共轭效应强度 共聚

合集下载

高聚物生产技术:自由基共聚和竞聚率

高聚物生产技术:自由基共聚和竞聚率
5
2
(3)影响竟聚率的因素 ①单体共轭效应: 一般要求两种单体都带有共轭或两种单体都不带有共轭,易进行共聚。 ②单体极性效应: 推电子基团单体使之双键上呈负电性,吸电子基团单体使之呈正电性。 两种单体极性差别越大,交替共聚倾向越大。 ③单体位阻效应: 不能均聚的1,2-二取代基单体能与单取代基单体共聚。
3. 竟聚率
(1)定义 同一种链自由基对两种不同单体竞争聚合反应能力之比。即均聚合速 率常数与共聚合速率常数之比。 对单体M1,它的竟聚率r1=k11/k12 ; 对单体M2,它的竟聚率r2= k22/k21 。
1
(2)竟聚率的意义 r1 = 0,表示k11 = 0,活性端基不能自聚; r1 = 1,表示k11 =k12,活性端基加上两种单体难易程度相同; r1 >1,表示活性端基有利于加上同种单体; r1 <1,表示活性端基有利于加上异种单体; r1 = ∞,表示活性端基只能加上同种单体,不能共聚。 由此可见,竟聚率反映了单体自聚和共聚能力的竞争。
3
④温度: 温度对于竟聚率影响不大;温度升高使共聚反应趋于理想共聚。 ⑤压力: 压力对竟聚率的影响不大;在共聚反应中,升高压力,共聚反应向理Байду номын сангаас 共聚方向发展。
4
⑥溶剂: 溶剂对自由基共聚一般没有影响。在离子型聚合中,溶剂将影响聚 合离子对的性质,溶剂极性越大,共聚倾向于交替共聚。 ⑦其它因素: 介质的PH值增大,共聚倾向于交替共聚;某些盐类将增加交替共聚 影响。

苯乙烯—顺丁烯二酸酐的交替共聚

苯乙烯—顺丁烯二酸酐的交替共聚

苯乙烯—顺丁烯二酸酐的交替共聚一、 实验目的1. 了解苯乙烯与顺丁烯二酸酐发生自由基共聚的基本原理;2. 掌握自由基溶液聚合的实验方法及聚合物析出方法;3. 学会除氧、冲氮以及隔绝空气条件下的物料转移和聚合方法。

二、 实验原理顺丁烯二酸酐由于空间位阻效应,在一般条件下很难发生均聚,而苯乙烯由于共轭效应很易均聚,当将上述两种单体按一定配比混合后在引发剂作用下却很容易发生共聚。

而且,共聚产物具有规整的交替结构,这与两种单体的结构有关。

顺丁烯二酸酐双键两端带有两个吸电子能力很强的酸酐基团,使酸酐中的碳碳双键上的电子云密度降低而带部分的正电荷,而苯乙烯是一个大共轭体系,在正电荷的顺丁烯二酸酐的诱导下,苯环的电荷向双键移动,使碳碳双键上的电子云密度增加而带部分负电荷。

这两种带有相反电荷的单体构成了电子受体(Accepter )—电子给体(Donor )体系,在静电作用下很容易形成一种电荷转移配位化合物,这种配位化合物可看作一个大单体,在引发剂作用下发生自由基聚合,形成交替共聚的结构。

另外,由e 值和竞聚率亦可判定两种单体所形成的共聚物结构。

由于苯乙烯的e 值为-0.8而顺丁烯二酸酐的e 值为2.25,两者相差很大,因此发生交替共聚的趋势很大。

在60o C 时苯乙烯(M 1)—顺丁烯二酸酐(M 2)的竞聚率分别为r 1 = 0.01和r 2 = 0,由共聚组分微分方程可得:][][1][][21121M M r M d M d += 当惰性单体顺丁烯二酸酐的用量远大于易均聚单体苯乙烯时,则当][][211M M r 趋于零,共聚反应趋于生成理想的交替结构。

