(完整版)定积分教案

合集下载

高中数学定积分的概念教案

高中数学定积分的概念教案

高中数学定积分的概念教案一、教学目标:1.了解定积分的概念及其在数学中的重要性;2.掌握定积分的基本性质和计算方法;3.能够运用定积分求解实际问题。

二、教学重点及难点:1.定积分的概念和基本性质;2.定积分的计算方法;3.定积分在实际问题中的应用。

三、教学内容:1.定积分的概念a.通过求和的思想引入定积分的概念;b.定义定积分的符号表示及含义;c.定积分的几何意义和物理意义。

2.定积分的性质a.定积分的线性性质;b.定积分的可加性质;c.定积分的保号性质。

3.定积分的计算方法a.定积分的基本性质;b.定积分的换元法;c.定积分的分部积分法。

4.定积分在实际问题中的应用a.通过实际问题引入定积分的应用;b.运用定积分求解速度、面积、体积等实际问题。

四、教学过程:1.引入定积分的概念(10分钟)a.通过求和的思想引入定积分的概念;b.讲解定积分的符号表示及其含义。

2.定积分的性质(15分钟)a.讲解定积分的线性性质、可加性质和保号性质;b.举例说明定积分性质的运用。

3.定积分的计算方法(20分钟)a.讲解定积分的基本性质和计算方法;b.通过实例演示定积分的换元法和分部积分法。

4.定积分在实际问题中的应用(15分钟)a.通过实际问题引入定积分的应用;b.运用定积分求解速度、面积、体积等实际问题。

五、教学方法:1.讲授相结合:简洁明了地讲解定积分的概念和性质,结合实例演示计算方法;2.激发思考:通过引入实际问题,激发学生的思考和探究欲望;3.启发式教学:提出问题引导学生独立思考,培养学生的解决问题能力。

六、教学资源:1.教材:教材中相关知识点、例题及练习题;2.多媒体教学:投影仪、电脑等多媒体设备。

七、教学评估:1.课堂练习:课堂上针对性地布置练习,检验学生对定积分的理解和掌握程度;2.作业布置:课后布置练习题,巩固学生对定积分的掌握。

八、课堂小结:通过本节课的学习,相信同学们已经初步了解了定积分的概念、性质和计算方法,并能够运用定积分解决实际问题。

定积分的教案

定积分的教案

定积分的教案教案标题:定积分的教案教学目标:1. 理解定积分的概念和基本性质;2. 掌握定积分的计算方法;3. 能够应用定积分解决实际问题。

教学重点:1. 定积分的概念和性质;2. 定积分的计算方法。

教学难点:1. 定积分的应用解决实际问题。

教学准备:1. 教师准备:教案、教材、多媒体设备、实例题;2. 学生准备:教材、笔记工具。

教学过程:Step 1: 引入定积分的概念(15分钟)1. 通过引入曲线下面积的概念,引出定积分的定义;2. 通过图示和实例,解释定积分的几何意义和物理意义。

Step 2: 定积分的基本性质(20分钟)1. 介绍定积分的线性性质、区间可加性和保号性;2. 通过实例,演示和讨论这些性质的应用。

Step 3: 定积分的计算方法(40分钟)1. 介绍定积分的基本计算方法,包括用定积分的定义计算、用不定积分计算、用换元法计算等;2. 通过练习题,引导学生掌握不同计算方法的应用。

Step 4: 定积分的应用(25分钟)1. 介绍定积分在几何学、物理学和经济学等领域的应用;2. 通过实例,引导学生应用定积分解决实际问题。

Step 5: 总结与拓展(10分钟)1. 总结定积分的概念、性质和计算方法;2. 提出一些拓展问题,激发学生对定积分更深层次的思考。

教学资源:1. 教材:包含定积分相关知识点的教材章节;2. 多媒体设备:用于展示相关图形和实例计算过程;3. 实例题:包含不同难度和应用场景的定积分题目。

教学评估:1. 课堂练习:通过课堂练习题,检查学生对定积分概念、性质和计算方法的掌握情况;2. 实际问题解决能力评估:通过应用题,评估学生运用定积分解决实际问题的能力。

教学延伸:1. 深入学习不同类型的定积分应用,如曲线长度、旋转体体积等;2. 引入定积分的数值计算方法,如梯形法则、辛普森法则等;3. 探索定积分的更高级概念,如广义积分和定积分的微分学基础。

备注:以上教案仅供参考,具体教学内容和方法可根据实际教学情况进行调整和优化。

2022年《定积分的概念》优秀教案优秀教案

2022年《定积分的概念》优秀教案优秀教案

定积分的概念一、目标导学教学目标:1.通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;2.借助于几何直观定积分的根本思想,了解定积分的概念,能用定积分法求简单的定积分.3.理解掌握定积分的几何意义;教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义.教学难点:定积分的概念、定积分的几何意义.教学过程:二、自主探究复习:1.回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤:2.对这四个步骤再以分析、理解、归纳,找出共同点.三、交流点拨1.定积分的概念一般地,设函数在区间上连续,用分点将区间等分成个小区间,每个小区间长度为〔〕,在每个小区间上取一点,作和式:如果无限接近于〔亦即〕时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。

记为:其中成为被积函数,叫做积分变量,为积分区间,积分上限,积分下限。

说明:〔1〕定积分是一个常数,即无限趋近的常数〔时〕称为,而不是.〔2〕用定义求定积分的一般方法是:①分割:等分区间;②近似代替:取点;③求和:;④取极限:〔3〕曲边图形面积:;变速运动路程;变力做功2.定积分的几何意义说明:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各局部面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号.〔可以先不给学生讲〕.分析:一般的,设被积函数,假设在上可取负值。

考察和式不妨设于是和式即为阴影的面积—阴影的面积〔即轴上方面积减轴下方的面积〕2.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1性质2〔其中k是不为0的常数〕〔定积分的线性性质〕性质3〔定积分的线性性质〕性质4〔定积分对积分区间的可加性〕说明:①推广:②推广:③性质解释:性质4性质1四、拓展建构例1.计算定积分分析:所求定积分即为如图阴影局部面积,面积为。

即:变式练习:1.解:2.解:例2.计算由两条抛物线和所围成的图形的面积.【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

《定积分》教案

《定积分》教案

1.5.2《定积分》教案教学目标(1)定积分的定义(2)利用定积分的定义求函数的积分,掌握步骤 (3)定积分的几何意义(4)会用定积分表示阴影部分的面积 教学重点难点定积分的定义是本节的重点,定积分的几何意义的应用是本节的难点。

教学过程一、创设情景复习:1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤:分割→以直代曲→求和→取极限(逼近 2.对这四个步骤再以分析、理解、归纳,找出共同点. 情境导入:1.曲边梯形面积问题;2.变力作功问题;3.变速运动的距离问题.我们把这些问题从具体的问题中抽象出来,作为一个数学概念提出来就是今天要讲的定积分。

由此我们可以给定积分的定义。

二、数学建构1.定积分的概念一般地,设函数()f x 在区间[,]a b 上有定义,将区间[,]a b 等分为n 个小区间,每个小区间的长度为x ∆(b ax n-∆=),在每个小区间上取一点,依次为123,,,n x x x x 。

作和12()()()()n i n S f x x f x x f x x f x x =⋅∆+⋅∆++⋅∆++⋅∆,如果x ∆无限趋近于0(亦即n 趋向于)+∞时,n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分,记为()baS f x dx =⎰其中,()f x 为被积函数,[,]a b 称为积分函数,a 称为积分下限,b 称为积分上限。

