1.5定积分的概念 教学设计 教案
1.5定积分的概念 教学设计 教案

教学准备
1. 教学目标
(1)知识与技能:定积分的概念、几何意义及性质
(2)过程与方法:在定积分概念形成的过程中,培养学生的抽象概括能力和探索提升能力。
(3)情感态度与价值观:让学生了解定积分概念形成的背景,培养学生探究数学的兴趣.
2. 教学重点/难点
【教学重点】:
理解定积分的概念及其几何意义,定积分的性质
【教学难点】:
对定积分概念形成过程的理解
3. 教学用具
多媒体
4. 标签
1.5.3定积分的概念
教学过程
课堂小结
定积分的定义,计算定积分的“四步曲”,定积分的几何意义,定积分的性质。
定积分的概念教案

1.5.3定积分的概念教学目标 能用定积分的定义求简单的定积分;理解掌握定积分的几何意义;重点 定积分的概念、定积分法求简单的定积分、定积分的几何意义难点 定积分的概念、定积分的几何意义复习: 1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤 2.对这四个步骤再以分析、理解、归纳,找出共同点. 新课讲授1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()nnn i i i i b aS f x f n ξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S为函数()f x 在区间[,]a b 上的定积分。
记为:()b aS f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
说明:(1)定积分()ba f x dx ⎰是一个常数,即n S 无限趋近的常数S(n →+∞时)称为()ba f x dx ⎰,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b a f n ξ=-∑; ④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=-=∑⎰ (3)曲边图形面积:()ba S f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()ba W F r dr =⎰ 2.定积分的几何意义如果在区间[,]a b 上函数连 续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积。
1.5定积分的概念教案

从几何上看,如果在区间 上函数 连续且恒有,那么定积分 表示由所围成的曲边梯形的面积.这就是定积分的几何意义.
【即时训练1】定积分 的值是.
阅读教材 完成右框内容
三、定积分的性质
(1) .(2) .
(3) .
【即时训练2】已知 , , , ,求下列各式的值.
课堂小结
三、巩固诊断
1.已知 为偶函数且 ,则 等于( )
A.0B.4C.8D.16
2.若 是奇函数,则 ( )
A.0B. C. D.1
3.如图,阴影部分面积分别为 ,则定积分 _____.
4.说明下列定积分所表示的几何意义,并根据其几何意义求出定积分的值.
闯关题:求定积分:
.
1.5定积分的概念
一、学习目标:1.理解定积分的概念.
2.理解定积分的几何意义.
3.掌握定积分的基本性质
学习重点:理解定积分的概念及其几何意义,定积分的性质
学习难点:对定积分概念形成过程的理检测及课堂展示
阅读教材 完成右框内容
一、定积分的概念
一般地,如果函数 在区间 上连续,用分点 将区间 等分成 小区间,在每个小区间 上任取一点 ,作和式 .当 时,上述和式无限接近某个,这个叫做函数在区间上的定积分,记作 ,即 ,这里, 分别叫做与,区间 叫做,函数 叫做, 叫做, 叫做.
