定积分的概念教案知识讲解
定积分的概念教案

定积分的概念教案一、教学目标:1.了解定积分的定义和计算方法;2.掌握定积分的性质和应用;3.培养学生的数学计算能力和逻辑思维能力。
二、教学内容:1.定积分的定义;2.定积分的计算方法;3.定积分的性质和应用。
三、教学重点:1.定积分的定义;2.定积分的计算方法。
四、教学难点:1.定积分的性质和应用;2.定积分与原函数的关系。
五、教学过程:Step 1 引入教师与学生展开对话,探讨学生对积分的了解:教师:同学们,你们对积分有什么了解?学生:积分就是求和。
教师:不错,积分的确是求和,但是定积分具体是什么呢?我们一起来探讨一下。
Step 2 定积分的定义教师向学生介绍定积分的定义:教师:定积分是微积分的一个重要概念,表示函数曲线与x轴之间的面积。
我们用符号∫来表示定积分,函数f(x)的定积分表示为∫f(x)dx,在积分号下面写上被积函数,dx表示自变量。
Step 3 定积分的计算方法教师通过示例向学生演示定积分的计算方法:教师:我们以函数f(x)=x^2为例,计算f(x)在区间[1,3]上的定积分。
教师在黑板上写下∫(1→3)x^2dx,并进行具体的计算步骤解释。
Step 4 定积分的性质和应用教师向学生介绍定积分的性质和应用,并通过例题进行讲解:教师:定积分具有线性性质、区间可加性和变量替换的性质,同时也可以用于计算面积、体积、质量等。
我们来看一个例题,计算函数f(x)=x在区间[-2,2]上的定积分,并解释其实际意义。
Step 5 定积分与原函数的关系教师引导学生思考定积分与原函数的关系:Step 6 总结与归纳教师与学生总结本节课的内容,并归纳出定积分的概念和性质:教师:同学们,通过本节课的学习,我们初步了解了定积分的定义、计算方法和性质。
下节课我们将进一步学习定积分的应用。
大家要做好预习哦!六、教学反思本节课通过引入、定义、示例演算等方式,使学生初步了解了定积分的概念和计算方法。
通过例题讲解,学生对定积分的应用有了基本的认识。
高中数学定积分的概念教案

高中数学定积分的概念教案一、教学目标:1.了解定积分的概念及其在数学中的重要性;2.掌握定积分的基本性质和计算方法;3.能够运用定积分求解实际问题。
二、教学重点及难点:1.定积分的概念和基本性质;2.定积分的计算方法;3.定积分在实际问题中的应用。
三、教学内容:1.定积分的概念a.通过求和的思想引入定积分的概念;b.定义定积分的符号表示及含义;c.定积分的几何意义和物理意义。
2.定积分的性质a.定积分的线性性质;b.定积分的可加性质;c.定积分的保号性质。
3.定积分的计算方法a.定积分的基本性质;b.定积分的换元法;c.定积分的分部积分法。
4.定积分在实际问题中的应用a.通过实际问题引入定积分的应用;b.运用定积分求解速度、面积、体积等实际问题。
四、教学过程:1.引入定积分的概念(10分钟)a.通过求和的思想引入定积分的概念;b.讲解定积分的符号表示及其含义。
2.定积分的性质(15分钟)a.讲解定积分的线性性质、可加性质和保号性质;b.举例说明定积分性质的运用。
3.定积分的计算方法(20分钟)a.讲解定积分的基本性质和计算方法;b.通过实例演示定积分的换元法和分部积分法。
4.定积分在实际问题中的应用(15分钟)a.通过实际问题引入定积分的应用;b.运用定积分求解速度、面积、体积等实际问题。
五、教学方法:1.讲授相结合:简洁明了地讲解定积分的概念和性质,结合实例演示计算方法;2.激发思考:通过引入实际问题,激发学生的思考和探究欲望;3.启发式教学:提出问题引导学生独立思考,培养学生的解决问题能力。
六、教学资源:1.教材:教材中相关知识点、例题及练习题;2.多媒体教学:投影仪、电脑等多媒体设备。
七、教学评估:1.课堂练习:课堂上针对性地布置练习,检验学生对定积分的理解和掌握程度;2.作业布置:课后布置练习题,巩固学生对定积分的掌握。
八、课堂小结:通过本节课的学习,相信同学们已经初步了解了定积分的概念、性质和计算方法,并能够运用定积分解决实际问题。
高中数学定积分的概念教案新人教版选修

高中数学定积分的概念教案新人教版选修一、教学目标1. 理解定积分的概念,掌握定积分的基本性质和计算方法。
2. 能够运用定积分解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
二、教学内容1. 定积分的概念介绍定积分的定义、性质和计算方法,引导学生理解定积分的本质。
2. 定积分的计算讲解定积分的计算法则,包括牛顿-莱布尼茨公式、换元积分法、分部积分法等,让学生掌握定积分的计算技巧。
3. 定积分在实际问题中的应用通过实际问题,引导学生运用定积分解决面积、体积、弧长等问题,提高学生的数学应用能力。
三、教学重点与难点1. 定积分的概念与性质2. 定积分的计算方法3. 定积分在实际问题中的应用四、教学方法1. 采用讲授法,讲解定积分的概念、性质和计算方法。
2. 利用例题,引导学生掌握定积分的计算技巧。
3. 结合实际问题,培养学生运用定积分解决实际问题的能力。
4. 组织讨论,让学生在探讨中深化对定积分概念的理解。
五、教学过程1. 引入:通过复习初中数学中的积分概念,引导学生思考如何将积分概念推广到无限区间。
2. 讲解:讲解定积分的定义、性质和计算方法,让学生理解定积分的本质。
3. 练习:布置定积分的计算练习题,让学生巩固所学知识。
4. 应用:结合实际问题,讲解定积分在面积、体积、弧长等方面的应用,让学生体会定积分的实用价值。