说明:(1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,不是n S(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()ni i b af n ξ=-∑; ④取极限:()1()lim nbi an i b af x dx f nξ→∞=-=∑⎰(3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()baW F r dr =⎰【举例说明】1、由曲线y=x2+1与直线x=1,x=3及x 轴所围成的曲边梯形的面积,用定积分表示为____________.(321(1)x dx +⎰)2、22sin 3tdt -⎰中,积分上限是___,,积分下限是___,积分区间是______。

定积分概念教学设计

定积分概念教学设计

定积分概念教学设计第1篇:定积分的概念的教学设计《1.5.3定积分的概念》教学设计1.教材分析1.1课标要求分析从教材上的要求来看,要求学生认识定积分的知识背景,理解背景中两个典型问题的解决思想,并能概括它们的共同特征从而引入定积分概念,理解定积分的含义和其符号的含义,明白定积分的几何意义和基本性质。

我个人认为由两个实例引入定积分概念这步很重要,能让学生理解定积分这一抽象的概念,并理解定积分的用途。

1. 2教学内容分析 1.2.1内容背景分析本节内容是人教A版选修2—2的1.5.3的内容,前面两节学习了如何解决“求曲边梯形面积”和“求变速运动路程”两个经典问题,在这两个问题的知识背景下这节课很自然地引入了定积分的概念。

这样能让学生充分理解定积分的由来和用途。

1.2.2教学内容的分析人教版的这节课的内容比较简短,要求掌握的层次也比较低。

主要通过前面两个实例的解决思路进行概括引入定积分的概念,明白积分的概念,积分符号的含义,了解定积分的几何意义和几个基本性质。

通过例1让学生进一步熟悉定积分的定义,熟悉计算定积分的“四步曲”。

2.学情分析我上这堂课的班级是高二(3)班,这个班在高二四个班中属于中等水平,上课思维不大活跃,不分学生接受能力还可以,但后进生比较多,这些学生基础较为薄弱,而且定积分的概念较为抽象,在引入的过程中包含了数列求和,求极限等复杂的知识内容。

作为引入定积分概念的课,推导的计算过程简单带过就好,不宜把知识点挖得太深。

我把这节课的重点放在让学生了解定积分概念的由来,明白定积分符号的含义、定积分的集合意义和一些基本性质,让学生掌握用定义求定积分的步骤。

3.教学目标1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景;2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分;3.理解掌握定积分的几何意义. 4.教学重点和难点重点:理解定积分的概念、定积分的几何意义及基本性质,能用定义求简单的定积分.难点:定积分的概念、定积分的几何意义. 5.教学过程1.创设情景复习:1.回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决思路,解决步骤:求曲边梯形面积: 分割→ 以直代曲→求和→取极限(逼近)求汽车路程:分割→以不变代变→求和→取极限(逼近)2.思考一下解决前面两个问题的共同特点: 2.新课讲授1.定积分的概念一般地,设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<x2<<xi-1<xi<<xn=b将区间[a,b]等分成n个小区间,每个小区间长度为∆x (n∆x=nb-a[x,x]n),在每个小区间i-1ib-af(ξi)n 上取一点ξi(i=1,2,n),作和式:Sn=∑f(ξi)∆x=∑i=1i=1如果∆x无限接近于0(亦即n→+∞)时,上述和式为函数f(x)在区间[a,b]上的定积分。