教学:1.5定积分的概念第3课时

§1.5.3定积分的概念【学情分析】:前面两节(曲边梯形的面积和汽车行驶的路程)课程的学习为定积分的概念的引入做好了铺垫。
学生对定积分的思想方法已有了一定的了解。
【教学目标】:(1)知识与技能:定积分的概念、几何意义及性质(2)过程与方法:在定积分概念形成的过程中,培养学生的抽象概括能力和探索提升能力。
(3)情感态度与价值观:让学生了解定积分概念形成的背景,培养学生探究数学的兴趣.【教学重点】:理解定积分的概念及其几何意义,定积分的性质【教学难点】:对定积分概念形成过程的理解练习与测试: (基础题) 1.函数()f x 在[],a b上的定积分是积分和的极限,即()baf x dx =⎰_________________ .答案:01lim()niii f x λξ→=∆∑2.定积分的值只与______及_______有关,而与_________的记法无关 . 答案:被积函数,积分区间,积分变量;3.定积分的几何意义是_______________________ .答案:介于曲线()y f x =,x 轴 ,直线,x a x b ==之间各部分面积的代数和; 4.据定积分的几何意义()a b <,则________;badx =⎰________.baxdx =⎰答案:b a - , 222b a -(提高题)5.将和式极限表示成定积分(1). 21lim(12)n n n →∞+++L解:12211111lim (12)lim lim nnn n n i i i n i xdx n nn n →∞→∞→∞==+++===∑∑⎰L (2). 21lim()ni i i fx λξ→=∆∑,其中{}0121,[,],n i i i i x a x x x b x x Max x ξλ-=<<<<=∈=L解:2201lim()()()nbbi i aai f x g x dx f x dx λξ→=∆==∑⎰⎰6. 利用定义计算定积分211.dx x⎰解:在[1,2]中插入分点21,,,n q q q -L ,典型小区间为1[,]i iq q -,(1,2,,i n =L )小区间的长度11(1)i i i i x q q q q --∆=-=-,取1i i q ξ-=,(1,2,,i n =L )1111111()(1)nnni i i i i i i i i f x x q q q ξξ--===∆=∆=-∑∑∑1(1)(1)ni q n q ==-=-∑取2nq =即12nq =,11()(21),nniii f xn ξ=∆=-∑()i g ξi x ∆i ξ1121lim (21)limln 2,1x xx x x x→+∞→+∞--==Q1lim (21)ln 2,nn n →∞∴-=1210111lim lim (21)ln 2.nn i n i idx x n x λξ→→∞==∆=-=∑⎰以下为赠送文档:选修4_5 不等式选讲课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。
高中数学 专题1.5.3 定积分的概念教案 新人教A版选修2

定积分的概念【教学目标】1.了解定积分的概念,会用定义求定积分.2.理解定积分的几何意义.3.掌握定积分的基本性质.【教法指导】本节学习重点:掌握定积分的基本性质.本节学习难点:理解定积分的几何意义.【教学过程】☆复习引入☆任何一个平面图形都有面积,其中矩形、正方形、三角形、平行四边形、梯形等平面多边形的面积,可以利用相关公式进行计算.如图所示的平面图形,是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的,称之为曲边梯形,如何计算这个曲边梯形的面积呢?解析:请同学思考并回顾以前所学知识并积极回答之.☆探索新知☆探究点一定积分的概念思考1 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.答两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限.思考2 怎样正确认识定积分ʃb a f(x)d x?(2)定积分就是和的极限limn→∞∑ni=1(ξi)·Δx,而ʃb a f(x)d x只是这种极限的一种记号,读作“函数f(x)从a到b 的定积分”.(3)函数f(x)在区间[a,b]上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件).例1 利用定积分的定义,计算ʃ10x3d x的值.解令f(x)=x3.