6. 作业:布置课后作业,巩固所学知识。
六、定积分的性质与计算法则1. 性质:定积分具有线性性质,即$\int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = \int_{a}^{b} (f(x) + g(x)) \, dx$。
定积分与积分区间有关,即$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$。
定积分与积分函数的单调性有关,即若$f(x)$ 在$[a, b]$ 上单调递增,则$\int_{a}^{b} f(x) \, dx$ 可以表示为$F(b) F(a)$,其中$F(x)$ 是$f(x)$ 的一个原函数。
《定积分与微积分基本定理》教案

《定积分与微积分基本定理》教案章节一:定积分的概念1.1 引入定积分的概念1.2 定积分的几何意义1.3 定积分的性质1.4 定积分的计算方法章节二:定积分的计算2.1 定积分的换元法2.2 定积分的分部积分法2.3 定积分的三角函数法2.4 定积分的特殊函数法章节三:定积分的应用3.1 定积分在几何中的应用3.2 定积分在物理中的应用3.3 定积分在经济学中的应用3.4 定积分在其他领域的应用章节四:微积分基本定理4.1 微积分基本定理的引入4.2 微积分基本定理的证明4.3 微积分基本定理的应用4.4 微积分基本定理的拓展章节五:定积分的进一步应用5.1 定积分的双重积分5.2 定积分的三重积分5.3 定积分的线积分5.4 定积分的面积分《定积分与微积分基本定理》教案(续)章节六:定积分的数值计算6.1 梯形法则6.2 辛普森法则6.3 柯特斯法则6.4 蒙特卡洛方法章节七:定积分的误差分析7.1 梯形法则的误差分析7.2 辛普森法则的误差分析7.3 柯特斯法则的误差分析7.4 蒙特卡洛方法的误差分析章节八:微积分基本定理的应用8.1 微积分基本定理在求解不定积分中的应用8.2 微积分基本定理在求解定积分中的应用8.3 微积分基本定理在求解极限中的应用8.4 微积分基本定理在求解导数中的应用章节九:定积分的优化问题9.1 利用定积分求解最大值和最小值9.2 利用定积分求解极值问题9.3 利用定积分求解最值问题的应用实例9.4 利用定积分求解实际问题中的优化问题章节十:定积分与微积分基本定理的综合应用10.1 利用定积分和微积分基本定理解决实际问题10.2 定积分和微积分基本定理在工程中的应用10.3 定积分和微积分基本定理在科学研究中的应用10.4 定积分和微积分基本定理在其他领域的应用《定积分与微积分基本定理》教案(续)章节十一:定积分的物理意义11.1 定积分在物理学中的作用11.2 定积分与力学中的功11.3 定积分与电磁学中的电场强度11.4 定积分在热力学中的应用章节十二:定积分在工程中的应用12.1 定积分在土木工程中的应用12.2 定积分在机械工程中的应用12.3 定积分在电子工程中的应用12.4 定积分在生物医学工程中的应用章节十三:定积分在经济与管理中的应用13.1 定积分在经济学中的优化问题13.2 定积分在金融学中的应用13.3 定积分在运筹学中的应用13.4 定积分在管理科学中的应用章节十四:定积分在现代科技中的应用14.1 定积分在计算机科学中的应用14.2 定积分在数据科学中的应用14.3 定积分在中的应用14.4 定积分在其他现代科技领域的应用章节十五:定积分与微积分基本定理的复习与提高15.1 定积分的基本概念与性质的复习15.2 微积分基本定理的复习与应用15.3 定积分的计算方法的巩固与提高15.4 定积分在实际问题中的应用案例分析重点和难点解析重点:1. 定积分的概念和几何意义2. 定积分的计算方法:梯形法则、辛普森法则、柯特斯法则和蒙特卡洛方法3. 定积分的应用领域:几何、物理、经济学等4. 微积分基本定理的引入、证明和应用5. 定积分的数值计算和误差分析6. 定积分在不同学科中的应用:物理学、工程学、经济与管理、现代科技等难点:1. 定积分的换元法和分部积分的具体操作2. 定积分的三角函数法和特殊函数法的应用3. 微积分基本定理的证明过程中的理解和应用4. 定积分的数值计算方法的误差分析5. 定积分在实际问题中的优化问题和应用实例6. 定积分在不同学科中的应用:物理学、工程学、经济与管理、现代科技等,这些应用领域的理解和实际问题解决能力的培养。
高等数学教案ch-5-定积分

第五章定积分教学目的:1、理解定积分的概念。
2、掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。
3、理解变上限定积分定义的函数,及其求导数定理,掌握牛顿一莱布尼茨公式。
4、了解广义积分的概念并会计算广义积分。
教学重点:1、定积分的性质及定积分中值定理2、定积分的换元积分法与分部积分法。
3、牛顿一莱布尼茨公式。
教学难点:1、定积分的概念2、积分中值定理3、定积分的换元积分法分部积分法。
4、变上限函数的导数。