高等数学教案定积分

高等数学教案定积分

第五章定积分教学目的:1、理解定积分的概念;2、掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法;3、理解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式;4、了解广义积分的概念并会计算广义积分;教学重点:1、定积分的性质及定积分中值定理2、定积分的换元积分法与分部积分法;3、牛顿—莱布尼茨公式;教学难点:1、定积分的概念2、积分中值定理3、定积分的换元积分法分部积分法;4、变上限函数的导数;§5 1 定积分概念与性质一、定积分问题举例1 曲边梯形的面积曲边梯形设函数yfx在区间a b上非负、连续由直线xa、xb、y0及曲线yf x所围成的图形称为曲边梯形其中曲线弧称为曲边求曲边梯形的面积的近似值将曲边梯形分割成一些小的曲边梯形每个小曲边梯形都用一个等宽的小矩形代替每个小曲边梯形的面积都近似地等于小矩形的面积 则所有小矩形面积的和就是曲边梯形面积的近似值 具体方法是 在区间a b 中任意插入若干个分点ax 0 x 1 x 2 x n 1 x n b把a b 分成n 个小区间x 0 x 1 x 1 x 2 x 2 x 3 x n 1 x n它们的长度依次为x 1 x 1x 0 x 2 x 2x 1 x n x n x n 1经过每一个分点作平行于y 轴的直线段 把曲边梯形分成n 个窄曲边梯形 在每个小区间 x i 1 x i 上任取一点i 以x i 1 x i 为底、f i 为高的窄矩形近似替代第i 个窄曲边梯形i 1 2 n 把这样得到的n 个窄矩阵形面积之和作为所求曲边梯形面积A 的近似值 即A f 1x 1 f 2x 2 f n x n ∑=∆=ni i i x f 1)(ξ求曲边梯形的面积的精确值显然 分点越多、每个小曲边梯形越窄 所求得的曲边梯形面积A 的近似值就越接近曲边梯形面积A 的精确值 因此 要求曲边梯形面积A 的精确值 只需无限地增加分点 使每个小曲边梯形的宽度趋于零 记max{x 1 x 2 x n } 于是 上述增加分点 使每个小曲边梯形的宽度趋于零 相当于令0 所以曲边梯形的面积为∑=→∆=ni i i x f A 10)(lim ξλ 2 变速直线运动的路程设物体作直线运动 已知速度vvt 是时间间隔T 1 T 2上t 的连续函数 且vt 0 计算在这段时间内物体所经过的路程S求近似路程我们把时间间隔T 1 T 2分成n 个小的时间间隔t i 在每个小的时间间隔t i 内 物体运动看成是均速的 其速度近似为物体在时间间隔t i 内某点i 的速度v i 物体在时间间隔t i 内 运动的距离近似为S i v i t i 把物体在每一小的时间间隔t i 内 运动的距离加起来作为物体在时间间隔T 1 T 2内所经过的路程S 的近似值 具体做法是在时间间隔T 1 T 2内任意插入若干个分点T 1t 0 t 1 t 2 t n 1 t n T 2把T 1 T 2分成n 个小段t 0 t 1 t 1 t 2 t n 1 t n各小段时间的长依次为t 1t 1t 0 t 2t 2t 1 t n t n t n 1相应地 在各段时间内物体经过的路程依次为S 1 S 2 S n在时间间隔t i 1 t i 上任取一个时刻 i t i 1 i t i 以 i 时刻的速度v i 来代替t i 1 t i 上各个时刻的速度 得到部分路程S i 的近似值 即S i v i t i i 1 2 n于是这n 段部分路程的近似值之和就是所求变速直线运动路程S 的近似值 即∑=∆≈ni i i t v S 1)(τ求精确值记 max{t 1 t 2 t n } 当0时 取上述和式的极限 即得变速直线运动的路程∑=→∆=ni i i t v S 10)(lim τλ 设函数yfx 在区间a b 上非负、连续 求直线xa 、xb 、y 0及曲线yf x 所围成的曲边梯形的面积1用分点ax 0x 1x 2 x n 1x n b 把区间a b 分成n 个小区间x 0 x 1 x 1 x 2 x 2 x 3 x n 1 x n 记x i x i x i 1 i 1 2 n2任取i x i 1 x i 以x i 1 x i 为底的小曲边梯形的面积可近似为i i x f ∆)(ξ i 1 2 n 所求曲边梯形面积A 的近似值为∑=∆≈ni ii x f A 1)(ξ 3记max{x 1 x 2 x n } 所以曲边梯形面积的精确值为∑=→∆=ni ii x f A 10)(lim ξλ设物体作直线运动 已知速度vvt 是时间间隔T 1 T 2上t 的连续函数且vt 0 计算在这段时间内物体所经过的路程S1用分点T 1t 0t 1t 2 t n 1t n T 2把时间间隔T 1 T 2分成n 个小时间段 t 0 t 1 t 1 t 2 t n 1 t n 记t i t i t i 1 i 1 2 n2任取i t i 1 t i 在时间段t i 1 t i 内物体所经过的路程可近似为v i t ii 1 2 n 所求路程S 的近似值为∑=∆≈ni ii t v S 1)(τ 3记max{t 1 t 2 t n } 所求路程的精确值为∑=→∆=ni ii t v S 10)(lim τλ二、定积分定义抛开上述问题的具体意义 抓住它们在数量关系上共同的本质与特性加以概括 就抽象出下述定积分的定义定义 设函数fx 在a b 上有界 在a b 中任意插入若干个分点a x 0 x 1 x 2 x n 1 x n b把区间a b 分成n 个小区间x 0 x 1 x 1 x 2 x n 1 x n各小段区间的长依次为x 1x 1x 0 x 2x 2x 1 x n x n x n 1在每个小区间x i 1 x i 上任取一个点 i x i 1 i x i 作函数值f i 与小区间长度x i 的乘积f i x i i 1 2 n 并作出和∑=∆=ni i i x f S 1)(ξ记 max{x 1 x 2 x n } 如果不论对a b 怎样分法 也不论在小区间x i 1 x i 上点 i 怎样取法 只要当0时 和S 总趋于确定的极限I 这时我们称这个极限I 为函数f x 在区间a b 上的定积分 记作⎰b a dx x f )(即∑⎰=→∆=ni i i b a x f dx x f 10)(lim )(ξλ其中f x 叫做被积函数 f xdx 叫做被积表达式 x 叫做积分变量 a 叫做积分下限 b 叫做积分上限 a b 叫做积分区间定义 设函数fx 在a b 上有界 用分点ax 0x 1x 2 x n 1x n b 把a b 分成n 个小区间 x 0 x 1 x 1 x 2 x n 1 x n 记x i x i x i 1i 1 2 n任 i x i 1 x i i 1 2 n 作和∑=∆=n i i ix f S 1)(ξ记max{x 1 x 2 x n } 如果当0时 上述和式的极限存在 且极限值与区间a b 的分法和 i 的取法无关 则称这个极限为函数fx 在区间a b 上的定积分 记作⎰ba dx x f )(即 ∑⎰=→∆=ni i i ba x f dx x f 10)(lim )(ξλ根据定积分的定义 曲边梯形的面积为⎰=b a dx x f A )(变速直线运动的路程为dt t v S TT )(21⎰= 说明1定积分的值只与被积函数及积分区间有关 而与积分变量的记法无关 即⎰⎰⎰==ba b a b a du u f dt t f dx x f )()()(2和∑=∆n i i i x f 1)(ξ通常称为f x 的积分和3如果函数f x 在a b 上的定积分存在 我们就说f x 在区间a b 上可积函数fx 在a b 上满足什么条件时 f x 在a b 上可积呢定理1 设f x 在区间a b 上连续 则f x 在a b 上可积定理2 设f x 在区间a b 上有界 且只有有限个间断点 则f x 在a b 上可积定积分的几何意义在区间a b 上 当fx 0时 积分⎰b a dx x f )(在几何上表示由曲线yf x 、两条直线xa 、xb 与x 轴所围成的曲边梯形的面积 当fx 0时 由曲线y f x 、两条直线xa 、xb 与x 轴所围成的曲边梯形位于x 轴的下方 定义分在几何上表示上述曲边梯形面积的负值⎰∑∑⎰--=∆--=∆==→=→ba n i i i n i i ib a dx x f x f x f dx x f )]([)]([lim )(lim )(1010ξξλλ当f x 既取得正值又取得负值时 函数fx 的图形某些部分在x 轴的上方 而其它部分在x 轴的下方 如果我们对面积赋以正负号 在x 轴上方的图形面积赋以正号 在x 轴下方的图形面积赋以负号 则在一般情形下 定积分⎰ba dx x f )(的几何意义为 它是介于x 轴、函数fx 的图形及两条直线xa 、xb 之间的各部分面积的代数和用定积分的定义计算定积分例1. 