两单体的结构决定了所生成的交替共聚物,不溶于非极性或极性很大的溶剂,如四氯化碳。

氯仿、苯和甲苯等,而可溶于极性较强的四氢呋喃、二氧六环、二甲基甲酰胺和乙酸乙酯等溶剂。

本实验选用乙酸乙酯作溶剂,采用溶液聚合的方法合成交替共聚物,而后加入乙醇使产物析出。

三、主要仪器和试剂1. 实验仪器实验装置一套,如图9-1所示,恒温水浴槽,聚合瓶,溶剂加料管,注射器,止血钳,布氏漏斗,烧杯,表面皿。

共轭高分子

共轭高分子

o
导电碳纤维
电化学聚合:聚吡咯 Poly(Pyrrole)
阳极氧化 N H -e N H
.
自由基偶合 N H
H N
脱质子 -H
+
H N Poly(Pyrrole) N H
共轭聚合物的溶解性
Liquid High solubility
Solid
High solubility
Low Solubility in any organic solvent Almost insoluble in any organic solvent
共轭聚合物应用领域: 在光学 、电子学、光电、 光子器件、传感 等领域得到广 泛应用。比如:发光二极管, 薄 膜晶体管, 光伏打电池也称为太 阳能电池和塑料激光器等。
共轭聚合物研究的发展历程
在20世纪70和80年代,研究共轭
聚合物(也称为有机金属 organic
metals) 的目的是获得塑料金属
结论
在复合材料中,由于Ti02和共轭链高 分子在纳米尺度上的有效复合,一方面有效 改善了TiO2与CP之间的接触界面,有利于 能量的转换,提高了光能的利用效率;另一 方面由于有Ti02的存在,复合物中CP的共 轭程度明显增加,极大地拓宽TiO2的光谱 响应范围,使其能吸收紫外.可见区的全程 光波,提高了光能的利用效率。
复合材料的表征
用TEM对复合材料的形貌、尺寸和分散 情况进行了观察,结果如图1所示。由透射电 镜照片可以得知,复合材料为类球形纳米颗粒, 平均粒径约30 nm左右。复合材料为均匀的一 相,没有相分离现象的发生,这说明复合材料 中两相之间存在较强的相互作用力,阻止了两 相的分离,实现了两相在纳米尺度上的复合。 Ti02与CP在纳米尺度的复合,可以有效的增 加两相之间的接触界面,有利于能量的转换, 提高了光能的利用效率。

高分子化学 第3章 3-6节

高分子化学 第3章 3-6节

③氯乙烯-醋酸乙烯酯共聚物常用作涂料和粘合剂等。
用马来酸酐作为第三单体共聚,可提高其对基 材的粘结性。
④(甲基)丙烯酸酯、苯乙烯、(甲基)丙烯酸等原材进
行的多元共聚产物,在建筑涂料、粘合剂、纺 织助剂等方面均有广泛用途。其中不乏四元以 至更多单体的乳液共聚,以调节产物的性能。 (甲基)丙烯酸的作用是提高乳液的稳定性和对 基层的粘结性。
两种单体或两种自由基的活性只有与同种
自由基或单体反应才能比较。竞聚率可以 用以判别单体或自由基的相对活性。
3.5.1单体的相对活性 竞聚率的倒数(1/r1= k12/k11)来表示 意义: 代表了某自由基同另一单体反应的增长速 率常数与该自由基同其自身单体反应的增长速 率常数之比值。 因此: 两种单体对同一种链自由基的反应速率常 数之比时,链自由基相同,单体不同,可衡量 两单体相对活性。 取不同第二单体,可以列出一系列单体的 相对活性
若M1,M2都带有或都不带有共轭取代基时,易 共聚(单体活性相近),如苯乙烯和丁二烯; 醋酸乙烯和氯乙烯。 当一种单体带有取代基,另一不带共轭 取代基时, 不易共聚: 如本例中,VAc(0.01)~ St (55)不易共聚 ??? 甚至将少量St加入到VAc中相当于阻聚剂???
VAc St
②/①=100,③/④=50M,单体活性St是 VAc的50~100倍 ②/③=1586,①/④=793,VAc •是St •的 700~1600倍
凡不带有共轭取代基的单 体,其均聚速率大于带有共 轭取代基的单体:VAc ( kp=2300 ) > St (kp=145 )
R· M R· ① + R· Ms Rs·② + Rs· Ms Rs·③ + Rs· M R· ④ + ②>①>③>④