§5, 1定积分概念与性质一、定积分问题举例1 .曲边梯形的面积曲边梯形:设函数y=f(x)在区间[a . b]上非负、连续,由直线x=a、x=b、y=0及曲线y=f (x)所围成的图形称为曲边梯形.其中曲线弧称为曲边.求曲边梯形的面积的近似值:将曲边梯形分割成一些小的曲边梯形.每个小曲边梯形都用一个等宽的小矩形代替.每个小曲边梯形的面积都近似地等于小矩形的面积.则所有小矩形面积的和就是曲边梯形面积的近似值.具体方法是:在区间[a b]中任意插入若干个分点a=X0 :::X i :::x2 :::…r:Xn 4 :::X n =b把[a b]分成n个小区间[x o .x i] . [x i .x2] . [x2 .X3]Jx nd .X n ].它们的长度依次为二X i = X i-X o -X2= X2% X n = Xn ~Xn 4 .经过每一个分点作平行于y轴的直线段.把曲边梯形分成n个窄曲边梯形•在每个小区间[Xi4.Xi]上任取一点匕.以[Xi4.Xi]为底、f (©)为高的窄矩形近似替代第i个窄曲边梯形(=1. 2.•…‘n).把这样得到的n个窄矩阵形面积之和作为所求曲边梯形面积A的近似值.即nA s f (巴1)&1 +f (巴2) &2+* …+f ('n )A x n =迟f GQx -im求曲边梯形的面积的精确值:显然.分点越多、每个小曲边梯形越窄.所求得的曲边梯形面积A的近似值就越接近曲边梯形面积A的精确值.因此.要求曲边梯形面积A的精确值.只需无限地增加分点.使每个小曲边梯形的宽度趋于零•记-二max{ .lx i . .-xn}.于是.上述增加分点.使每个小曲边梯形的宽度趋于零.相当于令0,所以曲边梯形的面积为nA = lim ' f ( J. :X i一-0y '2.变速直线运动的路程设物体作直线运动.已知速度v印(t)是时间间隔[T i T 2]上t的连续函数.且v(t)_O.计算在这段时间内物体所经过的路程S .求近似路程:我们把时间间隔[T i .T 2]分成n个小的时间间隔.址i .在每个小的时间间隔At i内.物体运动看成是均速的.其速度近似为物体在时间间隔.先内某点i的速度V(.i).物体在时间间隔.址i内运动的距离近似为AS= v(苗)孩.把物体在每一小的时间间隔i ti内运动的距离加起来作为物体在时间间隔[T i T 2]内所经过的路程S的近似值,具体做法是:在时间间隔[T i .T 2]内任意插入若干个分点T 1 =t 0 :::t i :::t 2 …t n」t n =T 2 .把[T i T 2]分成n个小段[t 0 .t i] . [t i .t 2]. ' ' '.[t n」.t n].各小段时间的长依次为L t i =t i -t 0 L t 2 ~t 2 -t i ….■:t n "t n —t n」相应地.在各段时间内物体经过的路程依次为L S i L S2 L S n .在时间间隔[t i」.t i]上任取一个时刻.i(t i J:: j::t i).以.i时刻的速度v(,i)来代替[t i/.t i]上各个时刻的速度.得到部分路程「S i的近似值.即心Si= v(E i) 0i (i=1 . 2 .…,n),于是这n段部分路程的近似值之和就是所求变速直线运动路程S的近似值.即nS・:二v( i). :t ii A求精确值:记•二max{ 't 1 ,t 2 t n}.当.-0时.取上述和式的极限.即得变速直线运动的路程nS =lim、v(.j) :tj ,0 i d设函数y斗(x)在区间[a b]上非负、连续,求直线x=a、x=b、y=0及曲线y寸(x)所围成的曲边梯形的面积.(1) 用分点a次o ::xi :::x2 :::…• ::xn ,::xn =b把区间[a b]分成n个小区间[x o .x i] . [x i .x2] .[x2 决3],….[x n4 .X n ]'记血mn (i =1 . 2 厂…* n).(2) 任取i [X i 4 X i]以[X i 4刈为底的小曲边梯形的面积可近似为f (£)细(i=. 2 •…,n) 所求曲边梯形面积A的近似值为nA 八f ( i) :X i .(3)记■ -max{二x i二X2 二x n}.所以曲边梯形面积的精确值为nA=lim「f ( ) x ,FT y设物体作直线运动.已知速度v二v(t)是时间间隔[T 1 T 2]上t的连续函数. 且v(t) _0 .计算在这段时间内物体所经过的路程S .(1)用分点T i4o::tv::t^ ■ ::tnd ::t^T2把时间间隔[T 1 T 2]分成n个小时间段[t o .t l]」t l 问,…F[t n」.t n].记A t i =t i—t i_J (i=1 . 2 * n).⑵任取.i [t iJ t i]在时间段[t i」t i]内物体所经过的路程可近似为v( .i)-:t i(iH . 2、…、n) 所求路程S的近似值为nS 八v( i) :t ii生(3)记-=max{.毛..屯,人t n}.所求路程的精确值为nS =li叫' v( J :t i ,二、定积分定义抛开上述问题的具体意义.抓住它们在数量关系上共同的本质与特性加以概括.就抽象出下述定积分的定义,定义设函数f(x)在[a b]上有界.在[a b]中任意插入若干个分点a 之0 :::X1 :::x2 :::•…:::X n 4 :::X n =b把区间[a b]分成n个小区间[X0.X1] .[X1 .x2].….[X n J .X n].各小段区间的长依次为L X1 次1—X o =X2%—X1 L X n * —X nM .在每个小区间[X i J X i]上任取一个点i (X iJ< i ::: X i).作函数值f ( 1)与小区间长度.乂的乘积f (匕)& (i= . 2y n).并作出和ns,f( i/'Xi .i d记,=max{ ■:X^ . :X2 ■x n}.如果不论对[a b]怎样分法.也不论在小区间[X iT .X i]上点i怎样取法.只要当■》0时.和S总趋于确定的极限I .这时我们称这个极限I为函数f (X)在区间[a . b]上的定积分.