利用定义计算定积分dx x 210⎰解 把区间0 1分成n 等份分点为和小区间长度为n i x i =i 1 2 n 1 n x i 1=∆i 1 2 n 取n i i =ξi 1 2 n 作积分和 ∑∑∑===⋅=∆=∆ni i n i i i n i i n n i x x f 121211)()(ξξ )12)(1(61113123++⋅==∑=n n n n i n n i )12)(11(61n n ++= 因为n1=λ 当0时 n 所以 31)12)(11(61lim )(lim 10210=++=∆=∞→=→∑⎰n n x f dx x n n i i i ξλ 利定积分的几何意义求积分:例2用定积分的几何意义求⎰-10)1(dx x解: 函数y 1x 在区间0 1上的定积分是以y 1x 为曲边以区间0 1为底的曲边梯形的面积 因为以y 1x 为曲边以区间0 1为底的曲边梯形是一直角三角形 其底边长及高均为1 所以211121)1(10=⨯⨯=-⎰dx x三、定积分的性质两点规定1当ab 时 0)(=⎰b a dx x f2当ab 时⎰⎰-=a b b a dx x f dx x f )()( 性质1 函数的和差的定积分等于它们的定积分的和差 即⎰⎰⎰±=±b a b a b a dx x g dx x f dx x g x f )()()]()([证明:⎰±b a dx x g x f )]()([∑=→∆±=ni i i i x g f 10)]()([lim ξξλ ∑∑=→=→∆±∆=ni i i n i i i x g x f 1010)(lim )(lim ξξλλ ⎰⎰±=b a b a dx x g dx x f )()(性质2 被积函数的常数因子可以提到积分号外面 即⎰⎰=b a b a dx x f k dx x kf )()(这是因为∑⎰=→∆=n i i i b a x kf dx x kf 10)(lim )(ξλ⎰∑=∆==→b a n i i i dx x f k x f k )()(lim 10ξλ性质如果将积分区间分成两部分则在整个区间上的定积分等于这两部分区间上定积分之和即 ⎰⎰⎰+=bc c a b a dx x f dx x f dx x f )()()( 这个性质表明定积分对于积分区间具有可加性值得注意的是不论a b c 的相对位置如何总有等式⎰⎰⎰+=b c c a b a dx x f dx x f dx x f )()()(成立 例如 当a <b <c 时 由于⎰⎰⎰+=c b b a c a dx x f dx x f dx x f )()()( 于是有⎰⎰⎰-=c b c a b a dx x f dx x f dx x f )()()(⎰⎰+=bc c a dx x f dx x f )()( 性质4 如果在区间a b 上f x 1 则a b dx dx ba b a -==⎰⎰1 性质5 如果在区间ab 上 f x 0 则⎰≥ba dx x f 0)(ab 推论1 如果在区间ab 上 f x gx 则⎰⎰≤b a ba dx x g dx x f )()(ab 这是因为g xf x 0 从而⎰⎰⎰≥-=-b a b a b a dx x f x g dx x f dx x g 0)]()([)()( 所以⎰⎰≤b a b a dx x g dx x f )()(推论2 ⎰⎰≤b a b a dx x f dx x f |)(||)(|ab这是因为|f x | f x |f x |所以⎰⎰⎰≤≤-b a b a b a dx x f dx x f dx x f |)(|)(|)(|即 ⎰⎰≤b a b a dx x f dx x f |)(||)(||性质6 设M 及m 分别是函数fx 在区间ab 上的最大值及最小值 则⎰-≤≤-b a a b M dx x f a b m )()()(ab证明 因为 m f x M 所以⎰⎰⎰≤≤b a b a b a Mdx dx x f mdx )( 从而⎰-≤≤-b a a b M dx x f a b m )()()(性质7 定积分中值定理 如果函数fx 在闭区间ab 上连续 则在积分区间ab 上至少存在一个点 使下式成立⎰-=ba ab f dx x f ))(()(ξ 这个公式叫做积分中值公式证明 由性质6⎰-≤≤-ba ab M dx x f a b m )()()(各项除以ba 得⎰≤-≤b a M dx x f a b m )(1 再由连续函数的介值定理 在ab 上至少存在一点 使⎰-=b a dx x f a b f )(1)(ξ于是两端乘以ba 得中值公式⎰-=ba ab f dx x f ))(()(ξ 积分中值公式的几何解释应注意 不论a <b 还是a >b 积分中值公式都成立§5 2 微积分基本公式一、变速直线运动中位置函数与速度函数之间的联系设物体从某定点开始作直线运动 在t 时刻所经过的路程为St 速度为vvtStvt 0 则在时间间隔T 1 T 2内物体所经过的路程S 可表示为)()(12T S T S -及dt t v TT )(21⎰即 )()()(1221T S T S dt t v TT -=⎰上式表明 速度函数vt 在区间T 1 T 2上的定积分等于vt 的原函数St 在区间T 1 T 2上的增量 这个特殊问题中得出的关系是否具有普遍意义呢二、积分上限函数及其导数设函数fx 在区间a b 上连续 并且设x 为a b 上的一点我们把函数fx 在部分区间a x 上的定积分dx x f xa )(⎰ 称为积分上限的函数 它是区间ab 上的函数 记为x dx x f x a )(⎰= 或x dt t f xa )(⎰定理1 如果函数fx 在区间a b 上连续 则函数x dx x f x a )(⎰=在a b 上具有导数 并且它的导数为x )()(x f dt t f dx d x a ==⎰ax <b 简要证明 若xa b 取x 使xxa bxxx dt t f dt t f x a x x a)()(⎰⎰-=∆+ dt t f dt t f dt t f x a x x xx a )()()(⎰⎰⎰-+=∆+ x f dt t f x x x ∆==⎰∆+)()(ξ应用积分中值定理 有f x其中在x 与xx 之间 x 0时 x 于是x )()(lim )(lim lim 00x f f f x xx x ===∆∆Φ=→→∆→∆ξξξ 若xa 取x >0 则同理可证x fa 若xb 取x <0 则同理可证x fb定理2 如果函数fx 在区间a b 上连续 则函数x dx x f xa )(⎰=就是f x 在a b 上的一个原函数定理的重要意义 一方面肯定了连续函数的原函数是存在的 另一方面初步地揭示了积分学中的定积分与原函数之间的联系三、牛顿莱布尼茨公式定理3 如果函数F x 是连续函数fx 在区间a b 上的一个原函数 则)()()(a F b F dx x f ba -=⎰ 此公式称为牛顿莱布尼茨公式 也称为微积分基本公式这是因为Fx 和x dt t f x a )(⎰都是fx 的原函数所以存在常数C 使FxxC C 为某一常数由FaaC 及a 0 得CFa FxxFa由FbbFa 得bFbFa 即)()()(a F b F dx x f ba -=⎰ 证明 已知函数Fx 是连续函数fx 的一个原函数 又根据定理2 积分上限函数x dt t f x a )(⎰也是fx 的一个原函数 于是有一常数C 使FxxC axb当xa 时 有FaaC 而a 0 所以CFa 当xb 时 FbbFa所以bFbFa 即)()()(a F b F dx x f ba -=⎰为了方便起见 可把FbFa 记成b a x F )]([ 于是)()()]([)(a F b F x F dx x f b a ba -==⎰ 进一步揭示了定积分与被积函数的原函数或不定积分之间的联系例1. 计算⎰102dx x解 由于331x 是2x 的一个原函数 所以 31031131]31[33103102=⋅-⋅==⎰x dx x例2 计算2311x dx +⎰- 解 由于arctan x 是211x +的一个原函数 所以 31231][arctan 1--=+⎰x x dx)1arctan(3arctan --=πππ127)4 (3 =--= 例3. 计算⎰--121dx x解 1212|]|[ln 1----=⎰x dx x ln 1ln 2ln 2 例4. 计算正弦曲线y sin x 在0 上与x 轴所围成的平面图形的面积解 这图形是曲边梯形的一个特例 它的面积ππ00]cos [sin x xdx A -==⎰112例5. 汽车以每小时36km 速度行驶 到某处需要减速停车设汽车以等加速度a 5m/s 2刹车 问从开始刹车到停车 汽车走了多少距离解 从开始刹车到停车所需的时间当t 0时 汽车速度v 036km/h 3600100036⨯=m/s 10m/s 刹车后t 时刻汽车的速度为vtv 0at 105t当汽车停止时 速度vt 0 从vt 105t 0得 t 2s于是从开始刹车到停车汽车所走过的距离为dt t dt t v s )510()(2020-==⎰⎰10]21510[202=⋅-=t t m 即在刹车后 汽车需走过10m 才能停住例6. 