《高分子化学》教案第6章共聚反应

《高分子化学》教案第6章共聚反应

第六章链式共聚反应本章要点:1)共聚反应和共聚物的类型:按不同重复结构单元在聚合物连中的排列情况,共聚物可分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物,共聚反应也相应地进行分类。

2)共聚组成方程和共聚曲线:描述共聚物组成与单体浓度、转化率之间的关系,共聚组成方程的微分式给出了某个时刻生成的共聚物的组成与该时刻单体组成的定量关系,共聚组成方程的积分式给出了在某个时期形成共聚物的平均组成与起始的单体组成和单体总转化率之间的关系。

共聚曲线则是共聚组成方程微分式的图形化。

3)竞聚率和共聚类型:竞聚率为自增长反应速率常数和交叉增长速率常数的比值,反映了单体共聚能力的强弱;依据共聚单体对竞聚率的乘积,共聚可分为理想共聚、无规共聚、交替共聚、非理想共聚和“嵌段”共聚等类型,它们的共聚曲线具有不同的特征。

4)共聚物的序列分布:是共聚物组成不均一性的必然体现,描述了不同长度的同种结构单元的序列在共聚物中所占的比例,包括序列的数量分布和质量分布。

5)自由基共聚:通过自由基共聚竞聚率的研究可以确定结构对单体和自由基活性的影响,这些结构因素主要包括极性效应和共轭效应,其中共轭效应的作用更为显著;由Q-e方程可建立起结构因素和竞聚率之间的半定量关系,可用于竞聚率的估算和共聚类型的推断。

自由基聚合的竞聚率基本不受反应条件的影响。

6)离子共聚:离子共聚基本属于理想共聚,共聚单体的竞聚率受引发剂类型、温度、溶剂和其它聚合条件影响。

本章难点:1)理想共聚模型:活性中心等活性假定、稳态假定、无解聚和聚合物具有很高分子量是理想共聚模型的基本点;活性中心等活性指的是活性中心只与增长链末端单元相关,与增长链的聚合物和其它结构单元无关。

2)共聚组成方程的成立条件和使用范围:共聚组成方程适用于活性中心等活性和无解聚的共聚。

共聚组成方程的微分形式是瞬时状态方程,描述某个时刻共聚物组成与单体组成的关系。

对于某阶段生成的共聚物组成,如果单体浓度变化不显著,则可以共聚组成方程的微分形式进行简化处理,否则需用共聚组成方程的积分式进行处理。

习题课3自由基共聚与聚合方法

习题课3自由基共聚与聚合方法

20
乳液聚合 成核机理和聚合场所 (1)胶束成核
难溶于水单体经典乳液聚合。水溶性引发剂水相中分解产生初级自 由基,引发真溶于水中单体形成短链自由基,然后被增溶胶束捕捉, 并引发其中单体,所谓胶束成核。 增长聚合在胶粒内进行,胶粒内单体由单体液滴的单体扩散来补充, 维持胶粒内单体浓度恒定,构成动平衡。 胶粒长大原有乳化剂不足以覆盖时,由未成核胶束中乳化剂通过水 相扩散来补充,未成核大部分胶束只是乳化剂临时仓库。 初期一个胶粒只能容纳一个自由基,另一个自由基进入才双基终止。 总体初期胶粒内平均自由基数是0.5。中后期可容纳几个自由基。 链引发,链增长,链终止在被隔离的胶束或胶粒内进行,此隔离作 用使乳液聚合兼有高速率和高分子量的特点。
竞聚率r,均聚与共聚链增长速率常数之比: ������11 ������22 ������1 = ������2 = ������12 ������21
6
3自由基共聚合与聚合方法
由上述解析式,可得共聚物瞬时组成与单体组成间关系: d ������1 ������1 ������1 ������1 + ������2 = × d ������2 ������2 ������2 ������2 + ������1
B、交替共聚
若r1>0,r2=0,则有: d ������1 ������1 = 1 + ������1 d ������2 ������2
只有当[M1]过量很多,即r1[M1]/[M2]<<1,才能形成交替共聚物。 F1>0.5。
C、r1r2<1且r1>1、r2<1,非理想共聚
共聚曲线处于对角线上方,但与另一对角线不对称。r1<1、r2>1则 在对角线下方。