(1)分割在区间[0,1]上等间隔地插入n -1个分点,把区间[0,1]等分成n 个小区间[i -1n ,in](i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、求和取ξi =in(i =1,2,…,n ),则ʃ10x 3d x ≈S n =∑ni =1f (in)·Δx =∑ni =1(i n )3·1n=1n 4∑ni =1i 3=1n 4·14n 2(n +1)2=14(1+1n)2. (3)取极限ʃ10x 3d x =lim n →∞S n =lim n →∞ 14(1+1n )2=14. 反思与感悟 (1)利用定积分定义求定积分的数值仍然是“分割、近似代替、求和、取极值”这一过程,需要注意的是在本题中将近似代替、求和一起作为步骤(2),从而省略了解题步骤. (2)从过程来看,当f (x )≥0时,定积分就是区间对应曲边梯形的面积. 跟踪训练1 用定义计算ʃ21(1+x )d x .2+i -1n ,从而得∑n i =1f (ξi )Δx =∑ni =1(2+i -1n )·1n =∑n i =1⎝ ⎛⎭⎪⎫2n +i -1n 2 =2n ·n +1n2[0+1+2+…+(n -1)]=2+1n 2·n n -2=2+n -12n. (3)取极限:S =lim n →∞ ⎝⎛⎭⎪⎫2+n -12n =2+12=52. 因此ʃ21(1+x )d x =52.探究点二 定积分的几何意义思考1 从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么ʃba f (x )d x 表示什么?答 当函数f (x )≥0时,定积分ʃba f (x )d x 在几何上表示由直线x =a ,x =b (a <b ),y =0及曲线y =f (x )所围成的曲边梯形的面积.思考2 当f (x )在区间[a ,b ]上连续且恒有f (x )≤0时,ʃba f (x )d x 表示的含义是什么?若f (x )有正有负呢?答 如果在区间[a ,b ]上,函数f (x )≤0时,那么曲边梯形位于x 轴的下方(如图①). 由于b -an>0,f (ξi )≤0,故 f (ξi )b -a n≤0.从而定积分ʃb a f (x )d x ≤0,这时它等于如图①所示曲边梯形面积的相反值,即ʃba f (x )d x =-S .当f (x )在区间[a ,b ]上有正有负时,定积分ʃba f (x )d x 表示介于x 轴、函数f (x )的图象及直线x =a ,x =b (a ≠b )之间各部分面积的代数和(在x 轴上方的取正,在x 轴下方的取负).(如图②),即ʃba f (x )d x =-S 1+S 2-S 3. 例2 利用几何意义计算下列定积分: (1)ʃ3-39-x 2d x ;(2)ʃ3-1(3x +1)d x .(2)由直线x =-1,x =3,y =0,以及y =3x +1所围成的图形,如图所示:ʃ3-1(3x +1)d x 表示由直线x =-1,x =3,y =0以及y =3x +1所围成的图形在x 轴上方的面积减去在x 轴下方的面积,∴ʃ3-1(3x +1)d x =12×(3+13)×(3×3+1)-12(-13+1)×2=503-23=16. 反思与感悟 利用几何意义求定积分,关键是准确确定被积函数的图象,以及积分区间,正确利用相关的几何知识求面积.不规则的图象常用分割法求面积,注意分割点的准确确定. 跟踪训练2 根据定积分的几何意义求下列定积分的值: (1)ʃ1-1x d x ;(2)ʃ2π0cos x d x ;(3)ʃ1-1|x |d x . 解 (1)如图(1),ʃ1-1x d x =-A 1+A 1=0. (2)如图(2),ʃ2π0cos x d x =A 1-A 2+A 3=0.(3)如图(3),∵A 1=A 2,∴ʃ1-1|x |d x =2A 1=2×12=1.(A 1,A 2,A 3分别表示图中相应各处面积)探究点三 定积分的性质思考1 定积分的性质可作哪些推广? 答 定积分的性质的推广①ʃb a [f 1(x )±f 2(x )±…±f n (x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ±…±ʃba f n (x )d x ; ②ʃba f (x )d x =ʃc 1a f (x )d x +ʃc 2c 1f (x )d x +…+ʃbc n f (x )d x (其中n ∈N *). 思考2 如果一个函数具有奇偶性,它的定积分有什么性质?例3 计算ʃ3-3(9-x 2-x 3)d x 的值. 解 如图,由定积分的几何意义得ʃ3-39-x 2d x =π×322=9π2,ʃ3-3x 3d x =0,由定积分性质得ʃ3-3(9-x 2-x 3)d x =ʃ3-39-x 2d x -ʃ3-3x 3d x =9π2. 反思与感悟 根据定积分的性质计算定积分,可以先借助于定积分的定义或几何意义求出相关函数的定积分,再利用函数的性质、定积分的性质结合图形进行计算. 跟踪训练3 已知ʃ10x 3d x =14,ʃ21x 3d x =154,ʃ21x 2d x =73,ʃ42x 2d x =563,求: (1)ʃ203x 3d x ;(2)ʃ416x 2d x ;(3)ʃ21(3x 2-2x 3)d x . 