设fx 在0, 内连续且fx >0 证明函数⎰⎰=x xdt t f dt t tf x F 00)()()( 在0 内为单调增加函数证明 )()( 0x xf dt t tf dx d x =⎰ )()(0x f dt t f dx d x =⎰ 故 2000))(()()()()()(⎰⎰⎰-='x x xdt t f dtt tf x f dt t f x xf x F 200))(()()()(⎰⎰-=x x dt t f dt t f t x x f按假设 当0tx 时f t >0 xtf t 0 所以0)(0>⎰dt t f x 0)()(0>-⎰dt t f t x x从而F x >0 x >0 这就证明了F x 在0 内为单调增加函数例7. 求21cos 02lim x dte x t x ⎰-→解 这是一个零比零型未定式 由罗必达法则e x xe x dte x dt e x x x t x x t x 212sin lim lim lim 222cos 02cos 1021cos 0==--→-→-→⎰⎰ 提示 设⎰-=Φx t dt e x 12)( 则⎰-=Φx t dt e x cos 12)(cosx u x t e x x e dxdu u du d x dx d dt e dx d 222cos cos 1sin )sin ()()(cos ---⋅-=-⋅=⋅Φ=Φ=⎰§5 3 定积分的换元法和分部积分法一、换元积分法定理 假设函数fx 在区间a b 上连续 函数xt 满足条件1a b2t 在 或 上具有连续导数 且其值域不越出a b则有dt t t f dx x f b a )()]([)(ϕϕβα'=⎰⎰这个公式叫做定积分的换元公式证明 由假设知 fx 在区间a b 上是连续 因而是可积的 f tt 在区间 或 上也是连续的 因而是可积的假设Fx 是f x 的一个原函数 则 dx x f ba )(⎰FbFa另一方面 因为{Ft }F tt f tt 所以Ft 是f tt 的一个原函数 从而dt t t f )()]([ϕϕβα'⎰ F F FbFa因此 dt t t f dx x f b a )()]([)(ϕϕβα'=⎰⎰例1 计算⎰-a dx x a 022a >0解 ⎰⎰⋅-=20sin 022cos cos πtdt a t a dx x a t a x a 令 ⎰⎰+==2022022)2cos 1(2cos ππdt t a tdt a220241]2sin 21[2a t t a ππ=+= 提示 t a t a a x a cos sin 22222=-=- dxa cos t 当x 0时t 0 当xa 时2π=t 例2 计算xdx x sin cos 520⎰π解 令t cos x 则x xd xdx x cos cos sin cos 520520⎰⎰-=ππ61]61[ 106105015cos ===-⎰⎰=t dt t dt t tx 令 提示 当x 0时t 1 当2π=x 时t 0 或 x xd xdx x cos cos sin cos 520520⎰⎰-=ππ610cos 612cos 61]cos 61[66206=+-=-=ππx 例3 计算⎰-π053sin sin dx x x解 dx x x dx x x |cos |sin sin sin 230053⎰⎰=-ππ⎰⎰-=πππ2232023cos sin cos sin xdx x xdx x ⎰⎰-=πππ2232023sin sin sin sin x xd x xd 54)52(52]sin 52[]sin 52[2252025=--=-=πππx x 提示 |cos |sin )sin 1(sin sin sin 232353x x x x x x =-=-在]2 ,0[π上|cos x |cos x 在] ,2[ππ上|cos x |cos x 例4 计算dx x x ⎰++40122 解 ⎰⎰⎰+=⋅+-++=+3123121240)3(21221 122dt t tdt t t dx x x t x 令 322)]331()9327[(21]331[21313=+-+=+=t t 提示 212-=t x dxtdt 当x 0时t 1 当x 4时t 3 例5 证明 若f x 在a a 上连续且为偶函数 则 ⎰⎰=-a a a dx x f dx x f 0)(2)(证明 因为dx x f dx x f dx x f a a a a )()()(00⎰⎰⎰+=--而 ⎰⎰⎰⎰-=-=---=-a a a t x a dx x f dt t f dt t f dx x f 0000)()()()(令 所以 ⎰⎰⎰+-=-a a a a dx x f dx x f dx x f 00)()()(⎰⎰⎰==+-=-a a a a dx x f dx x f dx x f x f 00)(2)(2)]()([讨论若fx 在a a 上连续且为奇函数 问=⎰-aa dx x f )( 提示 若f x 为奇函数 则f xf x 0 从而0)]()([)(0=+-=⎰⎰-aa a dx x f x f dx x f例6 若f x 在0 1上连续 证明 1⎰⎰=2020)(cos )(sin ππdx x f dx x f2⎰⎰=πππ0)(sin 2)(sin dx x f dx x xf证明 1令t x -=2π 则dt t f dx x f )]2[sin()(sin 0220--=⎰⎰πππ⎰⎰=-=2020)(cos )]2[sin(πππdx x f dt t f2令xt 则⎰⎰---=00)][sin()()(sin ππππdt t f t dx x xf⎰⎰-=--=πππππ00)(sin )()][sin()(dt t f t dt t f t ⎰⎰-=πππ00)(sin )(sin dt t tf dt t f ⎰⎰-=πππ00)(sin )(sin dx x xf dx x f 所以⎰⎰=πππ)(sin 2)(sin dx x f dx x xf例7 设函数⎪⎩⎪⎨⎧<<-+≥=-01 cos 110)(2x xx xe x f x 计算⎰-41)2(dx x f解 设x 2t 则⎰⎰⎰⎰---++==-20121412cos 11)()2(dtte dt tdt t f dx x f t 212121tan ]21[]2[tan 420012+-=-=---e e t t提示 设x 2t 则dxdt 当x 1时t 1 当x 4时t 2 二、分部积分法设函数ux 、vx 在区间a b 上具有连续导数ux 、vx 由 uvuv u v 得u vu vuv 式两端在区间a b 上积分得vdx u uv dx v u ba b a ba '-='⎰⎰][ 或vdu uv udv ba ba ba ⎰⎰-=][ 这就是定积分的分部积分公式分部积分过程][][⋅⋅⋅='-=-=='⎰⎰⎰⎰vdx u uv vdu uv udv dx v u ba ba ba b a ba ba 例1 计算xdx arcsin 21⎰解xdx arcsin 21⎰x xd x x arcsin ]arcsin[21210⎰-=dx x x 22101621--⋅=⎰π)1(11211222210x d x --+=⎰π212]1[12x -+=π12312-+=π 例2 计算⎰10dx e x 解 令t x = 则⎰⎰=10102tdt e dx e t x⎰=102t tde ⎰-=1010 2 ][2dt e te t t 2 ][221 0 =-=t e e 例3 设⎰=20sin πxdx I n n 证明1当n 为正偶数时 22143231π⋅⋅⋅⋅⋅--⋅-=n n n n I n2当n 为大于1的正奇数时 3254231⋅⋅⋅⋅--⋅-=n n n n I n证明 ⎰=20sin πxdx I n n ⎰--=201cos sin πx xd n ⎰--+-=2012 01sin cos ]sin[cos ππx xd x x n n⎰--=2022sin cos )1(πxdx x n n ⎰--=-202)sin (sin )1(πdx x x n n n ⎰⎰---=-20202sin )1(sin )1(ππxdxn xdx n n nn 1I n 2n 1I n 由此得02214342522232212Im m m m m m I m ⋅⋅⋅⋅--⋅--⋅-=112325432421222122Im m m m m m I m ⋅⋅⋅⋅--⋅--⋅+=+而2200ππ==⎰dx I 1sin 201==⎰πxdx I因此22143425222322122π⋅⋅⋅⋅⋅--⋅--⋅-=m m m m m m I m32543242122212212⋅⋅⋅⋅--⋅--⋅+=+m m m m m m I m例3 设⎰=20sin πxdx I n n n 为正整数 证明 22143425222322122π⋅⋅⋅⋅⋅--⋅--⋅-=m m m m m m I m32543242122212212⋅⋅⋅⋅--⋅--⋅+=+m m m m m m I m证明 ⎰=20sin πxdx I n n ⎰--=201cos sin πx xd n⎰---+-=20222 0 1sin cos )1(]sin [cos ππxdx x n x x n n ⎰--=-202)sin (sin )1(πdx x x n n n ⎰⎰---=-20202sin )1(sin )1(ππxdx n xdx n n n n 1I n 2n 1I n02214342522232212I m m m m m m I m ⋅⋅⋅⋅⋅--⋅--⋅-=112325432421222122I m m m m m m I m ⋅⋅⋅⋅⋅--⋅--⋅+=+特别地 2200ππ==⎰dx I 1sin 201==⎰πxdx I因此 22143425222322122π⋅⋅⋅⋅⋅--⋅--⋅-=m m m m m m I m32543242122212212⋅⋅⋅⋅--⋅--⋅+=+m m m m m m I m§5 4 反常积分 一、无穷限的反常积分定义1 设函数fx 在区间a 上连续 取b >a 如果极限dx x f bab )(lim⎰+∞→ 存在 则称此极限为函数fx 在无穷区间a 上的反常积分 记作dx x f a )(⎰+∞即dx x f dx x f bab a)(lim)(⎰⎰+∞→+∞= 这时也称反常积分dx x f a )(⎰+∞收敛如果上述极限不存在 函数fx 在无穷区间a 上的反常积分dx x f a )(⎰+∞就没有意义 此时称反常积分dx x f a )(⎰+∞发散类似地 设函数fx 在区间 b 上连续 如果极限dx x f baa )(lim⎰-∞→a <b 存在 则称此极限为函数fx 在无穷区间 b 上的反常积分 记作dx x f b)(⎰∞- 即dx x f dx x f baa b )(lim )(⎰⎰-∞→∞-= 这时也称反常积分dx x f b)(⎰∞-收敛如果上述极限不存在 则称反常积分dx x f b)(⎰∞-发散 设函数fx 在区间 上连续 如果反常积分dx x f )(0⎰∞-和dx x f )(0⎰+∞都收敛 则称上述两个反常积分的和为函数fx 在无穷区间 上的反常积分 记作dx x f )(⎰+∞∞- 即dx x f dx x f dx x f )()()(00⎰⎰⎰+∞∞-+∞∞-+=dx x f dx x f bb a a )(lim)(lim⎰⎰+∞→-∞→+=这时也称反常积分dx x f )(⎰+∞∞-收敛如果上式右端有一个反常积分发散 则称反常积分dx x f )(⎰+∞∞-发散 定义1 连续函数fx 在区间a 上的反常积分定义为dx x f dx x f bab a)(lim)(⎰⎰+∞→+∞= 在反常积分的定义式中 如果极限存在 则称此反常积分收敛否则称此反常积分发散 类似地 连续函数fx 在区间 b 上和在区间 上的反常积分定义为dx x f dx x f baa b)(lim)(⎰⎰-∞→∞-=dx x f dx x f dx x f bb a a )(lim)(lim)(0⎰⎰⎰+∞→-∞→+∞∞-+=反常积分的计算 如果Fx 是fx 的原函数 则b a b bab ax F dx x f dx x f )]([lim )(lim)(+∞→+∞→+∞==⎰⎰)()(lim )()(lim a F x F a F b F x b -=-=+∞→+∞→可采用如下简记形式)()(lim )]([)(a F x F x F dx x f x a a-==+∞→∞++∞⎰类似地)(lim )()]([)(x F b F x F dx x f x bb-∞→∞-∞--==⎰)(lim )(lim )]([)(x F x F x F dx x f x x -∞→+∞→∞+∞-+∞∞--==⎰ 例1 计算反常积分dx x211+⎰+∞∞-解∞+∞-+∞∞-=+⎰][arctan 112x dx x x x x x arctan lim arctan lim -∞→+∞→-=πππ=--=)2(2例2 计算反常积分⎰+∞-0dt te pt p 是常数 且p >0 解∞+-∞+-+∞-⎰⎰⎰-==000]1[][pt pt pt tde pdt te dt te ∞+--⎰+-=0]11[dt e p te p pt pt ∞+----=02]11[pt pt e pte p 22211]11[lim p p e p te p pt pt t =+--=--+∞→ 提示 01lim lim lim ===+∞→+∞→-+∞→pt t pt t pt t pe e t te 例3 讨论反常积分dx x pa 1⎰+∞a >0的敛散性解 当p 1时dx x pa1⎰+∞dx x a 1⎰+∞=+∞==∞+ ][ln a x当p <1时dx x pa1⎰+∞+∞=-=∞+- 1]11[ap x p当p >1时1]11[11 1-=-=-∞+-+∞⎰p a x p dx x p ap pa因此 当p >1时 此反常积分收敛 其值为11--p a p当p 1时 此反常积分发散二、无界函数的反常积分定义2 设函数fx 在区间a b 上连续 而在点a 的右邻域内无界 取>0 如果极限dx x f bt at )(lim ⎰+→存在 则称此极限为函数fx 在a b 上的反常积分 仍然记作dx x f ba )(⎰ 即dx x f dx x f bta tb a )(lim )(⎰⎰+→=这时也称反常积分dx x f ba )(⎰收敛如果上述极限不存在 就称反常积分dx x f ba )(⎰发散类似地 设函数fx 在区间a b 上连续 而在点b 的左邻域内无界 取>0 如果极限dx x f ta bt )(lim ⎰-→存在 则称此极限为函数fx 在a b 上的反常积分 仍然记作dx x f ba )(⎰ 即dx x f dx x f ta bt b a )(lim )(⎰⎰-→=这时也称反常积分dx x f b a )(⎰收敛 如果上述极限不存在 就称反常积分dx x f ba )(⎰发散 设函数fx 在区间ab 上除点ca <c <b 外连续 而在点c 的邻域内无界 如果两个反常积分dx x f c a )(⎰与dx x f bc )(⎰都收敛 则定义dx x f dx x f dx x f bc c a b a )()()(⎰⎰⎰+=否则 就称反常积分dx x f ba )(⎰发散瑕点 如果函数fx 在点a 的任一邻域内都无界 那么点a 称为函数fx 的瑕点 也称为无界 定义2 设函数fx 在区间a b 上连续 点a 为fx 的瑕点 函数fx 在a b 上的反常积分定义为dx x f dx x f bt at b a )(lim )(⎰⎰+→=在反常积分的定义式中 如果极限存在 则称此反常积分收敛否则称此反常积分发散类似地函数fx 在a bb 为瑕点上的反常积分定义为dx x f dx x f ta b t b a )(lim )(⎰⎰-→= 函数fx 在a cc b c 为瑕点上的反常积分定义为dx x f dx x f dx x f b t c t t a c t b a )(lim )(lim )(⎰⎰⎰+-→→+= 反常积分的计算如果Fx 为fx 的原函数 则有b t at b t a t b a x F dx x f dx x f )]([lim )(lim )(++→→==⎰⎰ )(lim )()(lim )(x F b F t F b F ax a t ++→→-=-= 可采用如下简记形式)(lim )()]([)(x F b F x F dx x f a x b a ba +→-==⎰ 类似地 有)()(lim )]([)(a F x F x F dx x f b x b a ba -==-→⎰ 当a 为瑕点时)(lim )()]([)(x Fb F x F dx x f a x b a ba +→-==⎰ 当b 为瑕点时)()(lim )]([)(a F x F x F dx x f b x b a ba -==-→⎰ 当c acb 为瑕点时)](lim )([)]()(lim [)()()(x F b F a F x F dx x f dx x f dx x f c x c x b c c a b a +-→→-+-=+=⎰⎰⎰ 例4 计算反常积分⎰-a dx x a 0221 解 因为+∞=--→221lim x a a x 所以点a 为被积函数的瑕点a a a x dx x a 0 022][arcsin 1=-⎰20arcsin lim π=-=-→a x a x例5 讨论反常积分⎰-1121dx x的收敛性 解 函数21x在区间1 1上除x 0外连续 且∞=→201lim x x 由于+∞=--=-=-→--⎰1)1(lim ]1[100 1012x x dx xx 即反常积分⎰-0121dx x 发散 所以反常积分⎰-1121dx x发散 例6 讨论反常积分⎰-b aq a x dx )(的敛散性 解 当q 1时+∞=-=-=-⎰⎰b a b a b a q a x a x dx a x dx )][ln()( 当q 1时 +∞=--=--⎰b a q b a q a x qa x dx 1])(11[)( 当q 1时q b a q b a q a b q a x q a x dx ----=--=-⎰1 1)(11])(11[)( 因此 当q <1时 此反常积分收敛 其值为q a b q ---1)(11 当q 1时 此反常积分发散。