记作j f(x)dx .即jf(x)dx =lim 瓦 f (耳)纠,■■■ —0 i 4其中f (x)叫做被积函数 f (x)dx叫做被积表达式x叫做积分变量a叫做积分下限b叫做积分上限.[a b]叫做积分区间,定义设函数f(x)在[a b]上有界.用分点aa o:::x i :::X2:::x n_j :::x n=b把[a.b]分成n个小区间[x0 .X i] .[X i 凶].….[X n」.X n].记&i 承i—X i」(i=1 . 2 ,n).任:[X i」.X i] (i=1 . 2n) 作和nf( i,Xi .i 4记--max^x i L X2 L X n}.如果当,j 0时上述和式的极限存在且极限值与区间[a b]的分法和1的取法无关b则称这个极限为函数f(x)在区间[a b]上的定积分.记作f(x)dx .nbf(x)dx = lim 'a J—0 i 吕根据定积分的定义.曲边梯形的面积为A=a f(x)dx .变速直线运动的路程为S二;2v(t)dt .T1说明(1) 定积分的值只与被积函数及积分区间有关.而与积分变量的记法无关.即:f(x)dx 二:f(t)dt 二:f(u)du,n(2) 和‘二f ( i)「:X i通常称为f (x)的积分和.⑶如果函数f (x)在[a b]上的定积分存在.我们就说f (x)在区间[a b]上可积函数f(x)在[a b]上满足什么条件时 f (x)在[a b]上可积呢?定理1 设f (x)在区间[a b]上连续.则f (x)在[a b]上可积定理2 设f (x)在区间[a b]上有界.且只有有限个间断点.则f (x)在[a b]上可积定积分的几何意义:在区间[a b]上.当f(x)_0时.积分:f(x)dx在几何上表示由曲线y=f (x)、两条直线x=a、x=b与X轴所围成的曲边梯形的面积-当f(x) J0时.由曲线y =f (x)、两条直线x=a、x=b与x轴所围成的曲边梯形位于x轴的下方•定义分在几何上表示上述曲边梯形面积的负值n nf (x)dx =lim ' f ( J X - -lim 7 [ - f ( J] =x =J0i 1■ 9 #-:[-f (x)]dx当f (x)既取得正值又取得负值时.函数f(x)的图形某些部分在X轴的上方.而其它部分在X轴的下方,如果我们对面积赋以正负号 .在x 轴上方的图形面积赋以正号 .在x 轴下方的图形面积 赋以负号.则在一般情形下.定积分[b f (x)dx 的几何意义为:它是介于x 轴、函数f(x)的图形及两 条直线X£、x=b 之间的各部分面积的代数和, 用定积分的定义计算定积分例1.利用定义计算定积分0x 2dx ,解 把区间[0 .1]分成n 等份.分点为和小区间长度为 x =^(^1 .2*…,n —1). »=1(i=1. 2,…,n).取4 =討=1 . 2 .…,n).作积分和因为’计0x 2dx TimJ f ( i ) % =li利定积分的几何意义求积分 例2 •用定积分的几何意义求(1 -x)dx ,解:函数y=1v 在区间[0 . 1]上的定积分是以y=1-X 为曲边.以区间[0 . 1]为底的曲边梯形的面 积,因为以y=1 为曲边.以区间[0 . 1]为底的曲边梯形是一直角三角形 .其底边长及高均为1 .所以0(1-x)d^lxV<^l2 ,三、定积分的性质 两点规定:(1)当 a =b 时.f f (x)dx =0 . ⑵当 a 法时.f f (x)dx =-( f (x)dx .性质1函数的和(差)的定积分等于它们的定积分的和(差)即f [f (x) _g(x)]dx 二 f f(x)dx —f g(x)dx .n n n瓦«)纠咗¥纠迈G )21i 1i =1』nn讣]2活1 n(n 1)(2n 14(1n)(24).nimi (1 i )(2 存1.bn 证明:a [f (x)-g(x)]dx r lim j [f( J_g( i )],x/. J ° i 4n n=lim '•二 f ( J L X 二lim '•二 g( d^x jD i 4: •■- —0 i A二:f(x)dx_ :g(x)dx .性质2被积函数的常数因子可以提到积分号外面b b[kf(x)dx=k J f(x)dx .这是因为 f kf (x)dx =ljm 瓦 kf (U )^x i =k[im 》f G)Ax i =k [f (x)dx “ 性质' 如果将积分区间分成两部分 则在整个区间上的定积分等于这两部分区间上定积分之和即:f(x)dx 二:f(x)dx :f(x)dx .这个性质表明定积分对于积分区间具有可加性•值得注意的是不论 a b c 的相对位置如何总有等式:f(x)dx = a f(x)dx :f(x)dx成立,例如.当a<b<c 时.由于a f(x)dx = :f(x)dx :f(x)dx .于是有£ f (x)dx = a f (x)dx —j f (x)dx = f f (x)dx + f f (x)dx ,4如果在区间[a b]上f (x)三1则 fldx = f dx =b -a ,f(x)dx _0(a :b).1 如果在区间[a .b]上f (x) _g(x)则:f(x)dx E :g(x)dx(a ::b).这是因为g (x) -f (x) _0 .从而:g(x)dx-:f(x)dx =〕g(x)-f(x)]dx_O .性质性质 5 如果在区间[a b ]上f (x) -0 .则 推论b ba f(x)dx z a g(x)dx ,推论 2 | :f(x)dx|/|f(x)|dx(a :::b), 这是因为 _|f (x)| <f (x) < |f (x)| .