高分子化学总结

高分子化学总结

名词说明1:凝胶点:起先出现凝胶瞬间的反应程度。

2:凝胶效应:体系粘度增加所引起的自动加速现象。

3:诱导分解:链自由基向引发剂的转移反应,使引发剂效率降低。

4:动力学链长:每个活性中心自引发至终止平均消耗的单体分子数。

5:志向恒比共聚:当r1=r2=1时,无论配比和转化率如何,共聚物的组成和单体的组成完全相同,F1=f1时,共聚物组成的曲线为一对角线。

6:竞聚率:单体均聚和共聚链增长的速率常数之比。

(用于表征两单体的相对活性)7:官能度:一分子中能参与反应的官能团数。

8:反应程度:参与反应的集团数(N0-N)占起始基团数N0的百分数。

9:环氧值:100g树脂中含有的环氧基的摩尔数。

10:半衰期:引发剂分解至起始浓度一半时所需的时间。

11:引发效率:引发剂分解生成的自由基中能用于引发聚合反应的百分数。

12:笼蔽效应:由于初级自由基受溶剂分子包围,限制了自由基的扩散,,导致初级自由基之间发生耦合或歧化终止,使引发率f降低的效应。

13:数钧聚合度:平均每个聚合物分子所包含的结构单元数。

14:Q,e概念:单体的共轭效应因子Q和极性效应因子e与单体竞聚率相关联的定量关联式。

15:临界胶速浓度:乳化剂起先形成胶速的临界浓度。

问答题1:什么是自动加速现象,产生的缘由是什么?对聚合度及聚合反应产生怎样的影响?离子聚合中是否发生自动加速现象?答:①自动加速现象:单体和引发剂的浓度随着转化率的增加而降低后,聚合速率理应降低,但达肯定转化率后,却出现了聚合反应速率增加的现象。

②产生缘由:随聚合反应的进行,体系粘度不断增大,当体系粘度增加到肯定程度时,双基终止受阻碍,使Kt明显变小,链终止速度下降,但单体扩散的速率几乎不受影响,Kp下降很小,链增长的速率变更不大,因此相对提高了聚合反应的速率,出现了自动加速现象。

③影响:导致聚合反应速率增加,体系粘度增加,导致分子量和分散性增加,影响产品质量,易发生局部过热而出现暴聚。

第四章 自由基共聚合(2)

第四章 自由基共聚合(2)

d [ M 1 ] [ M 1 ] r1[ M 1 ] [ M 2 ] d [ M 2 ] [ M 2 ] r2 [ M 2 ] [ M1 ]
P
1 r1 1 r2
r2 的测定值。 与直线交点法一样,作 r1 ~ r2 图,直线的交点就是 r1 ,
积分法实验简单,但估算繁琐。
d [ M 1 ] [ M 1 ] r1[ M 1 ] [ M 2 ] d [ M 2 ] [ M 2 ] r2 [ M 2 ] [ M1 ]
重排
几组单体配比,[M1]/[M2]→对
应几组共聚物组成d[M1]/d[M2],代 入上式,不同的r2 ~r1直线 直线交点或交叉区域重心的座 标即为r1、r2。 交叉区域大小与实验准确度有关。
若 r1<1,表示 k11< k12,即 E11> E12。式右边为正值,温度上 升,r1也上升,趋于1。 若 r1>1,表示 k11> k12,即 E11< E12。式右边为负值,温度上 升,r1下降,也趋于1。总的结果,温度上升,r1r2 1,共聚反应 向理想共聚方向发展。
由于各种烯类单体的增长活化能相差不大( 21 ~ 34kJ/mol), E11 -E12数值很小,因此温度对竟聚率的影响度不大。
极性效应
极性效应:又称交替效应:
带有推电子取代基的单体往往易与另一带有吸电 子取代基的单体发生共聚,并有交替倾向,这种效应 称为极性效应。
推电子基使烯类单体双键带负电性,而吸电子基则使
其带正电性,极性相反的单体易共聚,有交替倾向。
H2C CH R
H2C
+
CH
R
一些难均聚的单体,如马来酸酐、反丁烯二酸二乙酯, 能与极性相反的单体如苯乙烯、乙烯基醚类共聚。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共轭效应强度与共聚
一、共轭效应的基本概念
共轭效应是分子中电子云的一种重新分布现象,主要源于π键的电子离域。