定积分的计算的教案

定积分的计算的教案

定积分的计算的教案教案标题:定积分的计算教学目标:1. 了解定积分的概念和计算方法;2. 掌握定积分计算的基本技巧;3. 能够应用定积分计算解决实际问题。

教学准备:1. 教科书或教学参考资料;2. 黑板、白板或投影仪;3. 笔、纸和计算器。

教学过程:步骤一:引入定积分的概念(10分钟)1. 引导学生回顾不定积分的概念和意义;2. 解释定积分的概念:定积分是一个函数在给定区间上的“总和”,表示该函数在该区间上的累积效应;3. 引导学生思考定积分与不定积分的关系。

步骤二:定积分的基本性质(15分钟)1. 解释定积分的基本性质:线性性、区间可加性和积分区间的可交换性;2. 通过示例演示定积分的基本性质;3. 强调定积分与不定积分的关系,定积分是不定积分的一个特例。

步骤三:定积分的计算方法(25分钟)1. 介绍定积分的计算方法:基本积分公式、换元积分法和分部积分法;2. 通过示例演示不同计算方法的应用;3. 强调计算定积分时的注意事项,如积分限的变化和积分区间的划分。

步骤四:应用定积分解决实际问题(20分钟)1. 提供一些实际问题,如求曲线下的面积、求物体的体积等;2. 引导学生分析问题,建立数学模型;3. 指导学生利用定积分计算解决实际问题。

步骤五:练习与巩固(15分钟)1. 提供一些练习题,涵盖不同的计算方法和应用场景;2. 让学生独立或小组完成练习题;3. 鼓励学生互相讨论和解答问题,加深对定积分的理解。

步骤六:总结与拓展(10分钟)1. 总结定积分的概念、计算方法和应用;2. 提出一些拓展问题,如定积分在其他学科中的应用;3. 鼓励学生主动学习和探索,拓宽对定积分的认识。

教学延伸:1. 鼓励学生自主学习更多的定积分计算方法和应用;2. 引导学生深入了解定积分在微积分学科中的重要性和应用价值;3. 鼓励学生参与数学建模竞赛等活动,提高应用定积分解决实际问题的能力。

教学评估:1. 在课堂上进行学生的回答和讨论,检查他们对定积分概念和计算方法的理解;2. 布置作业,包括练习题和应用题,检验学生对定积分的掌握程度;3. 定期进行小测验或考试,评估学生对定积分的理解和应用能力。

定积分的应用教案

定积分的应用教案

定积分的应用教案第一章:定积分的概念1.1 引入定积分的概念解释定积分是求曲线下的面积的方法强调定积分是极限的概念1.2 定积分的几何意义利用图形解释定积分表示曲线下的面积探讨定积分与区间的关系1.3 定积分的性质介绍定积分的四则运算讲解定积分的奇偶性第二章:定积分的计算方法2.1 定积分的标准公式介绍定积分的标准公式强调积分常数的存在2.2 定积分的换元法讲解定积分的换元法步骤举例说明换元法的应用2.3 定积分的分部积分法介绍定积分的分部积分法探讨分部积分法的应用第三章:定积分在几何中的应用3.1 求曲线的弧长利用定积分求曲线的弧长强调弧长公式的应用3.2 求曲面的面积引入曲面的面积概念利用定积分求曲面的面积3.3 求旋转体的体积介绍旋转体的体积公式利用定积分求旋转体的体积第四章:定积分在物理中的应用4.1 定积分在力学中的应用利用定积分求物体的质心利用定积分求物体的转动惯量4.2 定积分在电磁学中的应用利用定积分求电场强度利用定积分求磁场强度第五章:定积分在经济学中的应用5.1 定积分在优化问题中的应用利用定积分求最大值和最小值问题强调优化问题的实际意义5.2 定积分在概率论中的应用利用定积分求概率密度函数的积分5.3 定积分在评价问题中的应用利用定积分求函数的最大值和最小值问题强调定积分在评价问题中的作用第六章:定积分在生物学中的应用6.1 定积分在生长模型中的应用引入生长模型,如细胞的分裂利用定积分描述生物体的生长过程6.2 定积分在药物动力学中的应用介绍药物在体内的浓度变化利用定积分求药物的动力学参数第七章:定积分在工程学中的应用7.1 定积分在力学工程中的应用利用定积分计算结构的受力情况探讨定积分在材料力学中的应用7.2 定积分在热力学中的应用利用定积分求解热传导方程强调定积分在热力学中的重要性第八章:定积分在计算机科学中的应用8.1 定积分在图像处理中的应用介绍图像处理中的边缘检测利用定积分计算图像的边缘利用定积分计算曲线的长度强调定积分在图形学中的作用第九章:定积分的数值计算9.1 梯形法则介绍梯形法则及其原理利用梯形法则进行定积分的数值计算9.2 辛普森法则介绍辛普森法则及其适用条件利用辛普森法则进行定积分的数值计算9.3 数值计算方法的比较比较梯形法则和辛普森法则的优缺点强调选择合适的数值计算方法的重要性第十章:定积分在实际问题中的应用10.1 定积分在资源管理中的应用利用定积分计算资源的总量探讨定积分在资源管理中的分配问题10.2 定积分在环境保护中的应用利用定积分计算污染物的浓度强调定积分在环境保护中的作用10.3 定积分在其他领域的应用探讨定积分在人口学、社会学等领域的应用强调定积分在解决实际问题中的重要性重点和难点解析重点一:定积分的概念与几何意义定积分是微积分中的一个重要概念,它表示的是曲线下的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学分析》之九第九章定积分(14+4学时)教学大纲教学要求:1.理解Riemann定积分的定义及其几何意义2.了解上和与下和及其有关性质3.理解函数可积的充要条件,了解Riemann可积函数类4.熟练掌握定积分的主要运算性质以及相关的不等式5.了解积分第一中值定理6.掌握变上限积分及其性质7.熟练掌握Newton-Leibniz公式,定积分换元法,分部积分法教学内容:问题的引入(曲边梯形的面积及变速直线运动的路程),定积分定义,几何意义,可积的必要条件,上和、下和及其性质,可积的充分条件,可积函数类,定积分的性质,积分中值定理,微积分学基本定理,牛顿一莱布尼兹公式,定积分的换元法及分部法。

第页此表2学时填写一份,“教学过程”不足时可续页第页=i 1。

则称函数)(x f 在[b a .]上可积或黎曼可积。

数J 称为函数)(x f 在[b a .]上的定积分或黎曼积分,记作:⎰=badxx f J )(其中)(x f 称为被积函数,x 称为积分变量,[b a .]称为积分区间,dxx f )(称为被积式,b a ,分别称为积分的下限和上限。

定积分的几何意义;连续函数定积分存在(见定理9.3) 三、举例: 例1 已知函数在区间上可积 .用定义求积分.解 取 等分区间作为分法 nb x T i =∆, 取.=.由函数)(x f 在区间],0[b 上可积 ,每个特殊积分和之极限均为该积分值 .例2 已知函数211)(x x f +=在区间]1,0[上可积 ,用定义求积分 .解 分法与介点集选法如例1 , 有.上式最后的极限求不出来 , 但却表明该极限值就是积分.四、小结:指出本讲要点定积分的概念(几何意义);定积分的问题背景;若定积分存在,按定义计算定积分的值时,分割与介点的选取,可取特殊点,解题步骤(回顾例1)。

作业:课后1. 2.(1)(2)第 页时间 ---------月---------日 星期----------------- 课 题§ 2 Newton — Leibniz 公式(2学时)教学目的 深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分. 教学重点 能够熟练地应用牛顿-莱布尼兹公式计算定积分 教学难点应用定积分计算形式的极限课 型 理论课 教学媒体教法选择 讲 练 结 合教 学 过 程教法运用及板书要点一、复习定积分的定义,分割;积分和(黎曼和);极限存在(可积); 定积分的几何意义; 注:定积分⎰b adxx f )(的值只与被积函数)(x f 及积分区间[b a .]有关,而与积分变量所用的符号无关。

