C x注:根式或多项式函数需化成αx 形式,再利用公式。
(完整版)高等数学教案ch 4 不定积分

第四章 不定积分教学目的: 1、 理解原函数概念、不定积分的概念。
2、 掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、 会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、 不定积分的概念;2、 不定积分的性质及基本公式;3、 换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有F '(x )=f (x )或dF (x )=f (x )dx ,那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数.例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为xx 21)(=', 所以x 是x 21的原函数. 提问:cos x 和x21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有F '(x )=f (x ).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数.第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数).定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作⎰dx x f )(.其中记号⎰称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量.根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即⎰+=C x F dx x f )()(.因而不定积分dx x f )(⎰可以表示f (x )的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以C x xdx +=⎰sin cos .因为x 是x21的原函数, 所以C x dx x+=⎰21.例2. 求函数xx f 1)(=的不定积分. 解:当x >0时, (ln x )'x1=, C x dx x+=⎰ln 1(x >0); 当x <0时, [ln(-x )]'xx 1)1(1=-⋅-=, C x dx x+-=⎰)ln( 1(x <0). 合并上面两式, 得到C x dx x+=⎰||ln 1(x ≠0). 例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解 设所求的曲线方程为y =f (x ), 按题设, 曲线上任一点(x , y )处的切线斜率为y '=f '(x )=2x ,,即f (x )是2x 的一个原函数.因为 ⎰+=C x xdx 22,故必有某个常数C 使f (x )=x 2+C , 即曲线方程为y =x 2+C .因所求曲线通过点(1, 2), 故2=1+C , C =1.于是所求曲线方程为y =x 2+1.积分曲线: 函数f (x )的原函数的图形称为f (x )的积分曲线.从不定积分的定义, 即可知下述关系: ⎰=)(])([x f dx x f dxd , 或 ⎰=dx x f dx x f d )(])([;又由于F (x )是F '(x )的原函数, 所以⎰+='C x F dx x F )()(,或记作 ⎰+=C x F x dF )()(.由此可见, 微分运算(以记号d 表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)C kx kdx +=⎰(k 是常数), (2)C x dx x ++=+⎰111μμμ, (3)C x dx x+=⎰||ln 1, (4)C e dx e x x +=⎰, (5)C aa dx a x x +=⎰ln , (6)C x xdx +=⎰sin cos ,(7)C x xdx +-=⎰cos sin , (8)C x xdx dx x +==⎰⎰tan sec cos 122, (9)C x xdx dx x+-==⎰⎰cot csc sin 122,。
微积分不定积分教案

微积分不定积分教案PPT一、教学目标1. 理解不定积分的概念和物理意义。
2. 掌握基本的不定积分公式和积分方法。
3. 能够应用不定积分解决实际问题。
二、教学内容1. 不定积分的定义和性质2. 基本积分公式3. 换元积分法4. 分部积分法5. 不定积分在实际问题中的应用三、教学方法1. 讲解法:讲解不定积分的概念、性质和积分方法。
2. 示例法:通过具体例子展示积分过程和应用。
3. 练习法:让学生通过练习题巩固所学知识。
四、教学准备1. PPT课件2. 练习题3. 教学视频或案例素材五、教学过程1. 导入:回顾微积分的基本概念,引导学生进入不定积分的学习。
2. 讲解:讲解不定积分的定义、性质和基本积分公式。
3. 演示:通过示例演示换元积分法和分部积分法的应用。
4. 练习:让学生通过练习题巩固所学知识。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学案例分析1. 分析实际问题,引导学生运用不定积分解决。
2. 通过案例分析,让学生理解不定积分在实际问题中的应用。
七、课堂互动1. 提问环节:引导学生思考不定积分的相关问题,解答学生的疑问。
2. 小组讨论:分组讨论练习题,培养学生的合作能力。
八、拓展与延伸1. 介绍不定积分的进一步应用,如定积分、微分方程等。
2. 引导学生思考不定积分在其他领域的应用,如物理学、工程学等。
九、课堂小结1. 回顾本节课的主要内容和知识点。
2. 强调不定积分在实际问题中的应用价值。
十、作业布置与反馈1. 布置相关练习题,巩固所学知识。
2. 要求学生提交作业,并进行批改和反馈。
3. 鼓励学生提出问题,及时解答学生的疑问。
重点和难点解析一、教学内容1. 不定积分的概念和性质:重点关注不定积分的定义、性质及其与定积分的区别。
2. 基本积分公式:重点掌握常见的积分公式,如幂函数、指数函数、对数函数等的积分。
3. 换元积分法:重点掌握换元积分的原理和方法,以及常见换元积分的技巧。
4. 分部积分法:重点掌握分部积分法的原理和步骤,以及如何灵活运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业布置
课后习题微积分标准化作业
大纲要求
掌握换元积分法
教 学 基 本 内 容
1.定理:(第一换元积分法)设 有原函数 ,且 是可导函数,则 ,该公式称为第一换元公式.
2.几种常用的凑微分求解的积分形式:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
3.若 是 在区间 上的一个原函数,即 = ,则 也是 在区间 上的原函数.即一个函数如果存在原函数,则其原函数有无穷多个.
4.定理:设函数 是 在区间 上的一个原函数,那么 在区间 上的任意一个原函数可以表示为 ,其中 是任意常数.
二.不定积分的概念
定义:如果 是 在区间 上的一个原函数,则 在区间 上带有任意常数的原函数 称为 在区间 上的不定积分,记作 ,即 = ,其中, 称为积分号, 称为被积函数, 称为被积表达式, 称为积分变量,任意常数 称为积分常数.