解 (1)ʃ203x 3d x =3ʃ20x 3d x =3(ʃ10x 3d x +ʃ21x 3d x )=3×(14+154)=12;(2)ʃ416x 2d x =6ʃ41x 2d x =6(ʃ21x 2d x +ʃ42x 2d x )=6×(73+563)=126; (3)ʃ21(3x 2-2x 3)d x =ʃ213x 2d x -ʃ212x 3d x=3ʃ21x 2d x -2ʃ21x 3d x =3×73-2×154=7-152=-12. ☆课堂提高☆1.下列结论中成立的个数是( )①ʃ10x 3d x =∑ni =1i 3n 3·1n; ②ʃ10x 3d x =lim n →∞∑ni =1i -13n 3·1n;③ʃ10x 3d x =lim n →∞∑ni =1i 3n 3·1n. A .0 B .1 C .2 D .3 【答案】 C2.当n 很大时,函数f (x )=x 2在区间1,i i n n -⎡⎤⎢⎥⎣⎦ (i =1,2,…,n )上的值可以用 ( )近似代替 A.inB .1f n ⎛⎫⎪⎝⎭ C .i f n ⎛⎫⎪⎝⎭D .1n【答案】C【解析】f (x )=x 2在区间1,i i n n -⎡⎤⎢⎥⎣⎦上的值可以用区间1,i i n n -⎡⎤⎢⎥⎣⎦上每一点对应的函数值近似代替,故选C. 3.下列等式不成立的是( ) A. ()()ba mf x ng x dx ⎡⎤+⎣⎦⎰=m ()b a f x dx ⎰+n ()ba g x dx ⎰ B. ()1ba f x dx ⎡⎤+⎣⎦⎰=()ba f x dx ⎰+b -aC. ()()baf xg x dx ⎰=()()bbaaf x dxg x dx ⎰⎰D.2π2πsin xdx -⎰=02π2πsin sin xdx xdx -+⎰⎰【答案】C【解析】利用定积分的性质进行判断,选项C 不成立.例如112xdx =⎰,12013x dx =⎰,13014x dx =⎰,11132000x dx xdx x dx ≠⋅⎰⎰⎰.故选C.4.已知定积分ʃ60f (x )d x =8,且f (x )为偶函数,则ʃ6-6f (x )d x 等于( ). A .0 B .16 C .12 D .8 【答案】 B【解析】 偶函数图象关于y 轴对称,故ʃ6-6f (x )d x =2ʃ60f (x )d x =16,故选B. 5.已知1e e 1xdx =-⎰,221e e e xdx =-⎰,2283x dx =⎰,2122ln 2dx x =⎰.求:(1)20e xdx ⎰;(2)()220e 3xx dx +⎰;(3)211e x dx x ⎛⎫+ ⎪⎝⎭⎰. 【解析】(1)2122201e e e e 1e e e 1x x x dx dx dx =+=-+-=-⎰⎰⎰.(2)()22e3xx dx +⎰=2e xdx ⎰+()223x dx ⎰=2e xdx ⎰+2203x dx ⎰=e 2-1+8=e 2+7.(3)211e x dx x ⎛⎫+ ⎪⎝⎭⎰=21e xdx ⎰+21122dx x ⎰=e 2-e +ln2. 6.利用定积分的定义计算ʃ21(-x 2+2x )d x 的值,并从几何意义上解释这个值表示什么.(2)近似代替、求和取ξi =1+in(i =1,2,…,n ),则S n =∑ni =1f (1+i n )·Δx =∑ni =1[-(1+i n )2+2(1+i n )]·1n=-1n 3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n2[(n +1)+(n +2)+(n +3)+…+2n ]=-1n3[2n 2n +14n +16-n n +12n +16]+2n2·n n +1+2n2=-13(2+1n )(4+1n )+16(1+1n )(2+1n )+3+1n .(3)取极限ʃ21(-x 2+2x )d x =lim n →∞S n =lim n →∞[-13(2+1n )(4+1n )+16(1+1n )(2+1n )+3+1n ]=23,2 3的几何意义为由直线x=1,x=2,y=0与曲线f(x)=-x2+2x所围成的曲边梯形的面积.ʃ21(-x2+2x)d x=。
定积分的概念的教学设计

《1.5.3定积分的概念》教学设计1.教材分析1.1课标要求分析从教材上的要求来看,要求学生认识定积分的知识背景,理解背景中两个典型问题的解决思想,并能概括它们的共同特征从而引入定积分概念,理解定积分的含义和其符号的含义,明白定积分的几何意义和基本性质。
我个人认为由两个实例引入定积分概念这步很重要,能让学生理解定积分这一抽象的概念,并理解定积分的用途。