所以—j|f(x)|dxwff(x)dx 訂|f(x)|dx . bb|a f(x)dx^ a |f(x)|dx| .性质6设M 及m 分别是函数f(x)在区间[a b ]上的最大值及最小值.则m(b —a)乞 a f (x)dx 兰M (b —a) (a<b),证明 因为m_f (x)_M .所以 ,mdx 兰 j f (x)dx 兰 fM d x. 从而m(b -a)兰 f f (x)dx EM (b —a),性质7 (定积分中值定理)如果函数f(x)在闭区间[a b ]上连续.则在积分区间[a.b ]上至少 存在一个点'.使下式成立::f(x)dx =f( )(b-a).这个公式叫做积分中值公式证明由性质6各项除以b£得m 兰-^ f f(x)dxEM . b -a a再由连续函数的介值定理 .在[a b ]上至少存在一点•.使 f ( )— ?f(x)dx . b —a a于是两端乘以b£得中值公式积分中值公式的几何解释 :应注意:不论a<b 还是a>b .积分中值公式都成立所以 m(b -a门:f(x)dxEM (b -a).§5 2微积分基本公式一、变速直线运动中位置函数与速度函数之间的联系设物体从某定点开始作直线运动.在t时刻所经过的路程为S(t).速度为v=v(t)=S(t)(v(t)_O).则在时间间隔[「T2]内物体所经过的路程S可表示为S(T2) -S(T I)及;2v(t)dt .即Jv(t)dt =S(T2)-S(T I).T1上式表明.速度函数v(t)在区间[T1 T2]上的定积分等于v(t)的原函数S(t)在区间[T i T2]上的增量,这个特殊问题中得出的关系是否具有普遍意义呢?二、积分上限函数及其导数设函数f(x)在区间[a.b]上连续.并且设x为[a . b]上的一点■我们把函数f(x)在部分区间[a.x]上的定积分:f(x)dx称为积分上限的函数,它是区间[a b]上的函数.记为G(x)二:f (x)dx . 或:」(x)=:f(t)dt .定理1如果函数f(x)在区间[a b]上连续.则函数G(x) = :f(x)dx在[a b]上具有导数.并且它的导数为①(x)=亠f f (t)dt =f (x)(a致<b).dx a简要证明若x:=(a .b).取L X使x7x:=(a.b),=(x±ix) -(x) = f 址f (t)dt -ff (t)dt=ff (t)dt +『也f (t)dt _『f(t)dtx f(t)dt =f( ).x应用积分中值定理.有f()「x其中在x与x:=x之间..x—0时―x,于是)"(x),⑴巳叫亍二叭"T m x f(若x=a .取二x>0 .则同理可证「(x)=f(a) •若x=b .取匚x<0 .则同理可证_(x) = f(b),定理2如果函数f(x)在区间[a b]上连续.则函数"(X)=:f(x)dx就是f (x)在[a b]上的一个原函数,定理的重要意义:一方面肯定了连续函数的原函数是存在的.另一方面初步地揭示了积分学中的定积分与原函数之间的联系.三、牛顿--莱布尼茨公式定理3如果函数F (x)是连续函数f(x)在区间[a b]上的一个原函数.则:f(x)dx=F(b)-F (a).此公式称为牛顿--莱布尼茨公式.也称为微积分基本公式,这是因为F(x)和①(x)=『f(t)dt都是f(x)的原函数.所以存在常数C .使F(x) -::(x) V (C 为某一常数).由F(a)-「(a)=C 及::平a)=0 .得C=F(a) F(x)—G(x)二F(a).由F(b)—「(b)二F(a).得::」(b)丰(b)—F(a).即f(x)dx=F(b)-F(a),证明:已知函数F(x)是连续函数f(x)的一个原函数.又根据定理2 .积分上限函数G(x) = :f(t)dt也是f(x)的一个原函数,于是有一常数 C.使F(x) -::(x)£ (a^xJD).当x=a 时.有F(a)_G(a)=C. 而:」(a)=0 .所以C=F(a) .当x=b 时.F(b)_G(b) =F(a). 所以:•:」(b)扌(b)_F(a).即:f(x)dx=F(b)-F (a).为了方便起见.可把F(b) -F(a)记成[F(x)]b .于是:f(x)dx=[F(x)]b,=F(b)-F(a).进一步揭示了定积分与被积函数的原函数或不定积分之间的联系例1.计算0x2dx .解:由于1x3是x2的一个原函数.所以3fx2dx =[-x3]0=113-103=-,0 3 0 3 3 3#3 dx例2计算.d -d?,解由于arctan x是的一个原函数.所以% =[arctanx]< =arctani 3—arctan(-1) =-3 -(例3.计算gdx .解:1dx =[ln | x|] :2 斗n 1 Tn 2 =Tn 2 .■^x例4.计算正弦曲线y=sin x在[0 .二]上与x轴所围成的平面图形的面积解:这图形是曲边梯形的一个特例,它的面积A = 0 sin xdx =[ -cosx]旷亠(一1) -(一1) =2 “例5.汽车以每小时36km速度行驶.到某处需要减速停车设汽车以等加速度a=-5m/s2刹车问从开始刹车到停车.汽车走了多少距离?解从开始刹车到停车所需的时间:1当t=0时.汽车速度v o -36km/h m/s=10m/s , 3600刹车后t 时刻汽车的速度为v(t)二v o at =10-5t .当汽车停止时.速度v(t) =0 .