当分子中存在多个π键,且这些π键之间能够通过电子的离域效应相互交叠,形成一个大范围的电子离域体系,这种现象被称为共轭效应。

共轭效应能够使分子呈现出独特的电子结构和物理化学性质,如提高稳定性、改变光谱性质等。

二、共轭效应的强度决定因素
1.共轭体系的长度:共轭体系的长度对共轭效应的强度有重要影响。

随着共轭碳链的延长,π电子云更易离域,共轭效应增强。

2.取代基的性质:取代基的性质对共轭效应的强度有显著影响。

极性取代基、给电子取代基和吸电子取代基等均能在一定程度上影响共轭效应。

3.环状化合物的共轭程度:在环状化合物中,由于空间结构的限制,某些位置的碳-碳键难以形成完全的共轭,导致共轭效应降低。

4.分子内张力:分子内张力能够影响π电子云的分布,进而影响共轭效应。

适当的分子内张力可以增强共轭效应,但过高的张力会导致分子稳定性降低。

三、共轭效应对共聚的影响
1.聚合物的电子结构与性质:在共轭聚合物中,长链π电子云的离域使得聚合物的电子结构和性质受到显著影响,如导电性、光学性能等。

2.共聚物的热稳定性:共轭聚合物的热稳定性受其共轭程度的影响。

通常,共轭程度较高的聚合物具有更高的热稳定性。

3.聚合反应活性:取代基的性质和共轭程度可影响聚合反应的活性。

某些情况下,增加共轭程度可能提高聚合活性。

4.共聚物的序列结构与序列长度:共轭聚合物的序列结构对其物理和化学性质有重要影响。

通过控制反应条件,可以调整聚合物的序列结构和序列长度,进一步调控其性能。

5.结晶行为与熔点:共轭聚合物的结晶行为和熔点受到共轭效应的影响。

由于π电子的离域,共轭聚合物的熔点通常较高,结晶行为也较为特殊。

四、共轭聚合物的发展与应用
自20世纪40年代发现聚乙炔以来,共轭聚合物经历了飞速的发展。

目前,共轭聚合物在光电材料、传感器、电池、燃料电池、太阳能电池、电磁屏蔽、生物医学工程等领域得到了广泛应用。

例如,聚乙炔、聚苯胺、聚噻吩等材料在太阳能电池和燃料电池中有重要应用;而聚苯胺和某些导电高分子材料在电磁屏蔽和传感器领域也有着广泛的应用前景。

随着对共轭聚合物结构和性能的深入理解以及合成方法的不断改进,共轭聚合物在未来的应用前景将更加广阔。

五、未来展望与挑战
虽然共轭聚合物在多个领域展现出巨大的应用潜力,但其发展仍面临一些挑战和问题。

首先,如何实现可控合成是关键问题之一。

目前对于聚合物的序列结构和长度仍难以精确控制,这限制了共轭聚合物的性能和应用。

其次,提高聚合物的稳定性是另一个重要的研究方向。

在实际应用中,许多共轭聚合物容易受到环境的影响,如氧化或水解等,导致性能下降。

最后,寻找更多具有独特性能的共轭聚合物是未来的一个重要任务。

例如,寻找具有高导电性、优异光学性能或特殊响应性能的聚合物是当前研究的热点和难点。

针对这些挑战和问题,未来需要进一步加强基础研究,探索新的合成方法和发展新的理论模型,以期更好地发挥共轭聚合物在各个领域中的作用和应用价值。

相关文档
最新文档