二、定积分的计算 (1),按定义计算 (2)应用下列定理Th9.1 ( N — L 公式 )若函数)(x f y =在【a ,b 】上连续,且存在原函数)(x F ,即),()(x f x F ='],[b a x ∈,则)(x f y = 在【a ,b 】上可积,且b a bax F a F b F dx x f |)()()()(=-=⎰这个公式称作( N — L 公式 )( 证明思路 函数函数)(x f y =在【a ,b 】上连续,则一致连续) (根据定积分定义与极限定义证明)证明:(略) 例1求;;例2利用( N — L 公式 ) 求下列定积分 1)N n dx x ban ∈⎰,,2),⎰bax dx e3),12⎰ba dx x 4),sin ⎰baxdx5),42⎰-badx x x例3 求.小结:1.利用N-L 公式求定积分的步骤。

2.利用定积分定义计算形如的极限时,找被积函数的方法;利用定积分来为极限的关键是把扫求极限转化成某函数的积分和的形式。

练习 p.207 第二题 作业p206,1.2第页时间---------月---------日星期-----------------课题§3可积条件(2学时)(一)教学目的理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件,熟悉证明可积性的问题的思路和方法.教学重点掌握可积的充要条件教学难点函数可积性问题的证明;课型理论课教学媒体教法选择讲授教学过程教法运用及板书要点一、必要条件:定理9.2 若函数f(x) [a,b],f(x)在区间[a,b]上有界.证明方法:反证法回顾f(x)在区间[a,b]上无界的定义,回顾定积分定义中的两个“任意”(插入点任意,介点选取任意)给出证明:例1 讨论Dirichlet函数D(x)在区间[0,1]上的可积性.强调可积与函数有界之间的关系二、充要条件:1.思路与方案:思路: 鉴于积分和与分法和介点有关, 先简化积分和. 用相应于分法的“最大”和“最小”的两个“积分和”去双逼一般的积分和, 即用极限的双逼原理考查积分和有极限, 且与分法及介点无关的条件.复习极限的双逼原理方案: 定义上和S(T)和下和s(T). 研究它们的性质和当时有相同极限的充要条件 ..设T={ix ∆n i ,,2,1 =}为对[a ,b]的任一分割。

由 f(x) 在[a ,b]上有界知,它在每个i x ∆上存在上、下确界:ix x i x f M ∆∈=)(sup ,ix x i x f m ∆∈=)(inf ,n i ,,2,1 =.作和∑=∆=ni ii x M T S 1)(,∑=∆=ni ii x m T s 1)(,分别称为 f(x)关于分割T 的上和与下和(或称达布上和与达布下和,统称达布和)任给i i x ∆∈ξ,n i ,2,1 =,显然有)()()(T S x f T s i i ≤∆≤∑ξ.说明:与积分和相比,达布和只与分割T 有关,而与点i ξ的取法无关。

2. Darboux 和:以下总设函数f(x)在区间[a,b]上有界. 并设,其中和分别是函数f(x)在区间[a,b]上的下确界和上确界Darboux 和定义:指出Darboux 和未必是积分和 . 但Darboux 和由分法 唯一确定.分别用S(T)、s(T)和 记相应于分法T 的上(大)和、下(小)和与积分和.积分和 是数集(多值) . 但总有 s(T)S(T)因此有.和的几何意义 .*3. Darboux 和的性质:分点增加,上和不增,下和不减.定理9.3(可积准则)函数f 在],[b a 上可积的充要条件是:对任意的0>ε,总存在相应的分割T ,使得ε<-)()(T s T S(本定理的证明,参见§6) 定理9.3的几何意义设i i i m M -=ω,并称为)(x f 在i x ∆上的振幅,有必要时记为fi ω。

则有ini i x T s T S ∆=-∑=1)()(ω。

定理9.3' 函数)(x f 在],[b a 上可积⇔对0>∀ε,T ∃,使得εω<∆∑=ini i x1。

不等式ε<-)()(T s T S 或εω<∆∑=ini i x1的几何意义:若函数f(x)在 [a,b]上可积,则p.209图9-7中包围曲线)(x f y =的一系列小矩形面积之和可以达到任意小,只要分割充分的细;反之亦然。

三、小结:可积的必要条件与可积准则可积函数的充分条件(证明函数可积的思路和方法)当函数f(x)在区间[a,b]上含某些点的小区间上振幅作不到任意小时, 可试用f(x)在区间 [a,b]上的振幅 作的估计 , 有. 此时, 倘能用总长小于,否则f(x)为常值函数的有限个小区间复盖这些点,以这有限个小区间的端点作为分法 的一部分分点,在区间 [a,b]的其余部分作分割,使在每个小区间上有<,对如此构造的分法, 有<.作业:p212 1 和2第页此表2学时填写一份,“教学过程”不足时可续页推论2 设函数)(x f 在区间],[b a 上有界且其间断点仅有有限个聚点, 则函数)(x f 在区间],[b a 上可积.例 判断题 : 闭区间上仅有一个间断点的函数必可积 . ( ) 闭区间上有无穷多个间断点的函数必不可积 . ( )3. 闭区间上的单调函数必可积:定理9.6 若函数)(x f y =是],[b a 上的单调函数,则函数)(x f y =在],[b a 上可积。

证明思路:( 证明过程 )例2 用两种方法证明在[0,1]上可积.例3 证明黎曼函数1,(,)1,()00,1(0,1)q x p q q p qp f x x ⎧==>⎪=⎨⎪=⎩和内的无理点 在区间【0,1】内可积,且1()0f x dx =⎰小结:常见的可积函数类(三类) 证明可积函数的方法作业: p212 3此表2学时填写一份,“教学过程”不足时可续页此表2学时填写一份,“教学过程”不足时可续页第页说明:当1)(≡x g 时,即为积分第一中值定理。

注:事实上,积分第一中值定理和推广的积分第一中值定理中的点ξ必能),(b a ∈ξ。

二. 举例: 例1 设. 试证明:⎰∑=∆=→bai i ni i T fgdx x g f )()(lim1||||ηξ .其中和是内的任二点, { }, .例2 比较积分的大小. 设但 . 证明>0.证明不等式.证明分析 所证不等式为只要证明在上成立不等式,且等号不恒成立, 则由性质4和上例得所证不等式.例4.小结:积分的性质定理 和 积分中值定理 课后习题处理:P .219 1. 5. 作业:p 。

219 2. 3。

注记:1、积分的性质较多,分类记忆方法比较好.2、P 217注意2中的2,10,()1,0 1.xx x x F x e x -⎧--≤<=⎨-+≤≥⎩这里 )(x F 取1xe--+是因为P 207题3要求()F x 连续.第 页第 页时间 ---------月---------日 星期----------------- 课 题 §5 微积分基本定理.定积分计算(续)(2学时)(一)教学目的掌握变上限的定积分和它的分析性质. 了解积分第二中值定理及其推论.能熟练的用换元积分法和分部积分法计算定积分.教学重点 变上限的定积分和它的分析性质, 用换元积分法和分部积分法计算定积分 教学难点 变上限的定积分和它的分析性质的应用. 课 型 理论+实践 教学媒体教法选择 讲授+练习教 学 过 程教法运用及板书要点一. 变限积分与原函数的存在性 引入:由定积分计算引出 .1.变限积分:设)(x f 在],[b a 上可积,则对],[b a x ∈∀,)(x f 在],[x a 上也可积,于是,由⎰=Φxa dtt f x )()(, ],[b a x ∈定义了一个以积分上限x 为自变量的函数,称为变上限的定积分。

类似地,可定义变下限的定积分:⎰=ψbxdtt f x )()(,],[b a x ∈)(x Φ和)(x ψ统称为变限积分。

相关文档
最新文档