从v(t)二10-5t £得.t =2(s),于是从开始刹车到停车汽车所走过的距离为s 二:v(t)dt = :(10 -5t)dt 半0t -5 lt 2]0=10(m).即在刹车后.汽车需走过10m 才能停住.例6.设f(x)在[0,-:)内连续且f(x)>0,证明函数F(x)二 在(0 .;)内为单调增加函数证明:dx 0X tf(t)dt =xf(x )堆 0X f(t)dt =f(x ).故, xf(x )0 f(t)dt —f(x )0tf(t)dt f(x )0(x —t)f(t)dt F (x)=按假设.当 0do 时 f(t)>0.(x-t)f (t)>0 .所以;f(t)dt 0 • ;(x —t)f(t)dt 0 .从而F (x)>0 (x>0).这就证明了 F (x)在(0 .::)内为单调增加函数叢广丹琵%0sx)吧①(u)裳4 (-si nx)7nx":tf (t)dt :f(t)dt (0x f(t)dt)2 (: f(t)dt)2 例7.求lime x "dt osx解:这是一个零比零型未定式 由罗必达法则.lim x )0 dt os ^ lim x 2 x 「0 cosx 2 2 -1 e dt sin xe "os x —1 ----------- =lim x 0 x 2 2x _2e提示 设①(x)=fe*dt 则①(cosx)=『^e 4-2 dt§5,3定积分的换元法和分部积分法一、换元积分法定理假设函数f(x)在区间[a b]上连续.函数x=「(t)满足条件:⑴(:)a .(2) :(t)在[:•.-](或[「:])上具有连续导数.且其值域不越出[a b].则有:f(x)dx 二「f[「⑴]:(t)dt .这个公式叫做定积分的换元公式,证明由假设知f(x)在区间[a b]上是连续.因而是可积的f [「⑴]「(t)在区间[:•「](或「.:])上也是连续的.因而是可积的.假设F(x)是f (x)的一个原函数.则:f(x)dx 二F(b)-F(a).另-方面.因为{F[ (t)]}丰[(t)] (t)二 f [ (t)] (t).所以F[ (t)]是 f [ :(t)] (t)的一个原函数.一从而...f[ (t)b (t)dt =F[ f-)] -F[ G )]二F(b)-F(a).因此:f(x)dx=「f[ (t)]「(t)dt .例 1 计算l^a2-x2dx (a>0),解0、a2 _x2dx " ”叭 jacost acostdt二a202 cos2tdt =号02(1 cos2t)dta2“ 1 2 1 2^[t in 2t]o =4「a提示、、a2 _x2 = , a2 _a2sin2t =acost dx=a cos t 当x=0 时t=0当x=a时例 2 计算02 cos5xsinxdx ,解令t =cos x .则2 5252 cos5 xsin xdx - - 02 cos5 xd cosx令cosxzz t提示或当xn时t"当x=2时H5 52 cos5xsin xdx 2 cos5 xd cosx--[—cos6x]|? - -Icos6-cos6^-,6 0 6 2 6 6例 3 计算0 lsin3x -sin5xdx ,3T f ------------------------解0in3x -sin5 xdx =3'sin2 x|cosx|dx •二 3 -■ 3=02 sin2 xcosxdx - .二sin2 xcosxdx2二2 sin2 xdsin x- -sin2 xd sinx22 5' 2 5-n 2二[fsin2x]0 卡sin2x]?£*-(-2)5 0 5 2 5 5提示、、sin3x -sin5x psin3x(1 -sin2 x)二sin。
定积分的应用教案

定积分的应用教案第一章:定积分的概念1.1 引入定积分的概念解释定积分的定义:定积分是函数在区间上的积累效果,表示为∫ab f(x)dx。
强调定积分表示的是函数在区间上的面积或长度。
1.2 定积分的性质介绍定积分的性质:线性性质、保号性、可积函数的有界性等。
通过示例说明定积分的性质在实际问题中的应用。
第二章:定积分的计算方法2.1 牛顿-莱布尼茨公式介绍牛顿-莱布尼茨公式:如果F(x) 是函数f(x) 的一个原函数,∫ab f(x)dx = F(b) F(a)。
解释原函数的概念:原函数是导函数的不定积分。
2.2 定积分的换元法介绍换元法的步骤:选择适当的代换变量,求导数,计算新积分。
通过具体例子演示换元法的应用。
第三章:定积分在几何中的应用3.1 平面区域的面积解释平面区域面积的概念:平面区域内所有点的坐标的绝对值的平均值。
利用定积分计算平面区域的面积,示例包括矩形、三角形、圆形等。
3.2 曲线围成的面积介绍利用定积分计算曲线围成的面积的方法:选择适当的上下限,计算定积分。
通过具体例子演示计算曲线围成的面积。
第四章:定积分在物理中的应用4.1 定积分与力的累积解释力的累积概念:力在一段时间内的积累效果。
利用定积分计算力的累积,示例包括恒力作用下的位移、变力作用下的位移等。
4.2 定积分与功的计算介绍利用定积分计算功的方法:计算力与位移的乘积的定积分。
通过具体例子演示计算功的应用。
第五章:定积分在经济学中的应用5.1 定积分与总成本解释总成本的概念:企业在生产一定数量产品所需的成本。
利用定积分计算总成本,示例包括固定成本和变动成本的情况。
5.2 定积分与总收益介绍利用定积分计算总收益的方法:计算产品的售价与销售数量的乘积的定积分。
通过具体例子演示计算总收益的应用。