1.2教学内容分析1.2.1内容背景分析本节内容是人教A版选修2—2的1.5.3的内容,前面两节学习了如何解决“求曲边梯形面积”和“求变速运动路程”两个经典问题,在这两个问题的知识背景下这节课很自然地引入了定积分的概念。
这样能让学生充分理解定积分的由来和用途。
1.2.2教学内容的分析人教版的这节课的内容比较简短,要求掌握的层次也比较低。
主要通过前面两个实例的解决思路进行概括引入定积分的概念,明白积分的概念,积分符号的含义,了解定积分的几何意义和几个基本性质。
通过例1让学生进一步熟悉定积分的定义,熟悉计算定积分的“四步曲”。
2.学情分析我上这堂课的班级是高二(3)班,这个班在高二四个班中属于中等水平,上课思维不大活跃,不分学生接受能力还可以,但后进生比较多,这些学生基础较为薄弱,而且定积分的概念较为抽象,在引入的过程中包含了数列求和,求极限等复杂的知识内容。
作为引入定积分概念的课,推导的计算过程简单带过就好,不宜把知识点挖得太深。
我把这节课的重点放在让学生了解定积分概念的由来,明白定积分符号的含义、定积分的集合意义和一些基本性质,让学生掌握用定义求定积分的步骤。
3.教学目标1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景;2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分;3.理解掌握定积分的几何意义.4.教学重点和难点重点:理解定积分的概念、定积分的几何意义及基本性质,能用定义求简单的定积分.难点:定积分的概念、定积分的几何意义.5.教学过程1.创设情景复习:1.回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决思路,解决步骤:求曲边梯形面积: 分割→以直代曲→求和→取极限(逼近)求汽车路程:分割→以不变代变→求和→取极限(逼近)2.思考一下解决前面两个问题的共同特点:2.新课讲授1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b-=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n -∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()nnn i i i i b aS f x f n ξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式nS 无限趋近于常数S ,那么称该常数S为函数()f x 在区间[,]a b 上的定积分。
高中数学1.5.3定积分的概念教学设计新人教A版选修2_2

§1.5.3定积分的概念教案一、教学目标⒈通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景; ⒉借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分.3.理解掌握定积分的几何意义; 教学过程: 二、预习导学1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决2.对这四个步骤再以分析、理解、归纳,找出共同点. 三、问题引领,知识探究1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()nnn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()baS f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
说明:(1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b af n ξ=-∑;④取极限:()1()lim nbi an i b a f x dx f nξ→∞=-=∑⎰(3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()baW F r dr =⎰2.定积分的几何意义 说明:一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号.(可以先不给学生讲).分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。
定积分地概念教学案例设计