高等数学教学教案
第4章不定积分
授课序号01
教 学 基 本 指 标
教学课题
第4章第1节不定积分的概念与性质
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
原函数与不定积分的概念
教学难点
原函数的概念
参考教材
同济七版《高等数学》武汉大学同济大学 《微积分学习指导》
安玉伟等《高等数学定理 方法 问题》
例2.求 .
例3.求 .
例4.求 .
例5.求 .
例6.求 .
例7.求 .
例8求 .
例9.建立递推公式 .
授课序号04
教 学 基 本 指 标
教学课题
第4章第4节有理函数的积分
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
有理函数、三角函数有理式和简单无理函数的积分
例15.求
例16.设 ,且 ,求 .
授课序号02
教 学 基 本 指 标
教学课题
第4章第2节换元积分法
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
第一换元积分法与第二换元积分法
教学难点
第二换元积分法
参考教材
同济七版《高等数学》上册武汉大学同济大学 《微积分学习指导》
2.分部积分法应用的基本步骤可归纳为: = .
3.分部积分法的关键是合理选取 与 ,一般来说有下列结论:
(1)形如 ,取 , .
(2)形如 或 ,取 , 或 .
(3)形如 ,取 , .
(4)形如 , , 或 ,取 为反三角函数, .
(5)形如 , ,取 或 , ;也可以取 , 或 .
二.例题讲解
例1.求 .
教学难点
有理函数、三角函数有理式和简单无理函数的积分
参考教材
同济七版《高等数学》上册武汉大学同济大学 《微积分学习指导》
安玉伟等《高等数学定理 方法 问题》
作业布置
课后习题微积分标准化作业
大纲要求
会求有理函数、三角函数有理式和简单无理函数的积分.
教 学 基 本 内 容
一.有理函数的积分
1.有理函数的相关概念
三.不定积分的几何意义
对于确定的常数 , 表示坐标平面上一条确定的曲线;当 取不同的值时, 表示一簇曲线.由 可知, 的不定积分是一簇曲线,这些曲线都可以通过一条曲线向上或向下平移而得到,它们在具有相同横坐标的点处有互相平行的切线.
四.不定积分的性质
性质1.(1) = ,或 = ;
(2) ,或 .
性质2. ( 为非零ห้องสมุดไป่ตู้数).
例16.求 .
例17.求 .
例18.求 .
例19.求 .
例20.求 .
例21.求 .
例22.求 .
四.基本积分公式表
14. ;
15. ;
16. ;
17. ;
18. ;
19. ;
20. ;
21. ;
22. .
授课序号03
教 学 基 本 指 标
教学课题
第4章第3节分部积分法
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
(11)
(12)
二.第二换元积分法
1.定理:(第二换元积分法)设 是单调的可导函数,且 ,又设 的一个原函数为 ,则 = ,该公式称为第二换元公式.
2.常用的第二换元积分法:
(1)含有根式 时,令 ;
(2)同时含有根式 和根式 ( )时,令 ,其中 是 的最小公倍数;
(3)含有根式 时,令 ;
(4)含有根式 时,令 ;
性质3. .
五.基本积分公式表
1. ( 为常数);2. ( );
3. ;4. ;
5. ;6. ;
7. ;8. ;
9. ;10. ;
11. ;12. ;
13. .
六.例题讲解
例1.求不定积分 (1) ;(2) .
例2.若池塘结冰的速度由 给出,其中 是自结冰起到时刻 冰的厚度, 是正常数,求结冰厚度 关于时间 的函数.
(1)两个多项式函数的商 称为有理函数,也称为有理分式.有理分式的一般表达式为
作业布置
课后习题微积分标准化作业
大纲要求
1.理解原函数概念,理解不定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分的性质
教 学 基 本 内 容
1.定义:设 是定义在区间 上的函数,若对任意的 ,都有 ,或 ,则称 是 在区间 上的一个原函数.
2.定理:(原函数存在定理)若函数 在区间 上连续,则在该区间上一定存在可导函数 ,使得对任意 都有 ,即区间上的连续函数一定有原函数.
教学手段
黑板多媒体结合
教学重点
教学难点
参考教材
同济七版《高等数学》上册武汉大学同济大学 《微积分学习指导》
安玉伟等《高等数学定理 方法 问题》
作业布置
课后习题微积分标准化作业
大纲要求
掌握分部积分法
教 学 基 本 内 容
一.分部积分法
1.定理:设 在区间 上都有连续的导数,则有 ,简记为 ,或 ,称为分部积分公式.
例3.已知某曲线经过点 ,并且该曲线在任意一点处的切线的斜率等于该点横坐标的平方,试求该曲线的方程.
例4.距离地面 处,一质点以初速度 铅直上抛,不计阻力,求它的运动规律.
例5.求 .
例6.求 .
例7.求 .
例8.求 .
例9.求 .
例10.求 .
例11.求 .
例12.求 .
例13.求 .
例14.求 .
(5)含有根式 时,令 ;
(6)当被积函数的分母次幂较高时,还有经常用倒代换.
三.例题讲解
例1.求 .
例2.求 .
例3.求 .
例4.求 .
例5.求 , .
例6.求 .
例7.求 , .
例8.求 , .
例9.求 , .
例10.求 .
例11.求 .
例12.求 .
例13.求 .
例14.求 .
例15.求(1) ; (2) .