第六章:定积分在概率论中的应用6.1 定积分与概率密度解释概率密度的概念:随机变量在某个区间内的概率。
利用定积分计算概率密度,示例包括均匀分布、正态分布等。
定积分与微积分基本定理》教案

《定积分与微积分基本定理》教案一、教学目标1. 理解定积分的概念,掌握定积分的计算方法。
2. 掌握微积分基本定理,了解其应用。
3. 能够运用微积分基本定理解决实际问题。
二、教学内容1. 定积分的概念:定积分是函数在区间上的积累量,用符号∫表示。
2. 定积分的计算方法:牛顿-莱布尼茨公式、换元法、分部积分法等。
3. 微积分基本定理:微积分基本定理是定积分与导数之间的关系,表述为∫(f'(x)dx) = F(b) F(a),其中F(x) 是f(x) 的一个原函数。
4. 微积分基本定理的应用:求解曲线下的面积、弧长、质心等问题的计算。
三、教学重点与难点1. 教学重点:定积分的概念、计算方法,微积分基本定理的理解与应用。
2. 教学难点:微积分基本定理的证明,定积分的计算方法的综合运用。
四、教学方法1. 讲授法:讲解定积分的概念、计算方法,微积分基本定理的证明。
2. 案例分析法:分析实际问题,引导学生运用微积分基本定理解决。
3. 练习法:课堂练习与课后作业,巩固所学知识。
五、教学安排1. 第一课时:定积分的概念与计算方法。
2. 第二课时:微积分基本定理的证明。
3. 第三课时:微积分基本定理的应用。
4. 第四课时:定积分的综合练习。
六、教学策略1. 互动讨论:鼓励学生提问,师生共同探讨定积分与微积分基本定理的相关问题。
2. 小组合作:同学之间分工合作,共同完成定积分的计算和应用问题。
3. 利用多媒体:通过动画、图像等直观展示定积分的几何意义和应用。
七、教学评价1. 课堂问答:检查学生对定积分概念、计算方法和微积分基本定理的理解。
2. 课后作业:布置有关定积分的计算和应用问题,检验学生掌握程度。
3. 课程报告:要求学生选择一个实际问题,运用微积分基本定理进行解决,以此评估学生的实际应用能力。
八、教学资源1. 教材:选用权威、实用的教材,如《微积分学导论》等。
2. 辅导资料:提供定积分与微积分基本定理的相关习题及解答。
高中数学定积分内容教案

高中数学定积分内容教案一、教学内容分析:定积分是微积分中的一个重要概念,通过定积分的学习,可以帮助学生深入理解积分的概念和原理,掌握定积分的计算方法,以及应用定积分解决实际问题的能力。
在高中数学中,定积分主要包括定积分的定义、定积分的计算方法、定积分的性质和定积分的应用等内容。
二、教学目标设定:1. 理解定积分的定义和意义;2. 掌握定积分的计算方法,包括不定积分、定积分的性质和定积分的应用;3. 培养学生解决实际问题的能力,提高学生的数学建模能力。
三、教学步骤安排:第一步:定积分的定义和意义1. 定积分的概念和意义;2. 定积分的定义及其几何意义;3. 定积分的性质和计算方法。
第二步:定积分的计算方法1. 不定积分与定积分的关系;2. 定积分的计算方法;3. 定积分的性质和公式。
第三步:定积分的性质和应用1. 定积分的性质及其应用;2. 定积分在实际问题中的应用;3. 综合练习和解题训练。
四、教学方法和手段:1. 讲解教学法:通过教师讲解、示范和分析,引导学生理解和掌握定积分的概念和计算方法;2. 互动探究法:通过问题探讨、讨论和实例分析,培养学生的数学思维和解决问题的能力;3. 实践演练法:通过课堂练习、作业布置和实际问题解答,提高学生的运用能力和实际应用能力。
五、评估方法:1. 定期考试和小测验;2. 作业评订和讲评;3. 课堂互动和问题解答。
六、教学资源准备:1. 教材和教辅资料;2. 多媒体教学设备;3. 实例和练习题。
七、教学反馈和改进:1. 定期组织教学反馈和讨论;2. 定期总结和评估学生学习情况;3. 结合学生实际情况,适时调整和改进教学方法和手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的概念教案
定积分的概念
人教A版必修一教材
教材内容分析微积分的出现和发展,极大的推动了数学的发展,同时也推动了天文学、力学、物理学、化学、生物学等自然科学、社会科学及应用科学各个分支中的发展。
本节课是定积分概念的第一节课,教材借助求曲边梯形的面积和物理中变速直线运动的路程,通过直观具体的实例引入到定积分的学习中,为定积分概念构建认知基础,为理解定积分概念及几何意义起到了铺垫作用,同时也为今后进一步学习微积分打下基础。
学生情况分析
本节课的教学对象是本校实验班学生,学生思维比较活跃,理解能力、运算能力和学习交流能力较强。
学生前面已经学习了导数,并利用导数研究函数的单调性、极值及生活中的优化问题等,渗透了微分思想。
从学生的思维特点看,比较容易把刘徽的“割圆术”与本节课知识联系到一起,能够初步了解到“以直代曲”和“无限逼近”的重要数学思想,但是在具体的“以直代曲”过程中,如何选择适当的直边图形来代替曲边梯形会有一些困难。
在对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值及在对定积分定义的归纳中符号的理解上也会有一些困难。
教学目标
1.从物理问题情境中了解定积分概念的实际背景,初步掌握求曲边梯形的面积的方法和步骤:分割、近似代替、求和、取极限;
2.经历求曲变梯形面积的过程,借助几何直观体会“以直代曲”和“逼近”的思想,学习归纳、类比的推理方式,体验从特殊到一般、从具体到抽象、化归与转化的数学思想;
3.认同“有限与无限的对立统一”的辩证观点,感受数学的简单、简洁之美.