《定积分的概念》教学案例设计1教学目标及重点、难点 1.1 教学目标知识目标:1. 通过求曲边梯形的面积和变速直线运动的路程,了解定积分概念的 实际背景意义;2. 借助于几何直观理解定积分的基本思想,了解定积分的概念,会应 用定积分的定义求函数的定积分.3. 理解掌握定积分的几何意义和性质;能力目标:体会“以直代曲”,“无限逼近”,“近似代替”等数学思想• 情感态度价值观:体会定积分在实际问题中的应用,体会数学的强大威力 •1.2 教学重点微元法思想和定积分的基本性质1.3 教学难点无限细分和无穷累积的思维方法2教学过程简录2.1实例铺路,引出课题教师:“回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法, 解决步骤是什么?”学生:分割4以直代曲q 求和二取极限(逼近)教师:“对这四个步骤再以分析、理解、归纳,找出共同点.”师生共同归纳得出,以上两个例子尽管来自不同领域,却都归结为求同一结构的 和式的极限.我们以后还将看到,在求变力所作的功、水压力、某些空间体的体积等许 多问题中,都会出现这种形式的极限,因此,有必要在数学上统一对它们进行研究.2.2演示验证,直观感知教师:“让我们再次回顾解决曲边梯形的面积的方法,体会当中蕴含的数学思想 (教师动画演示对曲边梯形的分割过程)n h 1 il IN1V 710.10斥7 0397这是曲边梯形的过剩近似值的拟合效果,请同学们再观察其不足近似值的动画演示教师:体现了哪些数学思想,哪位同学说说?学生1:以上对曲边梯形的无限分割体现了“无限逼近”的思想。
学生2:还有“近似代替”的思想,用不足近似值和过剩近似值代替曲边梯形的面积, 以及“以直代曲”的思想.教师:这种求面积的方法具有普遍意义,为此,引入定积分的概念 .2.2.1定积分的概念设函数f(x)在区间[a,b ]上有定义,任意用分点a =x ° :为:X 2 :: X n =b将[a,b ]分成n 个小区间,用- X i -表示第i 个小区间的长度,在 以亠人]上任取一 点i ,作乘积f( ip X i ,i =1,2,…;n .再作和「之刚 F|藝冠口 I 抽週曲 至ftE 9U.MI flW :NE■□Ml H80.00^\o-■<J J.SWW ?dHflh-1J■fJ*1+nP.W?JjJJ riMi ;'•M JJ丨・■ M.-tjJjP几何®• iStfFJj - 1J» HffiKi M :LI S.T1P9 ItJiQ 曲祈 q EfcAlMI S3S>NI 世團呵 *JiWl Httii .ruras- issi 対 7■龙轉” WL'<丘说吗MXI 3山 ±jfcM> ESN 罡SJ4 童二闻 ■團•■PHLrl-llTrl*ll.l<ll.li 上鼻丄鼻rLIJLd可L*丄 L* ;r.tTNitl »94 ;JZGt B : uinrr im-ia» = SMI Of)n = 8000.00mlzxzzHEzJ p Ji J- Jn' f( i )厶X i .i 4若当,二max{.%} > 0时,上式的极限存在,则称函数f(x)在区间[a,b ]上可积,并称此1丈切 ™ 极限值为f(x)在[a,b ]上的定积分,记作bf(x)dx.即■ abnf (x)d^ljm^Z f (©)A x i .其中f (x)称为被积函数,f (x)dx 称为被积表达式,x 称为积分变量,[a,b ]称为积许多实际问题都可用定积分表示.例如,若变速直线运动的速度为 v(t),则在时间区间[a,b ]上,物体经过的路程为bs 「a v(t)dt.⑵同理,图5-1所示的曲边梯形面积可表为bA 二 f (x)dx(3)ab变力做功W 二F(r)dr (4)I • f (x)在[a,b ]可积,是指不管对区间分划的方式怎样,也不管点 [Xy,X i ]上如何选取,只要•》0 ,极限值总是唯一确定的.哪些函数是可积的呢?定理 在闭区间[a,b ]上连续的函数必在[a,b ]上可积;在区间[a,b ]上有界且只有有 限个间断点的函数也必在[a,b ]上可积.II •定积分是一个数,只取决于被积函数与积分区间,而与积分变量的记号无关, 即(1)a, b 分别称为积分下限和上限.i在小区间x图5-1bb baf (x)dx f (u)du f (t)dt.Ill .定义定积分时已假定下限a 小于上限b ,为便于应用,规定当b < a 时,b aaf(x)dx 二- b f(x)dx .af (x)dx 二 0 .a222定积分的几何意义bI .若f(x) _0,则积分a f(x)dx 表示如图所示的曲 边梯形的面积,即bf (x)dx = A .ab特别地,当a=b 时,有[f (x)dx=O 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学准备
1. 教学目标
(1)知识与技能:定积分的概念、几何意义及性质
(2)过程与方法:在定积分概念形成的过程中,培养学生的抽象概括能力和探索提升能力。
(3)情感态度与价值观:让学生了解定积分概念形成的背景,培养学生探究数学的兴趣.
2. 教学重点/难点
【教学重点】:
理解定积分的概念及其几何意义,定积分的性质
【教学难点】:
对定积分概念形成过程的理解
3. 教学用具
多媒体
4. 标签
1.5.3定积分的概念
教学过程
课堂小结
定积分的定义,计算定积分的“四步曲”,定积分的几何意义,定积分的性质。