教学重点直观体会定积分的基本思想方法:“以直代曲”、“无限逼近”的思想;
初步掌握求曲边梯形面积的方法步骤——“四步曲”(即:分割、近似代替、求和、取
极限)
教学难点对“以直代曲”、“逼近” 思想的形成过程的理解.
教学方式教师适时引导和学生自主探究发现相结合.
辅助工具投影展台,几何画板.
教学过程
引入新课问题:汽车以速度v做匀速直线运动时,经过时间t所行驶的路程为
S vt
=.如果汽车作变速直线运动,在时刻t的速度为()2
v t t=(单
位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程S
(单位:km)是多少?
创设情境,引入
这节课所要研究的
问题.
类比探究,形成方法如图,阴影部分类似于一个梯形,但有一边是曲线()
y f x
=的一
段,我们把由直线,(),0
x a x b a b y
==≠=和曲线()
y f x
=所围
成的图形称为曲边梯形.
如何计算这个曲边梯形的面积?
(1)温故知新,铺垫思想
问题1:我们在以前的学习经历中有没有用直边
图形的面积计算曲边图形面积这样的例子?
问题2:在割圆术中为什么用正多边形的面积计算圆的面积?为什么
要逐次加倍正多边形的边数?
(2)类比迁移,分组探究
问题3:能不能类比割圆术的思想和操作方法把曲边梯形的面积问题
转化为直边图形的面积问题?
学生活动:学生进行分组讨论、探究。
(3)汇报比较,形成方法
学生需要用原有的
知识与经验去同化
或顺应当前要学习
的新知识,所以问
题1引导学生回忆
割圆术的作法,通
过问题2引导学生
思考割圆术中的思
想方法----“以直代
曲”,和“无限逼
近”。
通过问题3激
发学生探索的愿
望,明确解决问题
的方向。
学生进行汇报、交流,得出不同的分割方案。
问题4:请比较不同方案的区别,哪种方案既实现了“以直代曲”,和“无限逼近”,又更便于实际操作?
通过问题4引导学生选择便于操作的方案,培养学生化繁为简的意识。
特例应用,细化操作例1:求图中阴影部分是由抛物线2
y x
=,直线1
=
x以及x轴所围
成的平面图形的面积S。
问题1:为了逐步减小误差,需要对曲边梯形进行分割,具体怎样分
割?
问题2:对每个小曲边梯形如何“以直代曲”?
(1)(2)
问题3:如何得到整个曲边梯形的面积?
问题4:直边图形的面积怎样才能越来越接近曲边梯形面积的准确
值?能否得到准确值?
①图形方式:
②数表方式:
由于分割和近似
代替的方案在前面
一个阶段已经解
决,问题1~3主要
引导学生在特例中
对方案进行细化操
作,初步经历分
割、近似代替及求
和的过程。
问题4是为了完
成从近似值到精确
值的转化,这也是
本节课的难点之
一。
为了突破这个
难点,教学中用图
形、数表和取极限
三种方式引导学生
经历从直观到抽象
的过程。
③取极限方式 当n →∞时,
1
0n
→。
对两个近似的代数式进行适当的变形: 31(1)(21)111(1)(2)66n n n n n n -⋅⋅-⋅=--, 31(1)(21)111(1)(2)66n n n n n n
⋅+⋅+⋅=++。
进而发现两个近似值会无限接近一个常数,这个常数就是曲边
梯形面积的准确值。
问题5:用每个小区间的左、右端点的函数值1(
)i f n -和()i
f n
作为近似值计算曲边梯形的面积得到的结果相同,如果用每个小区
间任意一点处的函数值作为近似代替,是否也可以求出曲边梯形的面积,结果是否一样?
问题6:回顾求曲边梯形面积的整个过程,你能概括出求这个曲边梯形面积的方法吗?
分割⇒近似代替⇒求和⇒取极限
问题7:对于一般的由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形的面积应该如何来求?
通过问题5,引导学生借助几何直观发现曲边梯形的面积与近似代替在每个小区间上选取的点无关。
问题7引导学生发现一般的曲边梯形和由直线和曲线围成的特殊的曲边梯形相比,只是区间和函数不同,解决问题的方法和步骤是完全相同的。
进行从特殊到一般的推广,实现从具体到抽象的提升。
归纳总结,
从前面求曲边图形面积以及求变速直线运动路程的过程发现,它们都可以通过“分割、近似代替、求和、取极限得到解决,且都归结为求一个特定形式和的极限,
()()i n
i n n
i i x f n
x f S ξξ∑∑
=∞
→=→∆=∆•=11
1
lim lim
事实上,许多问题都可以归结为求这种特定形式和的极限 定积分的概念 :
一般地,设函数()f x 在区间[,]a b 上连续,用分点
0121i i n a x x x x x x b -=<<<<<<
<=
将区间[,]a b 等分成n 个小区间,在每个小区间[]1,i i x x -上取一点
引导学生归纳、抽象得到求定积分的概念,由浅入深、由易到难、由特殊到一般,帮助学生完成思维的提
)1,2,,n ,作和式:
→+∞)时,上述和式无限接近某个常数,这个常数叫做函数
在区间[,]a b 上的定积分。
记为:=n
i n n b ∑
=∞→-1
lim ()x 叫做 积分 ,a。